-
1
-
-
0029553183
-
An overview of epithelio-mesenchymal transformation
-
Hay, E. D. An overview of epithelio-mesenchymal transformation. Acta Anat.154, 8-20 (1995).
-
(1995)
Acta Anat.154
, pp. 8-20
-
-
Hay, E.D.1
-
2
-
-
33244463813
-
Complex networks orchestrate epithelial-mesenchymal transitions
-
Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131-142 (2006).
-
(2006)
Nature Rev. Mol. Cell Biol.
, vol.7
, pp. 131-142
-
-
Thiery, J.P.1
Sleeman, J.P.2
-
3
-
-
70450198396
-
Epithelial-mesenchymal transitions in development and disease
-
Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890 (2009).
-
(2009)
Cell
, vol.139
, pp. 871-890
-
-
Thiery, J.P.1
Acloque, H.2
Huang, R.Y.3
Nieto, M.A.4
-
4
-
-
67650999875
-
The basics of epithelialmesenchymal transition
-
Kalluri, R. & Weinberg, R. A. The basics of epithelialmesenchymal transition. J. Clin. Invest. 119, 1420-1428 (2009).
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1420-1428
-
-
Kalluri, R.1
Weinberg, R.A.2
-
5
-
-
79951805332
-
Epithelial-mesenchymal interactions in pulmonary fibrosis
-
Chapman, H. A. Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu. Rev. Physiol. 73, 413-435 (2011).
-
(2011)
Annu. Rev. Physiol.
, vol.73
, pp. 413-435
-
-
Chapman, H.A.1
-
6
-
-
84872200824
-
Early events in cell adhesion and polarity during epithelialmesenchymal transition
-
Huang, R. Y., Guilford, P. & Thiery, J. P. Early events in cell adhesion and polarity during epithelialmesenchymal transition. J. Cell Sci. 125, 4417-4422 (2012).
-
(2012)
J. Cell Sci.
, vol.125
, pp. 4417-4422
-
-
Huang, R.Y.1
Guilford, P.2
Thiery, J.P.3
-
7
-
-
65349132693
-
EMT the cytoskeleton, and cancer cell invasion
-
Yilmaz, M. & Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28, 15-33 (2009).
-
(2009)
Cancer Metastasis Rev.
, vol.28
, pp. 15-33
-
-
Yilmaz, M.1
Christofori, G.2
-
8
-
-
84870252814
-
The complex world of WNT receptor signalling
-
Niehrs, C. The complex world of WNT receptor signalling. Nature Rev. Mol. Cell Biol. 13, 767-779 (2012).
-
(2012)
Nature Rev. Mol. Cell Biol.
, vol.13
, pp. 767-779
-
-
Niehrs, C.1
-
9
-
-
84875242084
-
P120 catenin: An essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression
-
Kourtidis, A., Ngok, S. P. & Anastasiadis, P. Z. p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. Prog. Mol. Biol. Transl. Sci. 116, 409-432 (2013).
-
(2013)
Prog. Mol. Biol. Transl. Sci.
, vol.116
, pp. 409-432
-
-
Kourtidis, A.1
Ngok, S.P.2
Anastasiadis, P.Z.3
-
10
-
-
82555193327
-
Epithelial-to-mesenchymal transformation alters electrical conductivity of human epicardial cells
-
Bax, N. A. et al. Epithelial-to-mesenchymal transformation alters electrical conductivity of human epicardial cells. J. Cell. Mol. Med. 15, 2675-2683 (2011).
-
(2011)
J. Cell. Mol. Med.
, vol.15
, pp. 2675-2683
-
-
Bax, N.A.1
-
11
-
-
34249289041
-
Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype?
-
Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Rev. Cancer 7, 415-428 (2007).
-
(2007)
Nature Rev Cancer
, vol.7
, pp. 415-428
-
-
Peinado, H.1
Olmeda, D.2
Cano, A.S.3
-
12
-
-
84873050284
-
Regulatory networks defining EMT during cancer initiation and progression
-
De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nature Rev. Cancer 13, 97-110 (2013).
-
(2013)
Nature Rev. Cancer
, vol.13
, pp. 97-110
-
-
De Craene, B.1
Berx, G.2
-
13
-
-
77953283628
-
Cell polarity in eggs and epithelia: Parallels and diversity
-
St Johnston, D. & Ahringer, J. Cell polarity in eggs and epithelia: parallels and diversity. Cell 141, 757-774 (2010).
-
(2010)
Cell
, vol.141
, pp. 757-774
-
-
St Johnston, D.1
Ahringer, J.2
-
14
-
-
21244431506
-
Junctional recruitment of mammalian Scribble relies on E-cadherin engagement
-
Navarro, C. et al. Junctional recruitment of mammalian Scribble relies on E-cadherin engagement. Oncogene 24, 4330-4339 (2005).
-
(2005)
Oncogene
, vol.24
, pp. 4330-4339
-
-
Navarro, C.1
-
15
-
-
29144469472
-
The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin
-
Qin, Y., Capaldo, C., Gumbiner, B. M. & Macara, I. G. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol. 171, 1061-1071 (2005).
-
(2005)
J. Cell Biol.
, vol.171
, pp. 1061-1071
-
-
Qin, Y.1
Capaldo, C.2
Gumbiner, B.M.3
MacAra, I.G.4
-
16
-
-
56749095797
-
Transcriptional regulation of cell polarity in EMT and cancer
-
Moreno-Bueno, G., Portillo, F. & Cano, A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27, 6958-6969 (2008).
-
(2008)
Oncogene
, vol.27
, pp. 6958-6969
-
-
Moreno-Bueno, G.1
Portillo, F.2
Cano, A.3
-
17
-
-
77952902430
-
Mechanisms of motility in metastasizing cells
-
Yilmaz, M. & Christofori, G. Mechanisms of motility in metastasizing cells. Mol. Cancer Res. 8, 629-642 (2010).
-
(2010)
Mol. Cancer Res.
, vol.8
, pp. 629-642
-
-
Yilmaz, M.1
Christofori, G.2
-
18
-
-
79959677602
-
Life at the leading edge
-
Ridley, A. J. Life at the leading edge. Cell 145, 1012-1022 (2011).
-
(2011)
Cell
, vol.145
, pp. 1012-1022
-
-
Ridley, A.J.1
-
19
-
-
84871607697
-
Breaking away: Matrix remodeling from the leading edge
-
McNiven, M. A. Breaking away: matrix remodeling from the leading edge. Trends Cell Biol. 23, 16-21 (2013).
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 16-21
-
-
McNiven, M.A.1
-
20
-
-
84055176150
-
Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression
-
Haynes, J. Srivastava, J., Madson, N., Wittmann, T. & Barber, D. L. Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol. Biol. Cell 22, 4750-4764 (2011).
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 4750-4764
-
-
Haynes, J.1
Srivastava, J.2
Madson, N.3
Wittmann, T.4
Barber, D.L.5
-
21
-
-
68549122708
-
Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion
-
Narumiya, S., Tanji, M. & Ishizaki, T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 28, 65-76 (2009).
-
(2009)
Cancer Metastasis Rev.
, vol.28
, pp. 65-76
-
-
Narumiya, S.1
Tanji, M.2
Ishizaki, T.3
-
22
-
-
79955007489
-
Signalling to cancer cell invasion through PAK family kinases
-
Whale, A., Hashim, F. N., Fram, S., Jones, G. E. & Wells, C. M. Signalling to cancer cell invasion through PAK family kinases. Front. Biosci. 16, 849-864 (2011).
-
(2011)
Front. Biosci.
, vol.16
, pp. 849-864
-
-
Whale, A.1
Hashim, F.N.2
Fram, S.3
Jones, G.E.4
Wells, C.M.5
-
24
-
-
77951238830
-
Remodeling epithelial cell organization: Transitions between front-rear and apical-basal polarity
-
Nelson, W. J. Remodeling epithelial cell organization: transitions between front-rear and apical-basal polarity. Cold Spring Harb. Perspect Biol. 1, a000513 (2009).
-
(2009)
Cold Spring Harb. Perspect Biol.
, vol.1
-
-
Nelson, W.J.1
-
25
-
-
77954865524
-
Cell polarity in motion: Redefining mammary tissue organization through EMT and cell polarity transitions
-
Godde, N. J., Galea, R. C., Elsum, I. A. & Humbert, P. O. Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J. Mammary Gland Biol. Neoplasia 15, 149-168 (2010).
-
(2010)
J. Mammary Gland Biol. Neoplasia
, vol.15
, pp. 149-168
-
-
Godde, N.J.1
Galea, R.C.2
Elsum, I.A.3
Humbert, P.O.4
-
26
-
-
0038457895
-
Regulation of leading edge microtubule and actin dynamics downstream of Rac1
-
Wittmann, T., Bokoch, G. M. & Waterman-Storer, C. M. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J. Cell Biol. 161, 845-851 (2003).
-
(2003)
J. Cell Biol.
, vol.161
, pp. 845-851
-
-
Wittmann, T.1
Bokoch, G.M.2
Waterman-Storer, C.M.3
-
27
-
-
42549107446
-
Cadherin switching
-
Wheelock, M. J., Shintani, Y., Maeda, M., Fukumoto, Y. & Johnson, K. R. Cadherin switching. J. Cell Sci. 121, 727-735 (2008).
-
(2008)
J. Cell Sci.
, vol.121
, pp. 727-735
-
-
Wheelock, M.J.1
Shintani, Y.2
Maeda, M.3
Fukumoto, Y.4
Johnson, K.R.5
-
28
-
-
84867886120
-
Cadherins in collective cell migration of mesenchymal cells
-
Theveneau, E. & Mayor, R. Cadherins in collective cell migration of mesenchymal cells. Curr. Opin. Cell Biol. 24, 677-684 (2012).
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, pp. 677-684
-
-
Theveneau, E.1
Mayor, R.2
-
29
-
-
84873708996
-
Cadherin junctions and their cytoskeleton(s)
-
Brieher, W. M. & Yap, A. S. Cadherin junctions and their cytoskeleton(s). Curr. Opin. Cell Biol. 25, 39-46 (2013).
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 39-46
-
-
Brieher, W.M.1
Yap, A.S.2
-
30
-
-
57349084646
-
Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin
-
Hansen, S. M., Berezin, V. & Bock, E. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin. Cell. Mol. Life Sci. 65, 3809-3821 (2008).
-
(2008)
Cell. Mol. Life Sci.
, vol.65
, pp. 3809-3821
-
-
Hansen, S.M.1
Berezin, V.2
Bock, E.3
-
31
-
-
1042267263
-
Cell adhesion and signalling by cadherins and Ig-CAMs in cancer
-
Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Rev. Cancer 4, 118-132 (2004).
-
(2004)
Nature Rev. Cancer
, vol.4
, pp. 118-132
-
-
Cavallaro, U.1
Christofori, G.2
-
32
-
-
53549133947
-
NCAM-induced focal adhesion assembly: A functional switch upon loss of E-cadherin
-
Lehembre, F. et al. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J. 27, 2603-2615 (2008).
-
(2008)
EMBO J.
, vol.27
, pp. 2603-2615
-
-
Lehembre, F.1
-
33
-
-
27744556965
-
Cellular integrity plus: Organelle-related and protein-targeting functions of intermediate filaments
-
Toivola, D. M., Tao, G. Z., Habtezion, A., Liao, J. & Omary, M. B. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 15, 608-617 (2005).
-
(2005)
Trends Cell Biol.
, vol.15
, pp. 608-617
-
-
Toivola, D.M.1
Tao, G.Z.2
Habtezion, A.3
Liao, J.4
Omary, M.B.5
-
34
-
-
77953484480
-
Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition
-
Mendez, M. G., Kojima, S. & Goldman, R. D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 24, 1838-1851 (2010).
-
(2010)
FASEB J.
, vol.24
, pp. 1838-1851
-
-
Mendez, M.G.1
Kojima, S.2
Goldman, R.D.3
-
35
-
-
69649089902
-
Regulation of ß4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition
-
Yang, X., Pursell, B., Lu, S., Chang, T. K. & Mercurio, A. M. Regulation of ß4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition. J. Cell Sci. 122, 2473-2480 (2009).
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2473-2480
-
-
Yang, X.1
Pursell, B.2
Lu, S.3
Chang, T.K.4
Mercurio, A.M.5
-
36
-
-
60849098434
-
Integrin a3ß1-dependent ß-catenin phosphorylation links epithelial Smad signaling to cell contacts
-
Kim, Y. et al. Integrin a3ß1-dependent ß-catenin phosphorylation links epithelial Smad signaling to cell contacts. J. Cell Biol. 184, 309-322 (2009).
-
(2009)
J. Cell Biol.
, vol.184
, pp. 309-322
-
-
Kim, Y.1
-
37
-
-
16444368158
-
Tumor cell invasiveness correlates with changes in integrin expression and localization
-
Maschler, S. et al. Tumor cell invasiveness correlates with changes in integrin expression and localization. Oncogene 24, 2032-2041 (2005).
-
(2005)
Oncogene
, vol.24
, pp. 2032-2041
-
-
Maschler, S.1
-
38
-
-
84866116442
-
Zyxin is a transforming growth factor-ß (TGF-ß)/Smad3 target gene that regulates lung cancer cell motility via integrin a5ß1
-
Mise, N. et al. Zyxin is a transforming growth factor-ß (TGF-ß)/Smad3 target gene that regulates lung cancer cell motility via integrin a5ß1. J. Biol. Chem. 287, 31393-31405 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 31393-31405
-
-
Mise, N.1
-
39
-
-
33646428351
-
Collagen type i induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells
-
Koenig, A., Mueller, C., Hasel, C., Adler, G. & Menke, A. Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res. 66, 4662-4671 (2006).
-
(2006)
Cancer Res.
, vol.66
, pp. 4662-4671
-
-
Koenig, A.1
Mueller, C.2
Hasel, C.3
Adler, G.4
Menke, A.5
-
40
-
-
84860830113
-
Epithelialmesenchymal transition: General principles and pathological relevance with special emphasis on the role of matrix metalloproteinases
-
Nistico, P., Bissell, M. J. & Radisky, D. C. Epithelialmesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol 4, a011908 (2012).
-
(2012)
Cold Spring Harb Perspect Biol
, vol.4
-
-
Nistico, P.1
Bissell, M.J.2
Radisky, D.C.3
-
41
-
-
21844432918
-
Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability
-
Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123-127 (2005).
-
(2005)
Nature
, vol.436
, pp. 123-127
-
-
Radisky, D.C.1
-
42
-
-
84863184549
-
PTTG induces EMT through integrin avß3-focal adhesion kinase signaling in lung cancer cells
-
Shah, P. P., Fong, M. Y. & Kakar, S. S. PTTG induces EMT through integrin avß3-focal adhesion kinase signaling in lung cancer cells. Oncogene 31, 3124-3135 (2012).
-
(2012)
Oncogene
, vol.31
, pp. 3124-3135
-
-
Shah, P.P.1
Fong, M.Y.2
Kakar, S.S.3
-
43
-
-
27644538315
-
Integrin-mediated activation of latent transforming growth factor ß
-
Sheppard, D. Integrin-mediated activation of latent transforming growth factor ß. Cancer Metastasis Rev. 24, 395-402 (2005).
-
(2005)
Cancer Metastasis Rev.
, vol.24
, pp. 395-402
-
-
Sheppard, D.1
-
44
-
-
23844528776
-
The Snail genes as inducers of cell movement and survival: Implications in development and cancer
-
Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151-3161 (2005).
-
(2005)
Development
, vol.132
, pp. 3151-3161
-
-
Barrallo-Gimeno, A.1
Nieto, M.A.2
-
45
-
-
59449090107
-
TGF-ß-induced epithelial to mesenchymal transition
-
Xu, J., Lamouille, S. & Derynck, R. TGF-ß-induced epithelial to mesenchymal transition. Cell Res. 19, 156-172 (2009).
-
(2009)
Cell Res.
, vol.19
, pp. 156-172
-
-
Xu, J.1
Lamouille, S.2
Derynck, R.3
-
46
-
-
0033789680
-
The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells
-
Batlle, E. et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biol. 2, 84-89 (2000).
-
(2000)
Nature Cell Biol.
, vol.2
, pp. 84-89
-
-
Batlle, E.1
-
47
-
-
0033784843
-
The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression
-
Cano, A. et al. The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol. 2, 76-83 (2000).
-
(2000)
Nature Cell Biol.
, vol.2
, pp. 76-83
-
-
Cano, A.1
-
48
-
-
77956338683
-
Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition
-
Lin, T., Ponn, A., Hu, X., Law, B. K. & Lu, J. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29, 4896-4904 (2010).
-
(2010)
Oncogene
, vol.29
, pp. 4896-4904
-
-
Lin, T.1
Ponn, A.2
Hu, X.3
Law, B.K.4
Lu, J.5
-
49
-
-
0346363757
-
Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex
-
Peinado, H., Ballestar, E., Esteller, M. & Cano, A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24, 306-319 (2004).
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 306-319
-
-
Peinado, H.1
Ballestar, E.2
Esteller, M.3
Cano, A.4
-
50
-
-
84856533341
-
EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin
-
Tong, Z. T. et al. EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin. Oncogene 31, 583-594 (2012).
-
(2012)
Oncogene
, vol.31
, pp. 583-594
-
-
Tong, Z.T.1
-
51
-
-
47949125993
-
Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor
-
Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 28, 4772-4781 (2008).
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 4772-4781
-
-
Herranz, N.1
-
52
-
-
84875220237
-
Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer
-
Dong, C. et al. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 32, 1351-1362 (2013).
-
(2013)
Oncogene
, vol.32
, pp. 1351-1362
-
-
Dong, C.1
-
53
-
-
84859731270
-
G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer
-
Dong, C. et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J. Clin. Invest. 122, 1469-1486 (2012).
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 1469-1486
-
-
Dong, C.1
-
54
-
-
33646070846
-
A bivalent chromatin structure marks key developmental genes in embryonic stem cells
-
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326 (2006).
-
(2006)
Cell
, vol.125
, pp. 315-326
-
-
Bernstein, B.E.1
-
55
-
-
84455167662
-
A poised chromatin platform for TGF-ß access to master regulators
-
Xi, Q. et al. A poised chromatin platform for TGF-ß access to master regulators. Cell 147, 1511-1524 (2011).
-
(2011)
Cell
, vol.147
, pp. 1511-1524
-
-
Xi, Q.1
-
56
-
-
24344483881
-
Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor
-
Jorda, M. et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J. Cell Sci. 118, 3371-3385 (2005).
-
(2005)
J. Cell Sci.
, vol.118
, pp. 3371-3385
-
-
Jorda, M.1
-
57
-
-
68249092353
-
A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-ß mediated epithelial-mesenchymal transition
-
Vincent, T. et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-ß mediated epithelial-mesenchymal transition. Nature Cell Biol. 11, 943-950 (2009).
-
(2009)
Nature Cell Biol.
, vol.11
, pp. 943-950
-
-
Vincent, T.1
-
58
-
-
5444269904
-
Dual regulation of Snail by GSK-3ß-mediated phosphorylation in control of epithelial-mesenchymal transition
-
Zhou, B. P. et al. Dual regulation of Snail by GSK-3ß-mediated phosphorylation in control of epithelial-mesenchymal transition. Nature Cell Biol. 6, 931-940 (2004).
-
(2004)
Nature Cell Biol.
, vol.6
, pp. 931-940
-
-
Zhou, B.P.1
-
59
-
-
33751514601
-
A Wnt-Axin2-GSK3ß cascade regulates Snail1 activity in breast cancer cells
-
Yook, J. I. et al. A Wnt-Axin2-GSK3ß cascade regulates Snail1 activity in breast cancer cells. Nature Cell Biol. 8, 1398-1406 (2006).
-
(2006)
Nature Cell Biol.
, vol.8
, pp. 1398-1406
-
-
Yook, J.I.1
-
60
-
-
44049090235
-
Notch signaling mediates hypoxia-induced tumor cell migration and invasion
-
Sahlgren, C., Gustafsson, M. V., Jin, S., Poellinger, L. & Lendahl, U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc. Natl Acad. Sci. USA 105, 6392-6397 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 6392-6397
-
-
Sahlgren, C.1
Gustafsson, M.V.2
Jin, S.3
Poellinger, L.4
Lendahl, U.5
-
61
-
-
65349092794
-
Stabilization of Snail by NF-.B is required for inflammation-induced cell migration and invasion
-
Wu, Y. et al. Stabilization of Snail by NF-.B is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416-428 (2009).
-
(2009)
Cancer Cell
, vol.15
, pp. 416-428
-
-
Wu, Y.1
-
62
-
-
58649104000
-
Small C-terminal domain phosphatase enhances snail activity through dephosphorylation
-
Wu, Y., Evers, B. M. & Zhou, B. P. Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J. Biol. Chem. 284, 640-648 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 640-648
-
-
Wu, Y.1
Evers, B.M.2
Zhou, B.P.3
-
63
-
-
78049284317
-
Protein kinase D1 suppresses epithelialto-mesenchymal transition through phosphorylation of snail
-
Du, C., Zhang, C., Hassan, S., Biswas, M. H. & Balaji, K. C. Protein kinase D1 suppresses epithelialto-mesenchymal transition through phosphorylation of snail. Cancer Res. 70, 7810-7819 (2010).
-
(2010)
Cancer Res.
, vol.70
, pp. 7810-7819
-
-
Du, C.1
Zhang, C.2
Hassan, S.3
Biswas, M.H.4
Balaji, K.C.5
-
64
-
-
16844377441
-
Pak1 phosphorylation of snail, a master regulator of epithelial-to- mesenchyme transition, modulates snail's subcellular localization and functions
-
Yang, Z. et al. Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions. Cancer Res. 65, 3179-3184 (2005).
-
(2005)
Cancer Res.
, vol.65
, pp. 3179-3184
-
-
Yang, Z.1
-
65
-
-
84855358964
-
Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation
-
Zhang, K. et al. Lats2 kinase potentiates Snail1 activity by promoting nuclear retention upon phosphorylation. EMBO J. 31, 29-43 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 29-43
-
-
Zhang, K.1
-
66
-
-
67349166210
-
P53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug
-
Wang, S. P. et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biol. 11, 694-704 (2009).
-
(2009)
Nature Cell Biol.
, vol.11
, pp. 694-704
-
-
Wang, S.P.1
-
67
-
-
77957583439
-
Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition
-
Yang, M. H. et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nature Cell Biol. 12, 982-992 (2010).
-
(2010)
Nature Cell Biol.
, vol.12
, pp. 982-992
-
-
Yang, M.H.1
-
68
-
-
40249113328
-
Direct regulation of TWIST by HIF-1a promotes metastasis
-
Yang, M. H. et al. Direct regulation of TWIST by HIF-1a promotes metastasis. Nature Cell Biol. 10, 295-305 (2008).
-
(2008)
Nature Cell Biol.
, vol.10
, pp. 295-305
-
-
Yang, M.H.1
-
69
-
-
84855340668
-
SET8 promotes epithelialmesenchymal transition and confers TWIST dual transcriptional activities
-
Yang, F. et al. SET8 promotes epithelialmesenchymal transition and confers TWIST dual transcriptional activities. EMBO J. 31, 110-123 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 110-123
-
-
Yang, F.1
-
70
-
-
0041423614
-
Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium
-
Farge, E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365-1377 (2003).
-
(2003)
Curr. Biol.
, vol.13
, pp. 1365-1377
-
-
Farge, E.1
-
71
-
-
0038369998
-
A self-enabling TGFß response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells
-
Kang, Y., Chen, C. R. & Massagué, J. A self-enabling TGFß response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11, 915-926 (2003).
-
(2003)
Mol. Cell
, vol.11
, pp. 915-926
-
-
Kang, Y.1
Chen, C.R.2
Massagué, J.3
-
72
-
-
79957883313
-
Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness
-
Hong, J. et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 71, 3980-3990 (2011).
-
(2011)
Cancer Res.
, vol.71
, pp. 3980-3990
-
-
Hong, J.1
-
73
-
-
77953743748
-
ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatinremodeling protein BRG1
-
Sanchez-Tillo, E. et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatinremodeling protein BRG1. Oncogene 29, 3490-3500 (2010).
-
(2010)
Oncogene
, vol.29
, pp. 3490-3500
-
-
Sanchez-Tillo, E.1
-
74
-
-
0038324070
-
Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins
-
Postigo, A. A., Depp, J. L., Taylor, J. J. & Kroll, K. L. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 22, 2453-2462 (2003).
-
(2003)
EMBO J.
, vol.22
, pp. 2453-2462
-
-
Postigo, A.A.1
Depp, J.L.2
Taylor, J.J.3
Kroll, K.L.4
-
75
-
-
34247348215
-
Opposing LSD1 complexes function in developmental gene activation and repression programmes
-
Wang, J. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882-887 (2007).
-
(2007)
Nature
, vol.446
, pp. 882-887
-
-
Wang, J.1
-
76
-
-
79953325707
-
Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition
-
Dave, N. et al. Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J. Biol. Chem. 286, 12024-12032 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12024-12032
-
-
Dave, N.1
-
77
-
-
34548496683
-
Differential regulation of epithelial and mesenchymal markers by dEF1 proteins in epithelial mesenchymal transition induced by TGF-ß
-
Shirakihara, T., Saitoh, M. & Miyazono, K. Differential regulation of epithelial and mesenchymal markers by dEF1 proteins in epithelial mesenchymal transition induced by TGF-ß. Mol. Biol. Cell 18, 3533-3544 (2007).
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 3533-3544
-
-
Shirakihara, T.1
Saitoh, M.2
Miyazono, K.3
-
78
-
-
27444442397
-
Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin
-
Long, J., Zuo, D. & Park, M. Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J. Biol. Chem. 280, 35477-35489 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 35477-35489
-
-
Long, J.1
Zuo, D.2
Park, M.3
-
79
-
-
84872899284
-
FOXOs: Signalling integrators for homeostasis maintenance
-
Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nature Rev. Mol. Cell Biol. 14, 83-97 (2013).
-
(2013)
Nature Rev. Mol. Cell Biol.
, vol.14
, pp. 83-97
-
-
Eijkelenboom, A.1
Burgering, B.M.2
-
80
-
-
77957783607
-
GATA switches as developmental drivers
-
Bresnick, E. H., Lee, H. Y., Fujiwara, T., Johnson, K. D. & Keles, S. GATA switches as developmental drivers. J. Biol. Chem. 285, 31087-31093 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 31087-31093
-
-
Bresnick, E.H.1
Lee, H.Y.2
Fujiwara, T.3
Johnson, K.D.4
Keles, S.5
-
81
-
-
83455173731
-
Specific GATA factors act as conserved inducers of an endodermal-EMT
-
Campbell, K., Whissell, G., Franch-Marro, X., Batlle, E. & Casanova, J. Specific GATA factors act as conserved inducers of an endodermal-EMT. Dev. Cell 21, 1051-1061 (2011).
-
(2011)
Dev. Cell
, vol.21
, pp. 1051-1061
-
-
Campbell, K.1
Whissell, G.2
Franch-Marro, X.3
Batlle, E.4
Casanova, J.5
-
82
-
-
76549093805
-
SOX-partner code for cell specification: Regulatory target selection and underlying molecular mechanisms
-
Kondoh, H. & Kamachi, Y. SOX-partner code for cell specification: Regulatory target selection and underlying molecular mechanisms. Int. J. Biochem. Cell Biol. 42, 391-399 (2010).
-
(2010)
Int. J. Biochem. Cell Biol.
, vol.42
, pp. 391-399
-
-
Kondoh, H.1
Kamachi, Y.2
-
83
-
-
33646137784
-
Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development
-
Sakai, D., Suzuki, T., Osumi, N. & Wakamatsu, Y. Cooperative action of Sox9, Snail2 and PKA signaling in early neural crest development. Development 133, 1323-1333 (2006).
-
(2006)
Development
, vol.133
, pp. 1323-1333
-
-
Sakai, D.1
Suzuki, T.2
Osumi, N.3
Wakamatsu, Y.4
-
84
-
-
84857817163
-
Slug and Sox9 cooperatively determine the mammary stem cell state
-
Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015-1028 (2012).
-
(2012)
Cell
, vol.148
, pp. 1015-1028
-
-
Guo, W.1
-
85
-
-
79952227361
-
CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression
-
Brown, R. L. et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J. Clin. Invest. 121, 1064-1074 (2011).
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1064-1074
-
-
Brown, R.L.1
-
86
-
-
79951813692
-
TGF-ß regulates isoform switching of FGF receptors and epithelial-mesenchymal transition
-
Shirakihara, T. et al. TGF-ß regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J. 30, 783-795 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 783-795
-
-
Shirakihara, T.1
-
87
-
-
61649087689
-
ESRP1 and ESRP2 are epithelial celltype-specific regulators of FGFR2 splicing
-
Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B. & Carstens, R. P. ESRP1 and ESRP2 are epithelial celltype-specific regulators of FGFR2 splicing. Mol. Cell 33, 591-601 (2009).
-
(2009)
Mol. Cell
, vol.33
, pp. 591-601
-
-
Warzecha, C.C.1
Sato, T.K.2
Nabet, B.3
Hogenesch, J.B.4
Carstens, R.P.5
-
88
-
-
49649116726
-
A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease
-
Yanagisawa, M. et al. A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. J. Biol. Chem. 283, 18344-18354 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 18344-18354
-
-
Yanagisawa, M.1
-
89
-
-
80052322960
-
An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype
-
Shapiro, I. M. et al. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 7, e1002218 (2011).
-
(2011)
PLoS Genet.
, vol.7
-
-
Shapiro, I.M.1
-
90
-
-
77957767273
-
An ESRP-regulated splicing programme is abrogated during the epithelialmesenchymal transition
-
Warzecha, C. C. et al. An ESRP-regulated splicing programme is abrogated during the epithelialmesenchymal transition. EMBO J. 29, 3286-3300 (2010).
-
(2010)
EMBO J.
, vol.29
, pp. 3286-3300
-
-
Warzecha, C.C.1
-
91
-
-
84896701604
-
The RNA-binding protein Rbfox2: An essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion
-
Braeutigam, C. et al. The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene http://dx.doi.org/10.1038/onc.2013.50 (2013).
-
(2013)
Oncogene
-
-
Braeutigam, C.1
-
92
-
-
70350782482
-
Antagonistic SR proteins regulate alternative splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways
-
Goncalves, V., Matos, P. & Jordan, P. Antagonistic SR proteins regulate alternative splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways. Hum. Mol. Genet. 18, 3696-3707 (2009).
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 3696-3707
-
-
Goncalves, V.1
Matos, P.2
Jordan, P.3
-
93
-
-
77957726684
-
Sam68 regulates EMT through alternative splicing-activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene
-
Valacca, C. et al. Sam68 regulates EMT through alternative splicing-activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene. J. Cell Biol. 191, 87-99 (2010).
-
(2010)
J. Cell Biol.
, vol.191
, pp. 87-99
-
-
Valacca, C.1
-
94
-
-
84877928478
-
Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs
-
Lamouille, S., Subramanyam, D., Blelloch, R. & Derynck, R. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr. Opin. Cell Biol. 25, 200-207 (2013).
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 200-207
-
-
Lamouille, S.1
Subramanyam, D.2
Blelloch, R.3
Derynck, R.4
-
95
-
-
84862645250
-
MiRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling
-
Ru, P. et al. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol. Cancer Ther. 11, 1166-1173 (2012).
-
(2012)
Mol. Cancer Ther.
, vol.11
, pp. 1166-1173
-
-
Ru, P.1
-
96
-
-
84855999432
-
MiR-30 inhibits TGF-ß1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1
-
Zhang, J. et al. miR-30 inhibits TGF-ß1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem. Biophys. Res. Commun. 417, 1100-1105 (2012).
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.417
, pp. 1100-1105
-
-
Zhang, J.1
-
97
-
-
84872608167
-
MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slugindependent mechanisms
-
Liu, Y. N. et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slugindependent mechanisms. Oncogene 32, 296-306 (2012).
-
(2012)
Oncogene
, vol.32
, pp. 296-306
-
-
Liu, Y.N.1
-
98
-
-
84055184850
-
MiR-34 and SNAIL form a doublenegative feedback loop to regulate epithelialmesenchymal transitions
-
Siemens, H. et al. miR-34 and SNAIL form a doublenegative feedback loop to regulate epithelialmesenchymal transitions. Cell Cycle 10, 4256-4271 (2011).
-
(2011)
Cell Cycle
, vol.10
, pp. 4256-4271
-
-
Siemens, H.1
-
99
-
-
84859720222
-
A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition
-
Moes, M. et al. A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS ONE 7, e35440 (2012).
-
(2012)
PLoS ONE
, vol.7
-
-
Moes, M.1
-
100
-
-
43049103824
-
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
-
Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol. 10, 593-601 (2008).
-
(2008)
Nature Cell Biol.
, vol.10
, pp. 593-601
-
-
Gregory, P.A.1
-
101
-
-
54049084380
-
A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition
-
Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846-7854 (2008).
-
(2008)
Cancer Res.
, vol.68
, pp. 7846-7854
-
-
Bracken, C.P.1
-
102
-
-
79956143950
-
P53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2
-
Kim, T. et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 208, 875-883 (2011).
-
(2011)
J. Exp. Med.
, vol.208
, pp. 875-883
-
-
Kim, T.1
-
103
-
-
57749114754
-
HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelialto-mesenchymal transition
-
Thuault, S. et al. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelialto-mesenchymal transition. J. Biol. Chem. 283, 33437-33446 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 33437-33446
-
-
Thuault, S.1
-
104
-
-
62549159932
-
HMGA2 maintains oncogenic RASinduced epithelial-mesenchymal transition in human pancreatic cancer cells
-
Watanabe, S. et al. HMGA2 maintains oncogenic RASinduced epithelial-mesenchymal transition in human pancreatic cancer cells. Am. J. Pathol. 174, 854-868 (2009).
-
(2009)
Am. J. Pathol.
, vol.174
, pp. 854-868
-
-
Watanabe, S.1
-
105
-
-
84855685246
-
MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1
-
Qi, J. et al. MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1. Cell Cycle 11, 177-186 (2012).
-
(2012)
Cell Cycle
, vol.11
, pp. 177-186
-
-
Qi, J.1
-
106
-
-
77649275464
-
MiR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis
-
Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biol. 12, 247-256 (2010).
-
(2010)
Nature Cell Biol.
, vol.12
, pp. 247-256
-
-
Ma, L.1
-
107
-
-
84865036180
-
Inverse association between miR-194 expression and tumor invasion in gastric cancer
-
Song, Y. et al. Inverse association between miR-194 expression and tumor invasion in gastric cancer. Ann. Surg. Oncol. 19 (Suppl. 3), S509-517 (2012).
-
(2012)
Ann. Surg. Oncol.
, vol.19
, Issue.SUPPL. 3
-
-
Song, Y.1
-
108
-
-
78649588750
-
MiR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice
-
Meng, Z. et al. miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology 52, 2148-2157 (2010).
-
(2010)
Hepatology
, vol.52
, pp. 2148-2157
-
-
Meng, Z.1
-
109
-
-
78650038626
-
TGF-ß-induced MiR-491-5p expression promotes Par-3 degradation in rat proximal tubular epithelial cells
-
Zhou, Q. et al. TGF-ß-induced MiR-491-5p expression promotes Par-3 degradation in rat proximal tubular epithelial cells. J. Biol. Chem. 285, 40019-40027 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 40019-40027
-
-
Zhou, Q.1
-
110
-
-
77955466130
-
MiR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers
-
Vetter, G. et al. miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene 29, 4436-4448 (2010).
-
(2010)
Oncogene
, vol.29
, pp. 4436-4448
-
-
Vetter, G.1
-
111
-
-
55849123946
-
MicroRNA-155 is regulated by the transforming growth factor ß/Smad pathway and contributes to epithelial cell plasticity by targeting Rho
-
Kong, W. et al. MicroRNA-155 is regulated by the transforming growth factor ß/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol. 28, 6773-6784 (2008).
-
(2008)
A. Mol. Cell. Biol.
, vol.28
, pp. 6773-6784
-
-
Kong, W.1
-
112
-
-
84861990869
-
Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-ß and miR-24: Role in epithelial-to-mesenchymal transition
-
Papadimitriou, E. et al. Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-ß and miR-24: role in epithelial-to- mesenchymal transition. Oncogene 31, 2862-2875 (2012).
-
(2012)
Oncogene
, vol.31
, pp. 2862-2875
-
-
Papadimitriou, E.1
-
113
-
-
77953780136
-
Concurrent suppression of integrin a5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis
-
Valastyan, S., Chang, A., Benaich, N., Reinhardt, F. & Weinberg, R. A. Concurrent suppression of integrin a5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res. 70, 5147-5154 (2010).
-
(2010)
Cancer Res.
, vol.70
, pp. 5147-5154
-
-
Valastyan, S.1
Chang, A.2
Benaich, N.3
Reinhardt, F.4
Weinberg, R.A.5
-
114
-
-
84855191863
-
The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2
-
Zheng, F. et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 61, 278-289 (2012).
-
(2012)
Gut
, vol.61
, pp. 278-289
-
-
Zheng, F.1
-
115
-
-
34250695906
-
Multiple transforming growth factor-ß isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart
-
Mercado-Pimentel, M. E. & Runyan, R. B. Multiple transforming growth factor-ß isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 185, 146-156 (2007).
-
(2007)
Cells Tissues Organs
, vol.185
, pp. 146-156
-
-
Mercado-Pimentel, M.E.1
Runyan, R.B.2
-
116
-
-
3342934231
-
Transforming growth factor ß (TGFß) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT)
-
Nawshad, A., LaGamba, D. & Hay, E. D. Transforming growth factor ß (TGFß) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch. Oral Biol. 49, 675-689 (2004).
-
(2004)
Arch. Oral Biol.
, vol.49
, pp. 675-689
-
-
Nawshad, A.1
Lagamba, D.2
Hay, E.D.3
-
117
-
-
0037302348
-
TGF-ß signal transduction and mesangial cell fibrogenesis
-
Schnaper, H. W., Hayashida, T., Hubchak, S. C. & Poncelet, A. C. TGF-ß signal transduction and mesangial cell fibrogenesis. Am. J. Physiol. Renal Physiol. 284, F243-252 (2003).
-
(2003)
Am. J. Physiol. Renal Physiol
, vol.284
-
-
Schnaper, H.W.1
Hayashida, T.2
Hubchak, S.C.3
Poncelet, A.C.4
-
118
-
-
4243844292
-
Roles of TGF-ß in hepatic fibrosis
-
Gressner, A. M., Weiskirchen, R., Breitkopf, K. & Dooley, S. Roles of TGF-ß in hepatic fibrosis. Front Biosci. 7, d793-807 (2002).
-
(2002)
Front Biosci
, vol.7
-
-
Gressner, A.M.1
Weiskirchen, R.2
Breitkopf, K.3
Dooley, S.4
-
119
-
-
34548411746
-
TGF-ß-induced EMT: Mechanisms and implications for fibrotic lung disease
-
Willis, B. C. & Borok, Z. TGF-ß-induced EMT: mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L525-534 (2007).
-
(2007)
Am. J. Physiol. Lung Cell. Mol. Physiol
, vol.293
-
-
Willis, B.C.1
Borok, Z.2
-
120
-
-
34547676391
-
Endothelial-to-mesenchymal transition contributes to cardiac fibrosis
-
Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Med. 13, 952-961 (2007).
-
(2007)
Nature Med.
, vol.13
, pp. 952-961
-
-
Zeisberg, E.M.1
-
121
-
-
84871948755
-
TGF-ß signaling and epithelial-mesenchymal transition in cancer progression
-
Katsuno, Y., Lamouille, S. & Derynck, R. TGF-ß signaling and epithelial-mesenchymal transition in cancer progression. Curr. Opin. Oncol. 25, 76-84 (2013).
-
(2013)
Curr. Opin. Oncol.
, vol.25
, pp. 76-84
-
-
Katsuno, Y.1
Lamouille, S.2
Derynck, R.3
-
122
-
-
0031817391
-
Transforming growth factor ß is essential for spindle cell conversion of mouse skin carcinoma in vivo: Implications for tumor invasion
-
Portella, G. et al. Transforming growth factor ß is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ. 9, 393-404 (1998).
-
(1998)
Cell Growth Differ
, vol.9
, pp. 393-404
-
-
Portella, G.1
-
123
-
-
67650996280
-
Epithelial-mesenchymal transitions: The importance of changing cell state in development and disease
-
Acloque, H., Adams, M. S., Fishwick, K., Bronner-Fraser, M. & Nieto, M. A. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 119, 1438-1449 (2009).
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 1438-1449
-
-
Acloque, H.1
Adams, M.S.2
Fishwick, K.3
Bronner-Fraser, M.4
Nieto, M.A.5
-
125
-
-
84863114955
-
TGFß and BMP signaling in cardiac cushion formation: Lessons from mice and chicken
-
Kruithof, B. P., Duim, S. N., Moerkamp, A. T. & Goumans, M. J. TGFß and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation 84, 89-102 (2012).
-
(2012)
Differentiation
, vol.84
, pp. 89-102
-
-
Kruithof, B.P.1
Duim, S.N.2
Moerkamp, A.T.3
Goumans, M.J.4
-
126
-
-
36248974666
-
The Müllerian duct: Recent insights into its development and regression
-
Klattig, J. & Englert, C. The Müllerian duct: recent insights into its development and regression. Sex. Dev. 1, 271-278 (2007).
-
(2007)
Sex. Dev.
, vol.1
, pp. 271-278
-
-
Klattig, J.1
Englert, C.2
-
127
-
-
60149093710
-
Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2
-
Gordon, K. J., Kirkbride, K. C., How, T. & Blobe, G. C. Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis 30, 238-248 (2009).
-
(2009)
Carcinogenesis
, vol.30
, pp. 238-248
-
-
Gordon, K.J.1
Kirkbride, K.C.2
How, T.3
Blobe, G.C.4
-
128
-
-
14844290237
-
Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney
-
Zeisberg, M., Shah, A. A. & Kalluri, R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J. Biol. Chem. 280, 8094-8100 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 8094-8100
-
-
Zeisberg, M.1
Shah, A.A.2
Kalluri, R.3
-
129
-
-
78650018824
-
Conversion of vascular endothelial cells into multipotent stem-like cells
-
Medici, D. et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nature Med. 16, 1400-1406 (2010).
-
(2010)
Nature Med.
, vol.16
, pp. 1400-1406
-
-
Medici, D.1
-
130
-
-
23044466047
-
Specificity and versatility in TGF-ß signaling through Smads
-
Feng, X. H. & Derynck, R. Specificity and versatility in TGF-ß signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659-693 (2005).
-
(2005)
Annu. Rev. Cell Dev. Biol.
, vol.21
, pp. 659-693
-
-
Feng, X.H.1
Derynck, R.2
-
132
-
-
0033932667
-
TGF-ß signaling by Smad proteins
-
Miyazono, K., ten Dijke, P. & Heldin, C. H. TGF-ß signaling by Smad proteins. Adv. Immunol. 75, 115-157 (2000).
-
(2000)
Adv. Immunol.
, vol.75
, pp. 115-157
-
-
Miyazono, K.1
Ten Dijke, P.2
Heldin, C.H.3
-
133
-
-
16344378397
-
TGF-ß and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition
-
Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C. H. & Moustakas, A. TGF-ß and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell 16, 1987-2002 (2005).
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1987-2002
-
-
Valcourt, U.1
Kowanetz, M.2
Niimi, H.3
Heldin, C.H.4
Moustakas, A.5
-
134
-
-
34547587877
-
Cell size and invasion in TGF-ß-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway
-
Lamouille, S. & Derynck, R. Cell size and invasion in TGF-ß-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J. Cell Biol. 178, 437-451 (2007).
-
(2007)
J. Cell Biol.
, vol.178
, pp. 437-451
-
-
Lamouille, S.1
Derynck, R.2
-
135
-
-
0033377867
-
TGF-ß type i receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells
-
Piek, E., Moustakas, A., Kurisaki, A., Heldin, C. H. & ten Dijke, P. TGF-ß type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J. Cell Sci. 112, 4557-4568 (1999).
-
(1999)
J. Cell Sci.
, vol.112
, pp. 4557-4568
-
-
Piek, E.1
Moustakas, A.2
Kurisaki, A.3
Heldin, C.H.4
Ten Dijke, P.5
-
136
-
-
33644534795
-
The tumor suppressor Smad4 is required for transforming growth factor ß-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells
-
Deckers, M. et al. The tumor suppressor Smad4 is required for transforming growth factor ß-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 66, 2202-2209 (2006).
-
(2006)
Cancer Res.
, vol.66
, pp. 2202-2209
-
-
Deckers, M.1
-
137
-
-
24644487312
-
TGF-ß and epithelialto-mesenchymal transitions
-
Zavadil, J. & Böttinger, E. P. TGF-ß and epithelialto-mesenchymal transitions. Oncogene 24, 5764-5774 (2005).
-
(2005)
Oncogene
, vol.24
, pp. 5764-5774
-
-
Zavadil, J.1
Böttinger, E.P.2
-
138
-
-
48749122568
-
Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression
-
Hoot, K. E. et al. Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J. Clin. Invest. 118, 2722-2732 (2008).
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 2722-2732
-
-
Hoot, K.E.1
-
139
-
-
30644479959
-
Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation
-
Ju, W. et al. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol. Cell. Biol. 26, 654-667 (2006).
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 654-667
-
-
Ju, W.1
-
140
-
-
0041836308
-
Hierarchical model of gene regulation by transforming growth factor ß
-
Yang, Y. C. et al. Hierarchical model of gene regulation by transforming growth factor ß. Proc. Natl Acad. Sci. USA 100, 10269-10274 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 10269-10274
-
-
Yang, Y.C.1
-
141
-
-
36849053911
-
Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling
-
Morita, T., Mayanagi, T. & Sobue, K. Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. J. Cell Biol. 179, 1027-1042 (2007).
-
(2007)
J. Cell Biol.
, vol.179
, pp. 1027-1042
-
-
Morita, T.1
Mayanagi, T.2
Sobue, K.3
-
142
-
-
33745505315
-
DEF1 mediates TGF-ß signaling in vascular smooth muscle cell differentiation
-
Nishimura, G. et al. dEF1 mediates TGF-ß signaling in vascular smooth muscle cell differentiation. Dev. Cell 11, 93-104 (2006).
-
(2006)
Dev. Cell
, vol.11
, pp. 93-104
-
-
Nishimura, G.1
-
143
-
-
0038324071
-
Opposing functions of ZEB proteins in the regulation of the TGFß/BMP signaling pathway
-
Postigo, A. A. Opposing functions of ZEB proteins in the regulation of the TGFß/BMP signaling pathway. EMBO J. 22, 2443-2452 (2003).
-
(2003)
EMBO J.
, vol.22
, pp. 2443-2452
-
-
Postigo, A.A.1
-
144
-
-
33746034613
-
Transforming growth factor-ß employs HMGA2 to elicit epithelial-mesenchymal transition
-
Thuault, S. et al. Transforming growth factor-ß employs HMGA2 to elicit epithelial-mesenchymal transition. J. Cell Biol. 174, 175-183 (2006).
-
(2006)
J. Cell Biol.
, vol.174
, pp. 175-183
-
-
Thuault, S.1
-
145
-
-
0035810944
-
Genetic programs of epithelial cell plasticity directed by transforming growth factor-ß
-
Zavadil, J. et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-ß. Proc. Natl Acad. Sci. USA 98, 6686-6691 (2001).
-
(2001)
Proc. Natl Acad. Sci. USA
, vol.98
, pp. 6686-6691
-
-
Zavadil, J.1
-
146
-
-
34249674558
-
TGFß3 inhibits E-cadherin gene expression in palate medialedge epithelial cells through a Smad2-Smad4-LEF1 transcription complex
-
Nawshad, A., Medici, D., Liu, C. C. & Hay, E. D. TGFß3 inhibits E-cadherin gene expression in palate medialedge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J. Cell Sci. 120, 1646-1653 (2007).
-
(2007)
J. Cell Sci.
, vol.120
, pp. 1646-1653
-
-
Nawshad, A.1
Medici, D.2
Liu, C.C.3
Hay, E.D.4
-
147
-
-
34547599359
-
Transforming growth factor-ß1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro
-
2007
-
Kaimori, A. et al. Transforming growth factor-ß1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J. Biol. Chem. 282, 22089-22101 (2007).
-
J. Biol. Chem.
, vol.282
, pp. 22089-22101
-
-
Kaimori, A.1
-
148
-
-
0142104985
-
Smad-dependent and Smad-independent pathways in TGF-β family signalling
-
Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577-584 (2003).
-
(2003)
Nature
, vol.425
, pp. 577-584
-
-
Derynck, R.1
Zhang, Y.E.2
-
149
-
-
24944497786
-
Non-Smad TGF-β signals
-
Moustakas, A. & Heldin, C. H. Non-Smad TGF-β signals. J. Cell Sci. 118, 3573-3584 (2005).
-
(2005)
J. Cell Sci.
, vol.118
, pp. 3573-3584
-
-
Moustakas, A.1
Heldin, C.H.2
-
150
-
-
78650510746
-
Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial- mesenchymal transition
-
Lamouille, S. & Derynck, R. Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition. Cells Tissues Organs 193, 8-22 (2011).
-
(2011)
Cells Tissues Organs
, vol.193
, pp. 8-22
-
-
Lamouille, S.1
Derynck, R.2
-
151
-
-
14844364701
-
Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity
-
Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603-1609 (2005).
-
(2005)
Science
, vol.307
, pp. 1603-1609
-
-
Ozdamar, B.1
-
152
-
-
0035185853
-
Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism
-
Bhowmick, N. A. et al. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 12, 27-36 (2001).
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 27-36
-
-
Bhowmick, N.A.1
-
153
-
-
0035805595
-
The activity of guanine exchange factor NET1 is essential for transforming growth factor-β-mediated stress fiber formation
-
Shen, X. et al. The activity of guanine exchange factor NET1 is essential for transforming growth factor-β-mediated stress fiber formation. J. Biol. Chem. 276, 15362-15368 (2001).
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 15362-15368
-
-
Shen, X.1
-
154
-
-
15744394838
-
LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-β
-
Vardouli, L., Moustakas, A. & Stournaras, C. LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-β. J. Biol. Chem. 280, 11448-11457 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 11448-11457
-
-
Vardouli, L.1
Moustakas, A.2
Stournaras, C.3
-
155
-
-
33646862859
-
TGF β-mediated RhoA expression is necessary for epithelial- mesenchymal transition in the embryonic chick heart
-
Tavares, A. L., Mercado-Pimentel, M. E., Runyan, R. B. & Kitten, G. T. TGF β-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart. Dev. Dyn. 235, 1589-1598 (2006).
-
(2006)
Dev. Dyn.
, vol.235
, pp. 1589-1598
-
-
Tavares, A.L.1
Mercado-Pimentel, M.E.2
Runyan, R.B.3
Kitten, G.T.4
-
156
-
-
77949462780
-
The RhoA activator GEF-H1/Lfc is a transforming growth factor-β target gene and effector that regulates α-smooth muscle actin expression and cell migration
-
Tsapara, A. et al. The RhoA activator GEF-H1/Lfc is a transforming growth factor-β target gene and effector that regulates α-smooth muscle actin expression and cell migration. Mol. Biol. Cell 21, 860-870 (2010).
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 860-870
-
-
Tsapara, A.1
-
157
-
-
0034711307
-
Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration
-
Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L. & Arteaga, C. L. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275, 36803-36810 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 36803-36810
-
-
Bakin, A.V.1
Tomlinson, A.K.2
Bhowmick, N.A.3
Moses, H.L.4
Arteaga, C.L.5
-
158
-
-
84861448736
-
TGF-β-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion
-
Lamouille, S., Connolly, E., Smyth, J. W., Akhurst, R. J. & Derynck, R. TGF-β-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J. Cell Sci. 125, 1259-1273 (2012).
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1259-1273
-
-
Lamouille, S.1
Connolly, E.2
Smyth, J.W.3
Akhurst, R.J.4
Derynck, R.5
-
159
-
-
36349011403
-
Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition
-
Julien, S. et al. Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 26, 7445-7456 (2007).
-
(2007)
Oncogene
, vol.26
, pp. 7445-7456
-
-
Julien, S.1
-
160
-
-
12144266241
-
Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: Implications for the epithelial-mesenchymal transition
-
Bachelder, R. E., Yoon, S. O., Franci, C., de Herreros, A. G. & Mercurio, A. M. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J. Cell Biol. 168, 29-33 (2005).
-
(2005)
J. Cell Biol.
, vol.168
, pp. 29-33
-
-
Bachelder, R.E.1
Yoon, S.O.2
Franci, C.3
De Herreros, A.G.4
Mercurio, A.M.5
-
161
-
-
77649261101
-
TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI
-
Chaudhury, A. et al. TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nature Cell Biol. 12, 286-293 (2010).
-
(2010)
Nature Cell Biol.
, vol.12
, pp. 286-293
-
-
Chaudhury, A.1
-
162
-
-
68549123472
-
New regulatory mechanisms of TGF-β receptor function
-
Kang, J. S., Liu, C. & Derynck, R. New regulatory mechanisms of TGF-β receptor function. Trends Cell Biol. 19, 385-394 (2009).
-
(2009)
Trends Cell Biol.
, vol.19
, pp. 385-394
-
-
Kang, J.S.1
Liu, C.2
Derynck, R.3
-
163
-
-
34548386720
-
TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA
-
Lee, M. K. et al. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26, 3957-3967 (2007).
-
(2007)
EMBO J.
, vol.26
, pp. 3957-3967
-
-
Lee, M.K.1
-
164
-
-
52049111663
-
TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β
-
Yamashita, M. et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol. Cell 31, 918-924 (2008).
-
(2008)
Mol. Cell
, vol.31
, pp. 918-924
-
-
Yamashita, M.1
-
165
-
-
53349164136
-
The type i TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
-
Sorrentino, A. et al. The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biol. 10, 1199-1207 (2008).
-
(2008)
Nature Cell Biol.
, vol.10
, pp. 1199-1207
-
-
Sorrentino, A.1
-
166
-
-
6944248910
-
Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro
-
Xie, L. et al. Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia 6, 603-610 (2004).
-
(2004)
Neoplasia
, vol.6
, pp. 603-610
-
-
Xie, L.1
-
167
-
-
0037099745
-
TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses
-
Yu, L., Hιbert, M. C. & Zhang, Y. E. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J. 21, 3749-3759 (2002).
-
(2002)
EMBO J.
, vol.21
, pp. 3749-3759
-
-
Yu, L.1
-
168
-
-
18744362996
-
Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes
-
Grande, M. et al. Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J. Cell Sci. 115, 4227-4236 (2002).
-
(2002)
J. Cell Sci.
, vol.115
, pp. 4227-4236
-
-
Grande, M.1
-
169
-
-
42249109021
-
Synergistic effect between EGF and TGF-β1 in inducing oncogenic properties of intestinal epithelial cells
-
Uttamsingh, S. et al. Synergistic effect between EGF and TGF-β1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene 27, 2626-2634 (2008).
-
(2008)
Oncogene
, vol.27
, pp. 2626-2634
-
-
Uttamsingh, S.1
-
170
-
-
52149114431
-
ERK5/MAPK is activated by TGFβ in hepatocytes and required for the GSK-3β-mediated Snail protein stabilization
-
Marchetti, A. et al. ERK5/MAPK is activated by TGFβ in hepatocytes and required for the GSK-3β-mediated Snail protein stabilization. Cell Signal 20, 2113-2118 (2008).
-
(2008)
Cell Signal
, vol.20
, pp. 2113-2118
-
-
Marchetti, A.1
-
171
-
-
0033605562
-
ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling
-
Sano, Y. et al. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J. Biol. Chem. 274, 8949-8957 (1999).
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 8949-8957
-
-
Sano, Y.1
-
172
-
-
33748776858
-
JNK mediates TGF-β1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes
-
Santibanez, J. F. JNK mediates TGF-β1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett. 580, 5385-5391 (2006).
-
(2006)
FEBS Lett.
, vol.580
, pp. 5385-5391
-
-
Santibanez, J.F.1
-
173
-
-
0022269174
-
An epithelial scatter factor released by embryo fibroblasts
-
Stoker, M. & Perryman, M. An epithelial scatter factor released by embryo fibroblasts. J. Cell Sci. 77, 209-223 (1985).
-
(1985)
J. Cell Sci.
, vol.77
, pp. 209-223
-
-
Stoker, M.1
Perryman, M.2
-
174
-
-
79955486858
-
MTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways
-
Gulhati, P. et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 71, 3246-3256 (2011).
-
(2011)
Cancer Res.
, vol.71
, pp. 3246-3256
-
-
Gulhati, P.1
-
175
-
-
80053172696
-
BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: A comparative study
-
Makrodouli, E. et al. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study. Mol. Cancer 10, 118 (2011).
-
(2011)
Mol. Cancer
, vol.10
, pp. 118
-
-
Makrodouli, E.1
-
176
-
-
68949210380
-
RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells
-
Doehn, U. et al. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol. Cell 35, 511-522 (2009).
-
(2009)
Mol. Cell
, vol.35
, pp. 511-522
-
-
Doehn, U.1
-
177
-
-
0029820714
-
α2β1 integrin is required for the collagen and FGF-1 induced cell dispersion in a rat bladder carcinoma cell line
-
Valles, A. M., Boyer, B., Tarone, G. & Thiery, J. P. α2β1 integrin is required for the collagen and FGF-1 induced cell dispersion in a rat bladder carcinoma cell line. Cell Adhes. Commun. 4, 187-199 (1996).
-
(1996)
Cell Adhes. Commun
, vol.4
, pp. 187-199
-
-
Valles, A.M.1
Boyer, B.2
Tarone, G.3
Thiery, J.P.4
-
178
-
-
0031005659
-
The zinc-finger protein Slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition
-
Savagner, P., Yamada, K. M. & Thiery, J. P. The zinc-finger protein Slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol. 137, 1403-1419 (1997).
-
(1997)
J. Cell Biol.
, vol.137
, pp. 1403-1419
-
-
Savagner, P.1
Yamada, K.M.2
Thiery, J.P.3
-
179
-
-
45149116833
-
Modulation of several waves of gene expression during FGF-1 induced epithelial-mesenchymal transition of carcinoma cells
-
Billottet, C. et al. Modulation of several waves of gene expression during FGF-1 induced epithelial-mesenchymal transition of carcinoma cells. J. Cell Biochem. 104, 826-839 (2008).
-
(2008)
J. Cell Biochem
, vol.104
, pp. 826-839
-
-
Billottet, C.1
-
180
-
-
0035408007
-
FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak
-
Ciruna, B. & Rossant, J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1, 37-49 (2001).
-
(2001)
Dev. Cell
, vol.1
, pp. 37-49
-
-
Ciruna, B.1
Rossant, J.2
-
181
-
-
0033565746
-
Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo
-
Sun, X., Meyers, E. N., Lewandoski, M. & Martin, G. R. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834-1846 (1999).
-
(1999)
Genes Dev.
, vol.13
, pp. 1834-1846
-
-
Sun, X.1
Meyers, E.N.2
Lewandoski, M.3
Martin, G.R.4
-
182
-
-
33747625686
-
Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail
-
Grotegut, S., von Schweinitz, D., Christofori, G. & Lehembre, F. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 25, 3534-3545 (2006).
-
(2006)
EMBO J.
, vol.25
, pp. 3534-3545
-
-
Grotegut, S.1
Von Schweinitz, D.2
Christofori, G.3
Lehembre, F.4
-
183
-
-
0033517060
-
Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells
-
Hiscox, S. & Jiang, W. G. Association of the HGF/SF receptor, c-met, with the cell-surface adhesion molecule, E-cadherin, and catenins in human tumor cells. Biochem. Biophys. Res. Commun. 261, 406-411 (1999).
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.261
, pp. 406-411
-
-
Hiscox, S.1
Jiang, W.G.2
-
184
-
-
0034235433
-
Slug is an essential target of TGFβ2 signaling in the developing chicken heart
-
Romano, L. A. & Runyan, R. B. Slug is an essential target of TGFβ2 signaling in the developing chicken heart. Dev. Biol. 223, 91-102 (2000).
-
(2000)
Dev. Biol.
, vol.223
, pp. 91-102
-
-
Romano, L.A.1
Runyan, R.B.2
-
185
-
-
34147193818
-
Constitutively active type i insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-κB and Snail
-
Kim, H. J. et al. Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-κB and Snail. Mol. Cell. Biol. 27, 3165-3175 (2007).
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 3165-3175
-
-
Kim, H.J.1
-
186
-
-
42049092980
-
Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells
-
Graham, T. R. et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 68, 2479-2488 (2008).
-
(2008)
Cancer Res.
, vol.68
, pp. 2479-2488
-
-
Graham, T.R.1
-
187
-
-
29144488505
-
Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition
-
Irie, H. Y. et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J. Cell Biol. 171, 1023-1034 (2005).
-
(2005)
J. Cell Biol.
, vol.171
, pp. 1023-1034
-
-
Irie, H.Y.1
-
188
-
-
37349131288
-
Insulin-like growth factor-I receptor, E-cadherin and αv integrin form a dynamic complex under the control of α-catenin
-
Canonici, A. et al. Insulin-like growth factor-I receptor, E-cadherin and αv integrin form a dynamic complex under the control of α-catenin. Int. J. Cancer 122, 572-582 (2008).
-
(2008)
Int. J. Cancer
, vol.122
, pp. 572-582
-
-
Canonici, A.1
-
189
-
-
0345736990
-
Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion
-
Lu, Z., Ghosh, S., Wang, Z. & Hunter, T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 4, 499-515 (2003).
-
(2003)
Cancer Cell
, vol.4
, pp. 499-515
-
-
Lu, Z.1
Ghosh, S.2
Wang, Z.3
Hunter, T.4
-
190
-
-
35148832569
-
Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression
-
Lo, H. W. et al. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 67, 9066-9076 (2007).
-
(2007)
Cancer Res.
, vol.67
, pp. 9066-9076
-
-
Lo, H.W.1
-
191
-
-
33744808249
-
Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium
-
Ahmed, N. et al. Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am. J.
-
(2006)
Am. J. Physiol. Cell Physiol
, vol.290
-
-
Ahmed, N.1
-
192
-
-
24944450362
-
The transcriptional repressor Snail promotes mammary tumor recurrence
-
Moody, S. E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197-209 (2005).
-
(2005)
Cancer Cell
, vol.8
, pp. 197-209
-
-
Moody, S.E.1
-
193
-
-
33746215279
-
Immunoediting of cancers may lead to epithelial to mesenchymal transition
-
Knutson, K. L. et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J. Immunol. 177, 1526-1533 (2006).
-
(2006)
J. Immunol.
, vol.177
, pp. 1526-1533
-
-
Knutson, K.L.1
-
194
-
-
84861582714
-
Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer
-
Rangel, M. C. et al. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. Am. J. Pathol. 180, 2188-2200 (2012).
-
(2012)
Am. J. Pathol.
, vol.180
, pp. 2188-2200
-
-
Rangel, M.C.1
-
195
-
-
4644300725
-
Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice
-
Strizzi, L. et al. Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. J. Cell. Physiol. 201, 266-276 (2004).
-
(2004)
J. Cell. Physiol.
, vol.201
, pp. 266-276
-
-
Strizzi, L.1
-
196
-
-
10744230854
-
β-catenin regulates Cripto-and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation
-
Morkel, M. et al. β-catenin regulates Cripto-and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development 130, 6283-6294 (2003).
-
(2003)
Development
, vol.130
, pp. 6283-6294
-
-
Morkel, M.1
-
197
-
-
20244382568
-
Maternal Wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos
-
Tao, Q. et al. Maternal Wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857-871 (2005).
-
(2005)
Cell
, vol.120
, pp. 857-871
-
-
Tao, Q.1
-
198
-
-
33749078750
-
P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin
-
Yang, L., Lin, C. & Liu, Z. R. p68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127, 139-155 (2006).
-
(2006)
Cell
, vol.127
, pp. 139-155
-
-
Yang, L.1
Lin, C.2
Liu, Z.R.3
-
199
-
-
0033566599
-
Diminished matrix metalloproteinase 2 (MMP-2) in ectomesenchyme-derived tissues of the Patch mutant mouse: Regulation of MMP-2 by PDGF and effects on mesenchymal cell migration
-
Robbins, J. R., McGuire, P. G., Wehrle-Haller, B. & Rogers, S. L. Diminished matrix metalloproteinase 2 (MMP-2) in ectomesenchyme-derived tissues of the Patch mutant mouse: regulation of MMP-2 by PDGF and effects on mesenchymal cell migration. Dev. Biol. 212, 255-263 (1999).
-
(1999)
Dev. Biol.
, vol.212
, pp. 255-263
-
-
Robbins, J.R.1
McGuire, P.G.2
Wehrle-Haller, B.3
Rogers, S.L.4
-
200
-
-
47349099427
-
Vascular endothelial growth factor-A stimulates Snail expression in breast tumor cells: Implications for tumor progression
-
Wanami, L. S., Chen, H. Y., Peiro, S., Garcia de Herreros, A. & Bachelder, R. E. Vascular endothelial growth factor-A stimulates Snail expression in breast tumor cells: implications for tumor progression. Exp. Cell Res. 314, 2448-2453 (2008).
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 2448-2453
-
-
Wanami, L.S.1
Chen, H.Y.2
Peiro, S.3
Garcia De Herreros, A.4
Bachelder, R.E.5
-
201
-
-
31544463515
-
Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells
-
Yang, A. D. et al. Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res. 66, 46-51 (2006).
-
(2006)
Cancer Res.
, vol.66
, pp. 46-51
-
-
Yang, A.D.1
-
202
-
-
3242885067
-
Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo
-
Peinado, H. et al. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J. Cell Sci. 117, 2827-2839 (2004).
-
(2004)
J. Cell Sci.
, vol.117
, pp. 2827-2839
-
-
Peinado, H.1
-
203
-
-
0032776833
-
Requirement for Wnt3 in vertebrate axis formation
-
Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361-365 (1999).
-
(1999)
Nature Genet.
, vol.22
, pp. 361-365
-
-
Liu, P.1
-
204
-
-
0345157203
-
Misexpression of Wnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm
-
Popperl, H. et al. Misexpression of Wnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development 124, 2997-3005 (1997).
-
(1997)
Development
, vol.124
, pp. 2997-3005
-
-
Popperl, H.1
-
205
-
-
0037008478
-
Ectodermal Wnt function as a neural crest inducer
-
Garcia-Castro, M. I., Marcelle, C. & Bronner-Fraser, M. Ectodermal Wnt function as a neural crest inducer. Science 297, 848-851 (2002).
-
(2002)
Science
, vol.297
, pp. 848-851
-
-
Garcia-Castro, M.I.1
Marcelle, C.2
Bronner-Fraser, M.3
-
206
-
-
57749171999
-
Contact inhibition of locomotion in vivo controls neural crest directional migration
-
Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957-961 (2008).
-
(2008)
Nature
, vol.456
, pp. 957-961
-
-
Carmona-Fontaine, C.1
-
207
-
-
0035964349
-
Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment
-
Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl Acad. Sci. USA 98, 10356-10361 (2001).
-
(2001)
Proc. Natl Acad. Sci. USA
, vol.98
, pp. 10356-10361
-
-
Brabletz, T.1
-
208
-
-
84879414522
-
The mechanisms of Hedgehog signalling and its roles in development and disease
-
Briscoe, J. & Therond, P. P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nature Rev. Mol. Cell Biol. 14, 416-429 (2013).
-
(2013)
Nature Rev. Mol. Cell Biol.
, vol.14
, pp. 416-429
-
-
Briscoe, J.1
Therond, P.P.2
-
209
-
-
21444461411
-
Sclerotome development and morphogenesis: When experimental embryology meets genetics
-
Monsoro-Burq, A. H. Sclerotome development and morphogenesis: when experimental embryology meets genetics. Int. J. Dev. Biol. 49, 301-308 (2005).
-
(2005)
Int. J. Dev. Biol.
, vol.49
, pp. 301-308
-
-
Monsoro-Burq, A.H.1
-
210
-
-
31544480393
-
Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation
-
Li, X. et al. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 25, 609-621 (2006).
-
(2006)
Oncogene
, vol.25
, pp. 609-621
-
-
Li, X.1
-
211
-
-
35948937691
-
Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum. Endocr. Relat
-
Fendrich, V. et al. Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum. Endocr. Relat. Cancer 14, 865-874 (2007).
-
(2007)
Cancer
, vol.14
, pp. 865-874
-
-
Fendrich, V.1
-
212
-
-
84879870498
-
Notch signaling at a glance
-
Hori, K., Sen, A. & Artavanis-Tsakonas, S. Notch signaling at a glance. J. Cell Sci. 126, 2135-2140 (2013).
-
(2013)
J. Cell Sci.
, vol.126
, pp. 2135-2140
-
-
Hori, K.1
Sen, A.2
Artavanis-Tsakonas, S.3
-
213
-
-
9144246932
-
Notch promotes epithelialmesenchymal transition during cardiac development and oncogenic transformation
-
Timmerman, L. A. et al. Notch promotes epithelialmesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99-115 (2004).
-
(2004)
Genes Dev.
, vol.18
, pp. 99-115
-
-
Timmerman, L.A.1
-
214
-
-
48249103470
-
Slug is a direct Notch target required for initiation of cardiac cushion cellularization
-
Niessen, K. et al. Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J. Cell Biol. 182, 315-325 (2008).
-
(2008)
J. Cell Biol.
, vol.182
, pp. 315-325
-
-
Niessen, K.1
-
215
-
-
84859095585
-
Activation of Notch-1 enhances epithelialmesenchymal transition in gefitinib-acquired resistant lung cancer cells
-
Xie, M. et al. Activation of Notch-1 enhances epithelialmesenchymal transition in gefitinib-acquired resistant lung cancer cells. J. Cell Biochem. 113, 1501-1513 (2012).
-
(2012)
J. Cell Biochem
, vol.113
, pp. 1501-1513
-
-
Xie, M.1
-
216
-
-
0141760411
-
Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells
-
Imai, T. et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am. J. Pathol. 163, 1437-1447 (2003).
-
(2003)
Am. J. Pathol.
, vol.163
, pp. 1437-1447
-
-
Imai, T.1
-
217
-
-
79951825517
-
Mouse Snail is a target gene for HIF
-
Luo, D., Wang, J., Li, J. & Post, M. Mouse Snail is a target gene for HIF. Mol. Cancer Res. 9, 234-245 (2011).
-
(2011)
Mol. Cancer Res.
, vol.9
, pp. 234-245
-
-
Luo, D.1
Wang, J.2
Li, J.3
Post, M.4
-
218
-
-
69249221254
-
Interleukin-6 induces an epithelialmesenchymal transition phenotype in human breast cancer cells
-
Sullivan, N. J. et al. Interleukin-6 induces an epithelialmesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940-2947 (2009).
-
(2009)
Oncogene
, vol.28
, pp. 2940-2947
-
-
Sullivan, N.J.1
-
219
-
-
84055207487
-
IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway
-
Yadav, A., Kumar, B., Datta, J., Teknos, T. N. & Kumar, P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol. Cancer Res. 9, 1658-1667 (2011).
-
(2011)
Mol. Cancer Res.
, vol.9
, pp. 1658-1667
-
-
Yadav, A.1
Kumar, B.2
Datta, J.3
Teknos, T.N.4
Kumar, P.5
-
220
-
-
79960952144
-
IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells
-
Fernando R. I., Castillo M. D., Litzinger M., Hamilton D. H., Palena C. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. 71. 5296-5306 2011
-
(2011)
Cancer Res.
, vol.71
, pp. 5296-5306
-
-
Fernando, R.I.1
Castillo, M.D.2
Litzinger, M.3
Hamilton, D.H.4
Palena, C.5
-
221
-
-
84858288644
-
Epithelialmesenchymal transition in tumor microenvironment
-
Jing, Y., Han, Z., Zhang, S., Liu, Y. & Wei, L. Epithelialmesenchymal transition in tumor microenvironment. Cell Biosci. 1, 29 (2011).
-
(2011)
Cell Biosci.
, vol.1
, pp. 29
-
-
Jing, Y.1
Han, Z.2
Zhang, S.3
Liu, Y.4
Wei, L.5
-
222
-
-
53449094858
-
Back and forth between cell fate specification and movement during vertebrate gastrulation
-
Heisenberg, C. P. & Solnica-Krezel, L. Back and forth between cell fate specification and movement during vertebrate gastrulation. Curr. Opin. Genet. Dev. 18, 311-316 (2008).
-
(2008)
Curr. Opin. Genet. Dev.
, vol.18
, pp. 311-316
-
-
Heisenberg, C.P.1
Solnica-Krezel, L.2
-
223
-
-
78649987710
-
Transforming growth factor-ß-induced epithelialmesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression
-
Wendt, M. K., Smith, J. A. & Schiemann, W. P. Transforming growth factor-ß-induced epithelialmesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene 29, 6485-6498 (2010).
-
(2010)
Oncogene
, vol.29
, pp. 6485-6498
-
-
Wendt, M.K.1
Smith, J.A.2
Schiemann, W.P.3
-
224
-
-
16844371760
-
A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition
-
Yang, J., Dai, C. & Liu, Y. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J. Am. Soc. Nephrol. 16, 68-78 (2005).
-
(2005)
J. Am. Soc. Nephrol.
, vol.16
, pp. 68-78
-
-
Yang, J.1
Dai, C.2
Liu, Y.3
-
225
-
-
79959640061
-
A Smad action turnover switch operated by WW domain readers of a phosphoserine code
-
Aragon, E. et al. A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes Dev. 25, 1275-1288 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 1275-1288
-
-
Aragon, E.1
-
226
-
-
36248995245
-
Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal
-
Fuentealba, L. C. et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131, 980-993 (2007).
-
(2007)
Cell
, vol.131
, pp. 980-993
-
-
Fuentealba, L.C.1
-
227
-
-
13244298117
-
Notch and epithelial-mesenchyme transition in development and tumor progression: Another turn of the screw
-
Grego-Bessa, J., Diez, J., Timmerman, L. & de la Pompa, J. L. Notch and epithelial-mesenchyme transition in development and tumor progression: another turn of the screw. Cell Cycle 3, 718-721 (2004).
-
(2004)
Cell Cycle
, vol.3
, pp. 718-721
-
-
Grego-Bessa, J.1
Diez, J.2
Timmerman, L.3
De La Pompa, J.L.4
-
228
-
-
1842524153
-
Integration of TGF-ß/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition
-
Zavadil, J., Cermak, L., Soto-Nieves, N. & Bottinger, E. P. Integration of TGF-ß/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23, 1155-1165 (2004).
-
(2004)
EMBO J.
, vol.23
, pp. 1155-1165
-
-
Zavadil, J.1
Cermak, L.2
Soto-Nieves, N.3
Bottinger, E.P.4
-
229
-
-
37049007672
-
Epithelial-mesenchymal transition events during human embryonic stem cell differentiation
-
Eastham, A. M. et al. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res. 67, 11254-11262 (2007).
-
(2007)
Cancer Res.
, vol.67
, pp. 11254-11262
-
-
Eastham, A.M.1
-
230
-
-
33845619576
-
Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions
-
Ullmann, U. et al. Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol. Hum. Reprod. 13, 21-32 (2007).
-
(2007)
Mol. Hum. Reprod
, vol.13
, pp. 21-32
-
-
Ullmann, U.1
-
231
-
-
46449094276
-
Dissecting direct reprogramming through integrative genomic analysis
-
Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49-55 (2008).
-
(2008)
Nature
, vol.454
, pp. 49-55
-
-
Mikkelsen, T.S.1
-
232
-
-
84868192680
-
The mesenchymal-to-epithelial transition in somatic cell reprogramming
-
Esteban, M. A. et al. The mesenchymal-to-epithelial transition in somatic cell reprogramming. Curr. Opin. Genet. Dev. 22, 423-428 (2012).
-
(2012)
Curr. Opin. Genet. Dev.
, vol.22
, pp. 423-428
-
-
Esteban, M.A.1
-
233
-
-
70350571742
-
TGFß signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc
-
Maherali, N. & Hochedlinger, K. TGFß signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr. Biol. 19, 1718-1723 (2009).
-
(2009)
Curr. Biol.
, vol.19
, pp. 1718-1723
-
-
Maherali, N.1
Hochedlinger, K.2
-
234
-
-
77956320116
-
Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming
-
Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64-77 (2010).
-
(2010)
Cell Stem Cell
, vol.7
, pp. 64-77
-
-
Samavarchi-Tehrani, P.1
-
235
-
-
79955780736
-
Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells
-
Subramanyam, D. et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotech. 29, 443-448 (2011).
-
(2011)
Nature Biotech.
, vol.29
, pp. 443-448
-
-
Subramanyam, D.1
-
236
-
-
43049165453
-
The epithelial-mesenchymal transition generates cells with properties of stem cells
-
Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715 (2008).
-
(2008)
Cell
, vol.133
, pp. 704-715
-
-
Mani, S.A.1
-
237
-
-
84866324123
-
Cancer stem cells and epithelial-mesenchymal transition: Concepts and molecular links
-
Scheel, C. & Weinberg, R. A. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol. 22, 396-403 (2012).
-
(2012)
Semin. Cancer Biol.
, vol.22
, pp. 396-403
-
-
Scheel, C.1
Weinberg, R.A.2
-
238
-
-
25444495269
-
Opinion: Migrating cancer stem cells-an integrated concept of malignant tumour progression
-
Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells-an integrated concept of malignant tumour progression. Nature Rev. Cancer 5, 744-749 (2005).
-
(2005)
Nature Rev. Cancer
, vol.5
, pp. 744-749
-
-
Brabletz, T.1
Jung, A.2
Spaderna, S.3
Hlubek, F.4
Kirchner, T.5
-
239
-
-
33847419142
-
Molecular definition of breast tumor heterogeneity
-
Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259-273 (2007).
-
(2007)
Cancer Cell
, vol.11
, pp. 259-273
-
-
Shipitsin, M.1
-
240
-
-
77951975325
-
Wnt activity defines colon cancer stem cells and is regulated by the microenvironment
-
Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biol. 12, 468-476 (2010).
-
(2010)
Nature Cell Biol.
, vol.12
, pp. 468-476
-
-
Vermeulen, L.1
-
241
-
-
0031727409
-
Nuclear overexpression of the oncoprotein ß-catenin in colorectal cancer is localized predominantly at the invasion front
-
Brabletz, T. et al. Nuclear overexpression of the oncoprotein ß-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol. Res. Pract. 194, 701-704 (1998).
-
(1998)
Pathol. Res. Pract.
, vol.194
, pp. 701-704
-
-
Brabletz, T.1
-
242
-
-
84884136226
-
Notch signaling: Targeting cancer stem cells and epithelial-to- mesenchymal transition
-
Espinoza, I., Pochampally, R., Xing, F., Watabe, K. & Miele, L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther. 6, 1249-1259 (2013).
-
(2013)
Onco Targets Ther.
, vol.6
, pp. 1249-1259
-
-
Espinoza, I.1
Pochampally, R.2
Xing, F.3
Watabe, K.4
Miele, L.5
-
243
-
-
84894533525
-
Notch signaling pathway in pancreatic cancer progression
-
Ma, J., Xia, J., Miele, L., Sarkar, F. H. & Wang, Z. Notch signaling pathway in pancreatic cancer progression. Pancreat. Disord. Ther. 3, (2013).
-
(2013)
Pancreat. Disord. Ther.
, vol.3
-
-
Ma, J.1
Xia, J.2
Miele, L.3
Sarkar, F.H.4
Wang, Z.5
-
244
-
-
84867687369
-
Epithelial mesenchymal transition and pancreatic tumor initiating CD44+/EpCAM+ cells are inhibited by.-secretase inhibitor IX
-
Palagani, V. et al. Epithelial mesenchymal transition and pancreatic tumor initiating CD44+/EpCAM+ cells are inhibited by.-secretase inhibitor IX. PLoS ONE 7, e46514 (2012).
-
(2012)
PLoS ONE
, vol.7
-
-
Palagani, V.1
-
245
-
-
84871246002
-
The miR-106b-25 cluster targets Smad7, activates TGF-ß signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer
-
Smith, A. L. et al. The miR-106b-25 cluster targets Smad7, activates TGF-ß signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene 31, 5162-5171 (2012).
-
(2012)
Oncogene
, vol.31
, pp. 5162-5171
-
-
Smith, A.L.1
-
246
-
-
79952281227
-
Small RNA-mediated regulation of iPS cell generation
-
Li, Z., Yang, C. S., Nakashima, K. & Rana, T. M. Small RNA-mediated regulation of iPS cell generation. EMBO J. 30, 823-834 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 823-834
-
-
Li, Z.1
Yang, C.S.2
Nakashima, K.3
Rana, T.M.4
-
247
-
-
84866336964
-
Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype
-
Medici, D. & Kalluri, R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin. Cancer Biol. 22, 379-384 (2012).
-
(2012)
Semin. Cancer Biol.
, vol.22
, pp. 379-384
-
-
Medici, D.1
Kalluri, R.2
-
248
-
-
84857824476
-
Regulation of endothelial cell plasticity by TGF-ß
-
van Meeteren, L. A. & ten Dijke, P. Regulation of endothelial cell plasticity by TGF-ß. Cell Tissue Res. 347, 177-186 (2012).
-
(2012)
Cell Tissue Res.
, vol.347
, pp. 177-186
-
-
Van Meeteren, L.A.1
Ten Dijke, P.2
-
249
-
-
84862284813
-
Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease
-
von Gise, A. & Pu, W. T. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ. Res. 110, 1628-1645 (2012).
-
(2012)
Circ. Res.
, vol.110
, pp. 1628-1645
-
-
Von Gise, A.1
Pu, W.T.2
-
250
-
-
35948945337
-
Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts
-
Zeisberg, E. M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67, 10123-10128 (2007).
-
(2007)
Cancer Res.
, vol.67
, pp. 10123-10128
-
-
Zeisberg, E.M.1
Potenta, S.2
Xie, L.3
Zeisberg, M.4
Kalluri, R.5
-
251
-
-
84864125568
-
The role of endothelialmesenchymal transition in heterotopic ossification
-
Medici, D. & Olsen, B. R. The role of endothelialmesenchymal transition in heterotopic ossification. J. Bone Miner. Res. 27, 1619-1622 (2012).
-
(2012)
J. Bone Miner. Res.
, vol.27
, pp. 1619-1622
-
-
Medici, D.1
Olsen, B.R.2
-
252
-
-
56349114070
-
Snail is required for TGFß-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells
-
Kokudo, T. et al. Snail is required for TGFß-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J. Cell Sci. 121, 3317-3324 (2008).
-
(2008)
J. Cell Sci.
, vol.121
, pp. 3317-3324
-
-
Kokudo, T.1
-
253
-
-
77957847171
-
Integration of a Notch-dependent mesenchymal gene program and BMP2-driven cell invasiveness regulates murine cardiac valve formation
-
Luna-Zurita, L. et al. Integration of a Notch-dependent mesenchymal gene program and BMP2-driven cell invasiveness regulates murine cardiac valve formation. J. Clin. Invest. 120, 3493-3507 (2010).
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 3493-3507
-
-
Luna-Zurita, L.1
-
254
-
-
79960217559
-
Transforming growth factor-ß2 promotes Snail-mediated endothelialmesenchymal transition through convergence of Smaddependent and Smad-independent signalling
-
Medici, D., Potenta, S. & Kalluri, R. Transforming growth factor-ß2 promotes Snail-mediated endothelialmesenchymal transition through convergence of Smaddependent and Smad-independent signalling. Biochem. J. 437, 515-520 (2011).
-
(2011)
Biochem. J.
, vol.437
, pp. 515-520
-
-
Medici, D.1
Potenta, S.2
Kalluri, R.3
-
255
-
-
33750367434
-
Development of heart valves requires Gata4 expression in endothelial-derived cells
-
Rivera-Feliciano, J. et al. Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 133, 3607-3618 (2006).
-
(2006)
Development
, vol.133
, pp. 3607-3618
-
-
Rivera-Feliciano, J.1
-
256
-
-
79958779687
-
Scar wars: Mapping the fate of epithelial-mesenchymal-myofibroblast transition
-
Quaggin, S. E. & Kapus, A. Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int. 80, 41-50 (2011).
-
(2011)
Kidney Int.
, vol.80
, pp. 41-50
-
-
Quaggin, S.E.1
Kapus, A.2
-
257
-
-
34447250376
-
Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT?
-
Radisky, D. C., Kenny, P. A. & Bissell, M. J. Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J. Cell Biochem. 101, 830-839 (2007).
-
(2007)
J. Cell Biochem.
, vol.101
, pp. 830-839
-
-
Radisky, D.C.1
Kenny, P.A.2
Bissell, M.J.3
-
258
-
-
27944445459
-
Myocardin enhances Smad3-mediated transforming growth factor-ß1 signaling in a CArG boxindependent manner: Smad-binding element is an important cis element for SM22alpha transcription in vivo
-
Qiu, P. et al. Myocardin enhances Smad3-mediated transforming growth factor-ß1 signaling in a CArG boxindependent manner: Smad-binding element is an important cis element for SM22alpha transcription in vivo. Circ. Res. 97, 983-991 (2005).
-
(2005)
Circ. Res.
, vol.97
, pp. 983-991
-
-
Qiu, P.1
-
259
-
-
84863407686
-
TGF-ß-induced mesenchymal transition of MS-1 endothelial cells requires Smad-dependent cooperative activation of Rho signals and MRTF-A
-
Mihira, H. et al. TGF-ß-induced mesenchymal transition of MS-1 endothelial cells requires Smad-dependent cooperative activation of Rho signals and MRTF-A. J. Biochem. 151, 145-156 (2012).
-
(2012)
J. Biochem.
, vol.151
, pp. 145-156
-
-
Mihira, H.1
-
260
-
-
76349084499
-
Fate-determining mechanisms in epithelial-myofibroblast transition: Major inhibitory role for Smad3
-
Masszi, A. et al. Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3. J. Cell Biol. 188, 383-399 (2010).
-
(2010)
J. Cell Biol.
, vol.188
, pp. 383-399
-
-
Masszi, A.1
-
261
-
-
82655173709
-
ß-catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial-myofibroblast transition
-
Charbonney, E. Speight, P., Masszi, A., Nakano, H. & Kapus, A. ß-catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial-myofibroblast transition. Mol. Biol. Cell 22, 4472-4485 (2011).
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 4472-4485
-
-
Charbonney, E.1
Speight, P.2
Masszi, A.3
Nakano, H.4
Kapus, A.5
-
262
-
-
84865839326
-
Epithelial-mesenchymal transitions: Insights from development
-
Lim, J. & Thiery, J. P. Epithelial-mesenchymal transitions: insights from development. Development 139, 3471-3486 (2012).
-
(2012)
Development
, vol.139
, pp. 3471-3486
-
-
Lim, J.1
Thiery, J.P.2
-
263
-
-
84873344021
-
Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis
-
Zeisberg, M. & Kalluri, R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 304, C216-225 (2013).
-
(2013)
Am. J. Physiol. Cell Physiol
, vol.304
-
-
Zeisberg, M.1
Kalluri, R.2
-
264
-
-
34250749646
-
Mesenchymal to epithelial transition in development and disease
-
Chaffer, C. L., Thompson, E. W. & Williams, E. D. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 185, 7-19 (2007).
-
(2007)
Cells Tissues Organs
, vol.185
, pp. 7-19
-
-
Chaffer, C.L.1
Thompson, E.W.2
Williams, E.D.3
-
265
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011).
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
266
-
-
13344259902
-
The transcriptional control of trunk neural crest induction, survival, and delamination
-
Cheung, M. et al. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev. Cell 8, 179-192 (2005).
-
(2005)
Dev. Cell
, vol.8
, pp. 179-192
-
-
Cheung, M.1
-
267
-
-
34547141894
-
Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers
-
Mani, S. A. et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc. Natl Acad. Sci. USA 104, 10069-10074 (2007).
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 10069-10074
-
-
Mani, S.A.1
-
268
-
-
77950197610
-
Nuclear Janus-activated kinase 2/nuclear factor 1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing Forkhead box F1
-
Nilsson, J. et al. Nuclear Janus-activated kinase 2/nuclear factor 1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing Forkhead box F1. Cancer Res. 70, 2020-2029 (2010).
-
(2010)
Cancer Res.
, vol.70
, pp. 2020-2029
-
-
Nilsson, J.1
-
269
-
-
79954577486
-
FOXQ1 regulates epithelial-mesenchymal transition in human cancers
-
Qiao, Y. et al. FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res. 71, 3076-3086 (2011).
-
(2011)
Cancer Res.
, vol.71
, pp. 3076-3086
-
-
Qiao, Y.1
-
270
-
-
34250837002
-
Activation of FOXO3a by the green tea polyphenol epigallocatechin-3- gallate induces estrogen receptor a expression reversing invasive phenotype of breast cancer cells
-
Belguise, K., Guo, S. & Sonenshein, G. E. Activation of FOXO3a by the green tea polyphenol epigallocatechin-3-gallate induces estrogen receptor a expression reversing invasive phenotype of breast cancer cells. Cancer Res. 67, 5763-5770 (2007).
-
(2007)
Cancer Res.
, vol.67
, pp. 5763-5770
-
-
Belguise, K.1
Guo, S.2
Sonenshein, G.E.3
-
271
-
-
77950293595
-
Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer
-
Song, Y., Washington, M. K. & Crawford, H. C. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res. 70, 2115-2125 (2010).
-
(2010)
Cancer Res.
, vol.70
, pp. 2115-2125
-
-
Song, Y.1
Washington, M.K.2
Crawford, H.C.3
-
272
-
-
79961023271
-
Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition
-
McDonald, O. G., Wu, H., Timp, W., Doi, A. & Feinberg, A. P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nature Struct. Mol. Biol. 18, 867-874 (2011).
-
(2011)
Nature Struct. Mol. Biol.
, vol.18
, pp. 867-874
-
-
McDonald, O.G.1
Wu, H.2
Timp, W.3
Doi, A.4
Feinberg, A.P.5
-
273
-
-
33846783284
-
A proximal activator of transcription in epithelial-mesenchymal transition
-
Venkov, C. D. et al. A proximal activator of transcription in epithelial-mesenchymal transition. J. Clin. Invest. 117, 482-491 (2007).
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 482-491
-
-
Venkov, C.D.1
-
274
-
-
79952093753
-
Zeppo1 is a novel metastasis promoter that represses E-cadherin expression and regulates p120-catenin isoform expression and localization
-
Slorach, E. M., Chou, J. & Werb, Z. Zeppo1 is a novel metastasis promoter that represses E-cadherin expression and regulates p120-catenin isoform expression and localization. Genes Dev. 25, 471-484 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 471-484
-
-
Slorach, E.M.1
Chou, J.2
Werb, Z.3
-
275
-
-
84870816403
-
Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1
-
Ocana, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709-724 (2012).
-
(2012)
Cancer Cell
, vol.22
, pp. 709-724
-
-
Ocana, O.H.1
|