메뉴 건너뛰기




Volumn 19, Issue 19, 2013, Pages 3403-3419

Regulation of angiogenesis and bone regeneration with natural and synthetic small molecules

Author keywords

Angiogenesis; Osteogenesis; Regenerative medicine; Small molecules

Indexed keywords

4 (2,6 DICHLORO 4 PYRIDINYL) 1 (1,3 DIMETHYL 4 ISOPROPYL 1H PYRAZOLO[3,4 B]PYRIDIN 6 YL)SEMICARBAZIDE; ADENOSINE; ANGIOGENESIS MODULATOR; BETA CATENIN; BIOMATERIAL; ENDOTHELIAL NITRIC OXIDE SYNTHASE; FINGOLIMOD; FRIZZLED PROTEIN; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE INHIBITOR; HYPOXIA INDUCIBLE FACTOR 1ALPHA; LYSOPHOSPHATIDIC ACID; PLERIXAFOR; SEW 2971; SPHINGOSINE 1 PHOSPHATE; UNCLASSIFIED DRUG; VASCULOTROPIN RECEPTOR 1; VCP 01091; BIOLOGICAL PRODUCT;

EID: 84880806595     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/1381612811319190007     Document Type: Review
Times cited : (50)

References (240)
  • 1
    • 70350238104 scopus 로고    scopus 로고
    • PRevalence, health care expenditures, and orthopedic surgery workforce for musculoskeletal conditions
    • Haralson R ZJD. PRevalence, health care expenditures, and orthopedic surgery workforce for musculoskeletal conditions. JAMA: J the American Medical Association 2009; 302: 1586-7.
    • (2009) JAMA: J the American Medical Association , vol.302 , pp. 1586-1587
    • Haralson, R.Z.J.D.1
  • 2
    • 78650842405 scopus 로고    scopus 로고
    • Growth factor delivery-based tissue engineering: General approaches and a review of recent developments
    • Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 2011; 8: 153-70.
    • (2011) J R Soc Interface , vol.8 , pp. 153-170
    • Lee, K.1    Silva, E.A.2    Mooney, D.J.3
  • 3
    • 0036119063 scopus 로고    scopus 로고
    • The vascularity of atrophic non-unions
    • Brownlow HC, Reed A, Simpson AH. The vascularity of atrophic non-unions. Injury 2002; 33: 145-50.
    • (2002) Injury , vol.33 , pp. 145-150
    • Brownlow, H.C.1    Reed, A.2    Simpson, A.H.3
  • 4
    • 66449095059 scopus 로고    scopus 로고
    • Current advances in research and clinical applications of PLGA-based nanotechnology
    • Lu JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009; 9: 325-41.
    • (2009) Expert Rev Mol Diagn , vol.9 , pp. 325-341
    • Lu, J.M.1    Wang, X.2    Marin-Muller, C.3
  • 5
    • 77952327337 scopus 로고    scopus 로고
    • Polymethylmethacrylate: Properties and contemporary uses in orthopaedics
    • Jaeblon T. Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg 2010; 18: 297-305.
    • (2010) J Am Acad Orthop Surg , vol.18 , pp. 297-305
    • Jaeblon, T.1
  • 6
    • 66149086993 scopus 로고    scopus 로고
    • Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes
    • Neal RA, McClugage SG, Link MC, et al. Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng Part C Methods 2009; 15: 11-21.
    • (2009) Tissue Eng Part C Methods , vol.15 , pp. 11-21
    • Neal, R.A.1    McClugage, S.G.2    Link, M.C.3
  • 7
    • 42249104208 scopus 로고    scopus 로고
    • Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering
    • Sefcik LS, Petrie Aronin CE, Wieghaus KA, et al. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials 2008; 29: 2869-77.
    • (2008) Biomaterials , vol.29 , pp. 2869-2877
    • Sefcik, L.S.1    Petrie Aronin, C.E.2    Wieghaus, K.A.3
  • 8
    • 84867099322 scopus 로고    scopus 로고
    • Injectable thermogelling chitosan for the local delivery of bone morphogenetic protein
    • McLaughlin SW, Cui Z, Starnes T, et al. Injectable thermogelling chitosan for the local delivery of bone morphogenetic protein. J Mater Sci Mater Med 2012
    • (2012) J Mater Sci Mater Med
    • McLaughlin, S.W.1    Cui, Z.2    Starnes, T.3
  • 9
    • 0037411447 scopus 로고    scopus 로고
    • Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix
    • Kasten P, Luginbühl R, van Griensven M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix. Biomaterials 2003; 24: 2593-603.
    • (2003) Biomaterials , vol.24 , pp. 2593-2603
    • Kasten, P.1    Luginbühl, R.2    van Griensven, M.3
  • 10
    • 0025639156 scopus 로고
    • Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: A comparative histomorphometric study of ectopic bone formation
    • Ohgushi H, Okumura M, Tamai S, et al. Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 1990; 24: 1563-70.
    • (1990) J Biomed Mater Res , vol.24 , pp. 1563-1570
    • Ohgushi, H.1    Okumura, M.2    Tamai, S.3
  • 11
    • 85027917087 scopus 로고    scopus 로고
    • Bony engineering using time-release porous scaffolds to provide sustained growth factor delivery
    • Szpalski C, Nguyen PD, Cretiu Vasiliu CE, et al. Bony engineering using time-release porous scaffolds to provide sustained growth factor delivery. J Craniofac Surg 2012; 23: 638-44.
    • (2012) J Craniofac Surg , vol.23 , pp. 638-644
    • Szpalski, C.1    Nguyen, P.D.2    Cretiu Vasiliu, C.E.3
  • 12
    • 84864267743 scopus 로고    scopus 로고
    • Bone tissue engineering: Current strategies and techniques-part I: Scaffolds
    • Szpalski C, Wetterau M, Barr J, et al. Bone tissue engineering: current strategies and techniques-part I: scaffolds. Tissue Eng Part B Rev 2012; 18: 246-57.
    • (2012) Tissue Eng Part B Rev , vol.18 , pp. 246-257
    • Szpalski, C.1    Wetterau, M.2    Barr, J.3
  • 13
    • 33644934897 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
    • Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006; 27: 3413-31.
    • (2006) Biomaterials , vol.27 , pp. 3413-3431
    • Rezwan, K.1    Chen, Q.Z.2    Blaker, J.J.3
  • 14
    • 0028297686 scopus 로고
    • Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results
    • Dickson K, Katzman S, Delgado E, et al. Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results. Clin Orthop Relat Res 1994: 189-93.
    • (1994) Clin Orthop Relat Res , pp. 189-193
    • Dickson, K.1    Katzman, S.2    Delgado, E.3
  • 15
    • 81755188465 scopus 로고    scopus 로고
    • Evaluation of angiogenesis and osteogenesis
    • Das A, Botchwey E. Evaluation of angiogenesis and osteogenesis. Tissue Eng Part B Rev 2011; 17: 403-14.
    • (2011) Tissue Eng Part B Rev , vol.17 , pp. 403-414
    • Das, A.1    Botchwey, E.2
  • 16
    • 0030004485 scopus 로고    scopus 로고
    • Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene
    • Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439-42.
    • (1996) Nature , vol.380 , pp. 439-442
    • Ferrara, N.1    Carver-Moore, K.2    Chen, H.3
  • 17
    • 0036339867 scopus 로고    scopus 로고
    • Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis
    • Zelzer E, McLean W, Ng YS, et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 2002; 129: 1893-904.
    • (2002) Development , vol.129 , pp. 1893-1904
    • Zelzer, E.1    McLean, W.2    Ng, Y.S.3
  • 18
    • 0033584243 scopus 로고    scopus 로고
    • Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption
    • Niida S, Kaku M, Amano H, et al. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J experimental medicine 1999; 190: 293-8.
    • (1999) J experimental medicine , vol.190 , pp. 293-298
    • Niida, S.1    Kaku, M.2    Amano, H.3
  • 19
    • 25444469138 scopus 로고    scopus 로고
    • VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice
    • Niida S, Kondo T, Hiratsuka S, et al. VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 14016-21.
    • (2005) Proceedings of the National Academy of Sciences of the United States of America , vol.102 , pp. 14016-14021
    • Niida, S.1    Kondo, T.2    Hiratsuka, S.3
  • 22
    • 0034457236 scopus 로고    scopus 로고
    • Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation
    • Deckers MM, Karperien M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 2000; 141: 1667-74.
    • (2000) Endocrinology , vol.141 , pp. 1667-1674
    • Deckers, M.M.1    Karperien, M.2    van der Bent, C.3
  • 23
    • 0028237788 scopus 로고
    • Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts
    • Midy V, Plouet J. Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Commun 1994; 199: 380-6.
    • (1994) Biochem Biophys Res Commun , vol.199 , pp. 380-386
    • Midy, V.1    Plouet, J.2
  • 24
    • 0036192486 scopus 로고    scopus 로고
    • Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts
    • Mayr-Wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 2002; 30: 472-7.
    • (2002) Bone , vol.30 , pp. 472-477
    • Mayr-Wohlfart, U.1    Waltenberger, J.2    Hausser, H.3
  • 25
    • 0034640211 scopus 로고    scopus 로고
    • Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts
    • Nakagawa M, Kaneda T, Arakawa T, et al. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS letters 2000; 473: 161-4.
    • (2000) FEBS letters , vol.473 , pp. 161-164
    • Nakagawa, M.1    Kaneda, T.2    Arakawa, T.3
  • 26
    • 0036105935 scopus 로고    scopus 로고
    • Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: Implications for fracture healing
    • Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg 2002; 109: 2384-97.
    • (2002) Plast Reconstr Surg , vol.109 , pp. 2384-2397
    • Bouletreau, P.J.1    Warren, S.M.2    Spector, J.A.3
  • 27
    • 0344721598 scopus 로고    scopus 로고
    • Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats
    • Uchida S, Sakai A, Kudo H, et al. Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats. Bone 2003; 32: 491-501.
    • (2003) Bone , vol.32 , pp. 491-501
    • Uchida, S.1    Sakai, A.2    Kudo, H.3
  • 28
    • 0035005887 scopus 로고    scopus 로고
    • Sphingosine 1-phosphate: Synthesis and release
    • Yatomi Y, Ozaki Y, Ohmori T, et al. Sphingosine 1-phosphate: synthesis and release. Prostaglandins 2001; 64: 107-22.
    • (2001) Prostaglandins , vol.64 , pp. 107-122
    • Yatomi, Y.1    Ozaki, Y.2    Ohmori, T.3
  • 29
    • 0034658614 scopus 로고    scopus 로고
    • Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3
    • Kimura T, Watanabe T, Sato K, et al. Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J 2000; 348 Pt 1: 71-6.
    • (2000) Biochem J , vol.348 , Issue.PART 1 , pp. 71-76
    • Kimura, T.1    Watanabe, T.2    Sato, K.3
  • 30
    • 17944363486 scopus 로고    scopus 로고
    • Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis
    • Lee MJ, Thangada S, Paik JH, et al. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 2001; 8: 693-704.
    • (2001) Mol Cell , vol.8 , pp. 693-704
    • Lee, M.J.1    Thangada, S.2    Paik, J.H.3
  • 31
    • 0036893646 scopus 로고    scopus 로고
    • The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase
    • Grey A, Chen Q, Callon K, et al. The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase. Endocrinology 2002; 143: 4755-63.
    • (2002) Endocrinology , vol.143 , pp. 4755-4763
    • Grey, A.1    Chen, Q.2    Callon, K.3
  • 32
    • 0033615537 scopus 로고    scopus 로고
    • Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate
    • Lee MJ, Thangada S, Claffey KP, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 1999; 99: 301-12.
    • (1999) Cell , vol.99 , pp. 301-312
    • Lee, M.J.1    Thangada, S.2    Claffey, K.P.3
  • 33
    • 0033783522 scopus 로고    scopus 로고
    • Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation
    • Liu Y, Wada R, Yamashita T, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J clinical investigation 2000; 106: 951-61.
    • (2000) J clinical investigation , vol.106 , pp. 951-961
    • Liu, Y.1    Wada, R.2    Yamashita, T.3
  • 34
    • 68849122050 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice
    • Camerer E, Regard JB, Cornelissen I, et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J clinical investigation 2009; 119: 1871-9.
    • (2009) J clinical investigation , vol.119 , pp. 1871-1879
    • Camerer, E.1    Regard, J.B.2    Cornelissen, I.3
  • 35
    • 63649143900 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis
    • Ishii M, Egen JG, Klauschen F, et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2009; 458: 524-8.
    • (2009) Nature , vol.458 , pp. 524-528
    • Ishii, M.1    Egen, J.G.2    Klauschen, F.3
  • 36
    • 17644365138 scopus 로고    scopus 로고
    • Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs
    • Cyster JG. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 2005; 23: 127-59.
    • (2005) Annu Rev Immunol , vol.23 , pp. 127-159
    • Cyster, J.G.1
  • 37
    • 77958151145 scopus 로고    scopus 로고
    • The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells
    • Liu G, Yang K, Burns S, et al. The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol 2010; 11: 1047-56.
    • (2010) Nat Immunol , vol.11 , pp. 1047-1056
    • Liu, G.1    Yang, K.2    Burns, S.3
  • 38
    • 77952422757 scopus 로고    scopus 로고
    • Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex
    • Ratajczak MZ, Lee H, Wysoczynski M, et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976-85.
    • (2010) Leukemia , vol.24 , pp. 976-985
    • Ratajczak, M.Z.1    Lee, H.2    Wysoczynski, M.3
  • 39
    • 33845291120 scopus 로고    scopus 로고
    • Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases
    • Hait NC, Oskeritzian CA, Paugh SW, et al. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 2006; 1758: 2016-26.
    • (2006) Biochim Biophys Acta , vol.1758 , pp. 2016-2026
    • Hait, N.C.1    Oskeritzian, C.A.2    Paugh, S.W.3
  • 40
    • 3142744111 scopus 로고    scopus 로고
    • The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis
    • Kono M, Mi Y, Liu Y, et al. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biological Chem 2004; 279: 29367-73.
    • (2004) J Biological Chem , vol.279 , pp. 29367-29373
    • Kono, M.1    Mi, Y.2    Liu, Y.3
  • 41
    • 12544253058 scopus 로고    scopus 로고
    • Structural and functional characteristics of S1P receptors
    • Sanchez T, Hla T. Structural and functional characteristics of S1P receptors. J Cellular Biochem 2004; 92: 913-22.
    • (2004) J Cellular Biochem , vol.92 , pp. 913-922
    • Sanchez, T.1    Hla, T.2
  • 42
    • 0029977136 scopus 로고    scopus 로고
    • The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway
    • Lee MJ, Evans M, Hla T. The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J Biological Chem 1996; 271: 11272-9.
    • (1996) J Biological Chem , vol.271 , pp. 11272-11279
    • Lee, M.J.1    Evans, M.2    Hla, T.3
  • 43
    • 0033516586 scopus 로고    scopus 로고
    • Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5
    • Ancellin N, Hla T. Differential pharmacological properties and signal transduction of the sphingosine 1-phosphate receptors EDG-1, EDG-3, and EDG-5. J Biological Chem 1999; 274: 18997-9002.
    • (1999) J Biological Chem , vol.274 , pp. 18997-19002
    • Ancellin, N.1    Hla, T.2
  • 44
    • 0035937165 scopus 로고    scopus 로고
    • Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors
    • Malek RL, Toman RE, Edsall LC, et al. Nrg-1 belongs to the endothelial differentiation gene family of G protein-coupled sphingosine-1-phosphate receptors. J Biological Chem 2001; 276: 5692-9.
    • (2001) J Biological Chem , vol.276 , pp. 5692-5699
    • Malek, R.L.1    Toman, R.E.2    Edsall, L.C.3
  • 45
    • 78049480679 scopus 로고    scopus 로고
    • Fingolimod (FTY720): Discovery and development of an oral drug to treat multiple sclerosis
    • Brinkmann V, Billich A, Baumruker T, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 2010; 9: 883-97.
    • (2010) Nat Rev Drug Discov , vol.9 , pp. 883-897
    • Brinkmann, V.1    Billich, A.2    Baumruker, T.3
  • 46
    • 0242411518 scopus 로고    scopus 로고
    • G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation
    • Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 2003; 102: 3665-7.
    • (2003) Blood , vol.102 , pp. 3665-3667
    • Allende, M.L.1    Yamashita, T.2    Proia, R.L.3
  • 47
    • 0034887535 scopus 로고    scopus 로고
    • An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability
    • MacLennan AJ, Carney PR, Zhu WJ, et al. An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 2001; 14: 203-9.
    • (2001) Eur J Neurosci , vol.14 , pp. 203-209
    • McLennan, A.J.1    Carney, P.R.2    Zhu, W.J.3
  • 48
    • 34249845679 scopus 로고    scopus 로고
    • Deafness and stria vascularis defects in S1P2 receptor-null mice
    • Kono M, Belyantseva IA, Skoura A, et al. Deafness and stria vascularis defects in S1P2 receptor-null mice. J Biological Chem 2007; 282: 10690-6.
    • (2007) J Biological Chem , vol.282 , pp. 10690-10696
    • Kono, M.1    Belyantseva, I.A.2    Skoura, A.3
  • 49
    • 0035823477 scopus 로고    scopus 로고
    • Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3
    • Ishii I, Friedman B, Ye X, et al. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biological Chem 2001; 276: 33697-704.
    • (2001) J Biological Chem , vol.276 , pp. 33697-33704
    • Ishii, I.1    Friedman, B.2    Ye, X.3
  • 50
    • 13844271705 scopus 로고    scopus 로고
    • Edg8/S1P5: An oligodendroglial receptor with dual function on process retraction and cell survival
    • Jaillard C, Harrison S, Stankoff B, et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 2005; 25: 1459-69.
    • (2005) J Neurosci , vol.25 , pp. 1459-1469
    • Jaillard, C.1    Harrison, S.2    Stankoff, B.3
  • 51
    • 78649740029 scopus 로고    scopus 로고
    • Shaping of terminal megakaryocyte differentiation and proplatelet development by sphingosine-1-phosphate receptor S1P4
    • Golfier S, Kondo S, Schulze T, et al. Shaping of terminal megakaryocyte differentiation and proplatelet development by sphingosine-1-phosphate receptor S1P4. FASEB J 2010; 24: 4701-10.
    • (2010) FASEB J , vol.24 , pp. 4701-4710
    • Golfier, S.1    Kondo, S.2    Schulze, T.3
  • 52
    • 42249092864 scopus 로고    scopus 로고
    • The lysophospholipid mediator sphingosine-1-phosphate promotes angiogenesis in vivo in ischaemic hindlimbs of mice
    • Oyama O, Sugimoto N, Qi X, et al. The lysophospholipid mediator sphingosine-1-phosphate promotes angiogenesis in vivo in ischaemic hindlimbs of mice. Cardiovasc Res 2008; 78: 301-7.
    • (2008) Cardiovasc Res , vol.78 , pp. 301-307
    • Oyama, O.1    Sugimoto, N.2    Qi, X.3
  • 53
    • 33846413190 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor
    • Walter DH, Rochwalsky U, Reinhold J, et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 2007; 27: 275-82.
    • (2007) Arterioscler Thromb Vasc Biol , vol.27 , pp. 275-282
    • Walter, D.H.1    Rochwalsky, U.2    Reinhold, J.3
  • 54
    • 51749084528 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate receptor subtypes differentially regulate smooth muscle cell phenotype
    • Wamhoff BR, Lynch KR, Macdonald TL, et al. Sphingosine-1-phosphate receptor subtypes differentially regulate smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2008; 28: 1454-61.
    • (2008) Arterioscler Thromb Vasc Biol , vol.28 , pp. 1454-1461
    • Wamhoff, B.R.1    Lynch, K.R.2    McDonald, T.L.3
  • 55
    • 33646349728 scopus 로고    scopus 로고
    • Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels
    • Wacker BK, Scott EA, Kaneda MM, et al. Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels. Biomacromolecules 2006; 7: 1335-43.
    • (2006) Biomacromolecules , vol.7 , pp. 1335-1343
    • Wacker, B.K.1    Scott, E.A.2    Kaneda, M.M.3
  • 56
    • 70449732254 scopus 로고    scopus 로고
    • Modular scaffolds assembled around living cells using poly(ethylene glycol) microspheres with macroporation via a non-cytotoxic porogen
    • Scott EA, Nichols MD, Kuntz-Willits R, et al. Modular scaffolds assembled around living cells using poly(ethylene glycol) microspheres with macroporation via a non-cytotoxic porogen. Acta Biomater 2010; 6: 29-38.
    • (2010) Acta Biomater , vol.6 , pp. 29-38
    • Scott, E.A.1    Nichols, M.D.2    Kuntz-Willits, R.3
  • 57
    • 77951204014 scopus 로고    scopus 로고
    • Sustained delivery of sphingosine-1-phosphate using poly(lactic-co-glycolic acid)-based microparticles stimulates Akt/ERK-eNOS mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice
    • Qi X, Okamoto Y, Murakawa T, et al. Sustained delivery of sphingosine-1-phosphate using poly(lactic-co-glycolic acid)-based microparticles stimulates Akt/ERK-eNOS mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice. Eur J Pharmacol 2010; 634: 121-31.
    • (2010) Eur J Pharmacol , vol.634 , pp. 121-131
    • Qi, X.1    Okamoto, Y.2    Murakawa, T.3
  • 58
    • 77953339728 scopus 로고    scopus 로고
    • FTY720 promotes local microvascular network formation and regeneration of cranial bone defects
    • Petrie Aronin CE, Sefcik LS, Tholpady SS, et al. FTY720 promotes local microvascular network formation and regeneration of cranial bone defects. Tissue Eng Part A 2010; 16: 1801-9.
    • (2010) Tissue Eng Part A , vol.16 , pp. 1801-1809
    • Petrie Aronin, C.E.1    Sefcik, L.S.2    Tholpady, S.S.3
  • 59
    • 79952163918 scopus 로고    scopus 로고
    • Selective activation of sphingosine 1-phosphate receptors 1 and 3 promotes local microvascular network growth
    • Sefcik LS, Aronin CE, Awojoodu AO, et al. Selective activation of sphingosine 1-phosphate receptors 1 and 3 promotes local microvascular network growth. Tissue Eng Part A 2011; 17: 617-29.
    • (2011) Tissue Eng Part A , vol.17 , pp. 617-629
    • Sefcik, L.S.1    Aronin, C.E.2    Awojoodu, A.O.3
  • 60
    • 2342634478 scopus 로고    scopus 로고
    • Single-dose FTY720 pharmacokinetics, food effect, and pharmacological responses in healthy subjects
    • Kovarik JM, Schmouder R, Barilla D, et al. Single-dose FTY720 pharmacokinetics, food effect, and pharmacological responses in healthy subjects. Br J Clin Pharmacol 2004; 57: 586-91.
    • (2004) Br J Clin Pharmacol , vol.57 , pp. 586-591
    • Kovarik, J.M.1    Schmouder, R.2    Barilla, D.3
  • 61
    • 1842455323 scopus 로고    scopus 로고
    • Point-counterpoint of sphingosine 1-phosphate metabolism
    • Saba JD, Hla T. Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 2004; 94: 724-34.
    • (2004) Circ Res , vol.94 , pp. 724-734
    • Saba, J.D.1    Hla, T.2
  • 62
    • 77953963056 scopus 로고    scopus 로고
    • The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720
    • Petrie Aronin CE, Shin SJ, Naden KB, et al. The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterials 2010; 31: 6417-24.
    • (2010) Biomaterials , vol.31 , pp. 6417-6424
    • Petrie Aronin, C.E.1    Shin, S.J.2    Naden, K.B.3
  • 63
    • 84860389144 scopus 로고    scopus 로고
    • Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation
    • Huang C, Das A, Barker D, et al. Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation. Cell Tissue Res 2012; 347: 553-66.
    • (2012) Cell Tissue Res , vol.347 , pp. 553-566
    • Huang, C.1    Das, A.2    Barker, D.3
  • 64
    • 84862682840 scopus 로고    scopus 로고
    • Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation
    • Sato C, Iwasaki T, Kitano S, et al. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophysical Res Communications 2012; 423: 200-5.
    • (2012) Biochem Biophysical Res Communications , vol.423 , pp. 200-205
    • Sato, C.1    Iwasaki, T.2    Kitano, S.3
  • 65
    • 33845714356 scopus 로고    scopus 로고
    • Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling
    • Ryu J, Kim HJ, Chang EJ, et al. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO Journal 2006; 25: 5840-51.
    • (2006) EMBO Journal , vol.25 , pp. 5840-5851
    • Ryu, J.1    Kim, H.J.2    Chang, E.J.3
  • 66
    • 0032525049 scopus 로고    scopus 로고
    • FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing
    • Chiba K, Yanagawa Y, Masubuchi Y, et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol 1998; 160: 5037-44.
    • (1998) J Immunol , vol.160 , pp. 5037-5044
    • Chiba, K.1    Yanagawa, Y.2    Masubuchi, Y.3
  • 67
    • 2942595711 scopus 로고    scopus 로고
    • The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells
    • Kimura T, Boehmler AM, Seitz G, et al. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood 2004; 103: 4478-86.
    • (2004) Blood , vol.103 , pp. 4478-4486
    • Kimura, T.1    Boehmler, A.M.2    Seitz, G.3
  • 68
    • 84863338623 scopus 로고    scopus 로고
    • S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release
    • Golan K, Vagima Y, Ludin A, et al. S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 2012; 119: 2478-88.
    • (2012) Blood , vol.119 , pp. 2478-2488
    • Golan, K.1    Vagima, Y.2    Ludin, A.3
  • 69
    • 52949135175 scopus 로고    scopus 로고
    • S1P(1) overexpression stimulates S1P-dependent chemotaxis of human CD34+ hematopoietic progenitor cells but strongly inhibits SDF-1/CXCR4-dependent migration and in vivo homing
    • Ryser MF, Ugarte F, Lehmann R, et al. S1P(1) overexpression stimulates S1P-dependent chemotaxis of human CD34+ hematopoietic progenitor cells but strongly inhibits SDF-1/CXCR4-dependent migration and in vivo homing. Mol Immunol 2008; 46: 166-71.
    • (2008) Mol Immunol , vol.46 , pp. 166-171
    • Ryser, M.F.1    Ugarte, F.2    Lehmann, R.3
  • 70
    • 84856077778 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice
    • Juarez JG, Harun N, Thien M, et al. Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 2012; 119: 707-16.
    • (2012) Blood , vol.119 , pp. 707-716
    • Juarez, J.G.1    Harun, N.2    Thien, M.3
  • 71
    • 0037131366 scopus 로고    scopus 로고
    • Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase
    • Tokumura A, Majima E, Kariya Y, et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biological Chem 2002; 277: 39436-42.
    • (2002) J Biological Chem , vol.277 , pp. 39436-39442
    • Tokumura, A.1    Majima, E.2    Kariya, Y.3
  • 73
    • 33745466418 scopus 로고    scopus 로고
    • Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development
    • van Meeteren LA, Ruurs P, Stortelers C, et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 2006; 26: 5015-22.
    • (2006) Mol Cell Biol , vol.26 , pp. 5015-5022
    • van Meeteren, L.A.1    Ruurs, P.2    Stortelers, C.3
  • 74
    • 33748757239 scopus 로고    scopus 로고
    • Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid
    • Tanaka M, Okudaira S, Kishi Y, et al. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biological Chem 2006; 281: 25822-30.
    • (2006) J Biological Chem , vol.281 , pp. 25822-25830
    • Tanaka, M.1    Okudaira, S.2    Kishi, Y.3
  • 76
    • 49549095115 scopus 로고    scopus 로고
    • Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation-and EGFR transactivation-dependent mechanisms
    • Lin CI, Chen CN, Huang MT, et al. Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation-and EGFR transactivation-dependent mechanisms. Cell Signal 2008; 20: 1804-14.
    • (2008) Cell Signal , vol.20 , pp. 1804-1814
    • Lin, C.I.1    Chen, C.N.2    Huang, M.T.3
  • 77
    • 79957982626 scopus 로고    scopus 로고
    • Lysophosphatidic acid suppresses endothelial cell CD36 expression and promotes angiogenesis via a PKD-1-dependent signaling pathway
    • Ren B, Hale J, Srikanthan S, et al. Lysophosphatidic acid suppresses endothelial cell CD36 expression and promotes angiogenesis via a PKD-1-dependent signaling pathway. Blood 2011; 117: 6036-45.
    • (2011) Blood , vol.117 , pp. 6036-6045
    • Ren, B.1    Hale, J.2    Srikanthan, S.3
  • 78
    • 80052885398 scopus 로고    scopus 로고
    • p2y5/LPA(6) attenuates LPA(1)-mediated VE-cadherin translocation and cell-cell dissociation through G(12/13) protein-Src-Rap1
    • Kimura T, Mogi C, Sato K, et al. p2y5/LPA(6) attenuates LPA(1)-mediated VE-cadherin translocation and cell-cell dissociation through G(12/13) protein-Src-Rap1. Cardiovasc Res 2011; 92: 149-58.
    • (2011) Cardiovasc Res , vol.92 , pp. 149-158
    • Kimura, T.1    Mogi, C.2    Sato, K.3
  • 79
    • 77954760334 scopus 로고    scopus 로고
    • Lysophosphatidic acid receptors LPA1 and LPA3 promote CXCL12-mediated smooth muscle progenitor cell recruitment in neointima formation
    • Subramanian P, Karshovska E, Reinhard P, et al. Lysophosphatidic acid receptors LPA1 and LPA3 promote CXCL12-mediated smooth muscle progenitor cell recruitment in neointima formation. Circ Res 2010; 107: 96-105.
    • (2010) Circ Res , vol.107 , pp. 96-105
    • Subramanian, P.1    Karshovska, E.2    Reinhard, P.3
  • 80
    • 84856966242 scopus 로고    scopus 로고
    • The emerging role of lysophosphatidic acid (LPA) in skeletal biology
    • Blackburn J, Mansell JP. The emerging role of lysophosphatidic acid (LPA) in skeletal biology. Bone 2012; 50: 756-62.
    • (2012) Bone , vol.50 , pp. 756-762
    • Blackburn, J.1    Mansell, J.P.2
  • 81
    • 0035095485 scopus 로고    scopus 로고
    • Lysophosphatidic acid is an osteoblast mitogen whose proliferative actions involve G(i) proteins and protein kinase C, but not P42/44 mitogen-activated protein kinases
    • Grey A, Banovic T, Naot D, et al. Lysophosphatidic acid is an osteoblast mitogen whose proliferative actions involve G(i) proteins and protein kinase C, but not P42/44 mitogen-activated protein kinases. Endocrinology 2001; 142: 1098-106.
    • (2001) Endocrinology , vol.142 , pp. 1098-1106
    • Grey, A.1    Banovic, T.2    Naot, D.3
  • 82
    • 33744830292 scopus 로고    scopus 로고
    • Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells
    • Masiello LM, Fotos JS, Galileo DS, et al. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells. Bone 2006; 39: 72-82.
    • (2006) Bone , vol.39 , pp. 72-82
    • Masiello, L.M.1    Fotos, J.S.2    Galileo, D.S.3
  • 83
    • 33745809904 scopus 로고    scopus 로고
    • Lysophosphatidic acid cooperates with 1alpha,25(OH)2D3 in stimulating human MG63 osteoblast maturation
    • Gidley J, Openshaw S, Pring ET, et al. Lysophosphatidic acid cooperates with 1alpha,25(OH)2D3 in stimulating human MG63 osteoblast maturation. Prostaglandins Other Lipid Mediat 2006; 80: 46-61.
    • (2006) Prostaglandins Other Lipid Mediat , vol.80 , pp. 46-61
    • Gidley, J.1    Openshaw, S.2    Pring, E.T.3
  • 84
    • 84868562940 scopus 로고    scopus 로고
    • Lysophosphatidic acid, human osteoblast formation, maturation and the role of 1alpha,25-Dihydroxyvitamin D3 (calcitriol)
    • Mansell JP, Blackburn J. Lysophosphatidic acid, human osteoblast formation, maturation and the role of 1alpha,25-Dihydroxyvitamin D3 (calcitriol). Biochimica et biophysica acta 2012
    • (2012) Biochimica et biophysica acta
    • Mansell, J.P.1    Blackburn, J.2
  • 85
    • 77749309902 scopus 로고    scopus 로고
    • LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4
    • Liu YB, Kharode Y, Bodine PV, et al. LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4. J Cell Biochem 2010; 109: 794-800.
    • (2010) J Cell Biochem , vol.109 , pp. 794-800
    • Liu, Y.B.1    Kharode, Y.2    Bodine, P.V.3
  • 86
    • 35348867439 scopus 로고    scopus 로고
    • DNA microarray analysis reveals a role for lysophosphatidic acid in the regulation of antiinflammatory genes in MC3T3-E1 cells
    • Waters KM, Tan R, Genetos DC, et al. DNA microarray analysis reveals a role for lysophosphatidic acid in the regulation of antiinflammatory genes in MC3T3-E1 cells. Bone 2007; 41: 833-41.
    • (2007) Bone , vol.41 , pp. 833-841
    • Waters, K.M.1    Tan, R.2    Genetos, D.C.3
  • 87
    • 79960587374 scopus 로고    scopus 로고
    • Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass
    • Gennero I, Laurencin-Dalicieux S, Conte-Auriol F, et al. Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass. Bone 2011; 49: 395-403.
    • (2011) Bone , vol.49 , pp. 395-403
    • Gennero, I.1    Laurencin-Dalicieux, S.2    Conte-Auriol, F.3
  • 88
    • 84868539349 scopus 로고    scopus 로고
    • Lysophosphatidic acid: A potential mediator of osteoblast-osteoclast signaling in bone
    • Sims SM, Panupinthu N, Lapierre DM, et al. Lysophosphatidic acid: A potential mediator of osteoblast-osteoclast signaling in bone. Biochimica et Biophysica Acta 2013; 1831: 109-16.
    • (2013) Biochimica et Biophysica Acta , vol.1831 , pp. 109-116
    • Sims, S.M.1    Panupinthu, N.2    Lapierre, D.M.3
  • 89
    • 77955502352 scopus 로고    scopus 로고
    • Lysophosphatidic acid signals through multiple receptors in osteoclasts to elevate cytosolic calcium concentration, evoke retraction, and promote cell survival
    • Lapierre DM, Tanabe N, Pereverzev A, et al. Lysophosphatidic acid signals through multiple receptors in osteoclasts to elevate cytosolic calcium concentration, evoke retraction, and promote cell survival. J Biological Chem 2010; 285: 25792-801.
    • (2010) J Biological Chem , vol.285 , pp. 25792-25801
    • Lapierre, D.M.1    Tanabe, N.2    Pereverzev, A.3
  • 90
    • 0035810240 scopus 로고    scopus 로고
    • Bone marrow cells regenerate infarcted myocardium
    • Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701-5.
    • (2001) Nature , vol.410 , pp. 701-705
    • Orlic, D.1    Kajstura, J.2    Chimenti, S.3
  • 91
    • 0034658660 scopus 로고    scopus 로고
    • Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF
    • Liu F, Poursine-Laurent J, Link DC. Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 2000; 95: 3025-31.
    • (2000) Blood , vol.95 , pp. 3025-3031
    • Liu, F.1    Poursine-Laurent, J.2    Link, D.C.3
  • 92
    • 33746605148 scopus 로고    scopus 로고
    • G-CSF downregulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells
    • Kim HK, De La Luz Sierra M, Williams CK, et al. G-CSF downregulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood 2006; 108: 812-20.
    • (2006) Blood , vol.108 , pp. 812-820
    • Kim, H.K.1    de la Luz Sierra, M.2    Williams, C.K.3
  • 93
    • 0033896487 scopus 로고    scopus 로고
    • Mobilization of CD34+ haematopoietic stem cells is associated with a functional inactivation of the integrin very late antigen 4
    • Lichterfeld M, Martin S, Burkly L, et al. Mobilization of CD34+ haematopoietic stem cells is associated with a functional inactivation of the integrin very late antigen 4. Br J Haematol 2000; 110: 71-81.
    • (2000) Br J Haematol , vol.110 , pp. 71-81
    • Lichterfeld, M.1    Martin, S.2    Burkly, L.3
  • 94
    • 77958553682 scopus 로고    scopus 로고
    • Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs
    • Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010; 116: 4815-28.
    • (2010) Blood , vol.116 , pp. 4815-4828
    • Winkler, I.G.1    Sims, N.A.2    Pettit, A.R.3
  • 95
    • 79951694373 scopus 로고    scopus 로고
    • Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
    • Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Experimental Med 2011; 208: 261-71.
    • (2011) J Experimental Med , vol.208 , pp. 261-271
    • Chow, A.1    Lucas, D.2    Hidalgo, A.3
  • 96
    • 79951689118 scopus 로고    scopus 로고
    • Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice
    • Christopher MJ, Rao M, Liu F, et al. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Experimental Med 2011; 208: 251-60.
    • (2011) J Experimental Med , vol.208 , pp. 251-260
    • Christopher, M.J.1    Rao, M.2    Liu, F.3
  • 97
    • 27644517442 scopus 로고    scopus 로고
    • G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow
    • Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020-7.
    • (2005) Blood , vol.106 , pp. 3020-3027
    • Semerad, C.L.1    Christopher, M.J.2    Liu, F.3
  • 98
    • 33749056417 scopus 로고    scopus 로고
    • Effects of granulocyte colony simulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease
    • Honold J, Lehmann R, Heeschen C, et al. Effects of granulocyte colony simulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler Thromb Vasc Biol 2006; 26: 2238-43.
    • (2006) Arterioscler Thromb Vasc Biol , vol.26 , pp. 2238-2243
    • Honold, J.1    Lehmann, R.2    Heeschen, C.3
  • 99
    • 43049161276 scopus 로고    scopus 로고
    • G-CSF treatment after myocardial infarction: Impact on bone marrow-derived vs cardiac progenitor cells
    • Brunner S, Huber BC, Fischer R, et al. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells. Exp Hematol 2008; 36: 695-702.
    • (2008) Exp Hematol , vol.36 , pp. 695-702
    • Brunner, S.1    Huber, B.C.2    Fischer, R.3
  • 100
    • 84856712678 scopus 로고    scopus 로고
    • Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4
    • Rettig MP, Ansstas G, DiPersio JF. Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 2012; 26: 34-53.
    • (2012) Leukemia , vol.26 , pp. 34-53
    • Rettig, M.P.1    Ansstas, G.2    DiPersio, J.F.3
  • 101
    • 33845979433 scopus 로고    scopus 로고
    • Sustained alterations in biodistribution of stem/progenitor cells in Tie2Cre+ alpha4(f/f) mice are hematopoietic cell autonomous
    • Priestley GV, Ulyanova T, Papayannopoulou T. Sustained alterations in biodistribution of stem/progenitor cells in Tie2Cre+ alpha4(f/f) mice are hematopoietic cell autonomous. Blood 2007; 109: 109-11.
    • (2007) Blood , vol.109 , pp. 109-111
    • Priestley, G.V.1    Ulyanova, T.2    Papayannopoulou, T.3
  • 102
    • 33749537886 scopus 로고    scopus 로고
    • Angiogenic cells can be rapidly mobilized and efficiently harvested from the blood following treatment with AMD3100
    • Shepherd RM, Capoccia BJ, Devine SM, et al. Angiogenic cells can be rapidly mobilized and efficiently harvested from the blood following treatment with AMD3100. Blood 2006; 108: 3662-7.
    • (2006) Blood , vol.108 , pp. 3662-3667
    • Shepherd, R.M.1    Capoccia, B.J.2    Devine, S.M.3
  • 103
    • 77954641959 scopus 로고    scopus 로고
    • CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction
    • Jujo K, Hamada H, Iwakura A, et al. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci USA 2010; 107: 11008-13.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 11008-11013
    • Jujo, K.1    Hamada, H.2    Iwakura, A.3
  • 104
    • 33749317675 scopus 로고    scopus 로고
    • G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism
    • Capoccia BJ, Shepherd RM, Link DC. G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood 2006; 108: 2438-45.
    • (2006) Blood , vol.108 , pp. 2438-2445
    • Capoccia, B.J.1    Shepherd, R.M.2    Link, D.C.3
  • 105
    • 84864739410 scopus 로고    scopus 로고
    • Mobilization of endogenous stem cells: A new strategy for bone healing
    • Liu L, Hu K, Wang B, et al. Mobilization of endogenous stem cells: A new strategy for bone healing. Bone 2012; 51: 633-4.
    • (2012) Bone , vol.51 , pp. 633-634
    • Liu, L.1    Hu, K.2    Wang, B.3
  • 106
    • 61649090805 scopus 로고    scopus 로고
    • Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model
    • Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheumatism 2009; 60: 813-23.
    • (2009) Arthritis Rheumatism , vol.60 , pp. 813-823
    • Kitaori, T.1    Ito, H.2    Schwarz, E.M.3
  • 108
    • 84869084616 scopus 로고    scopus 로고
    • Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells
    • Singh P, Hu P, Hoggatt J, et al. Expansion of bone marrow neutrophils following G-CSF administration in mice results in osteolineage cell apoptosis and mobilization of hematopoietic stem and progenitor cells. Leukemia 2012
    • (2012) Leukemia
    • Singh, P.1    Hu, P.2    Hoggatt, J.3
  • 109
    • 80051531679 scopus 로고    scopus 로고
    • Progenitor cell mobilization enhances bone healing by means of improved neovascularization and osteogenesis
    • Wang XX, Allen RJ, Jr., Tutela JP, et al. Progenitor cell mobilization enhances bone healing by means of improved neovascularization and osteogenesis. Plast Reconstr Surg 2011; 128: 395-405.
    • (2011) Plast Reconstr Surg , vol.128 , pp. 395-405
    • Wang, X.X.1    Allen Jr., R.J.2    Tutela, J.P.3
  • 110
    • 84862777340 scopus 로고    scopus 로고
    • Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect
    • Kumar S, Ponnazhagan S. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect. Bone 2012; 50: 1012-8.
    • (2012) Bone , vol.50 , pp. 1012-1018
    • Kumar, S.1    Ponnazhagan, S.2
  • 111
    • 84859022131 scopus 로고    scopus 로고
    • Modulation of stromal cellderived factor-1/CXC chemokine receptor 4 axis enhances rhBMP-2-induced ectopic bone formation
    • Wise JK, Sumner DR, Virdi AS. Modulation of stromal cellderived factor-1/CXC chemokine receptor 4 axis enhances rhBMP-2-induced ectopic bone formation. Tissue Eng Part A 2012; 18: 860-9.
    • (2012) Tissue Eng Part A , vol.18 , pp. 860-869
    • Wise, J.K.1    Sumner, D.R.2    Virdi, A.S.3
  • 112
    • 0036499224 scopus 로고    scopus 로고
    • Prostaglandins as modulators of immunity
    • Harris SG, Padilla J, Koumas L, et al. Prostaglandins as modulators of immunity. Trends Immunol 2002; 23: 144-50.
    • (2002) Trends Immunol , vol.23 , pp. 144-150
    • Harris, S.G.1    Padilla, J.2    Koumas, L.3
  • 113
    • 4444262310 scopus 로고    scopus 로고
    • Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation
    • Hata AN, Breyer RM. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther 2004; 103: 147-66.
    • (2004) Pharmacol Ther , vol.103 , pp. 147-166
    • Hata, A.N.1    Breyer, R.M.2
  • 114
    • 79953721677 scopus 로고    scopus 로고
    • The prostaglandin E(2) system: A toolbox for skeletal repair?
    • Gelse K, Beyer C. The prostaglandin E(2) system: a toolbox for skeletal repair? Arthritis Rheumatism 2011; 63: 871-3.
    • (2011) Arthritis Rheumatism , vol.63 , pp. 871-873
    • Gelse, K.1    Beyer, C.2
  • 116
    • 31344433894 scopus 로고    scopus 로고
    • Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells
    • Namkoong S, Lee SJ, Kim CK, et al. Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp Mol Med 2005; 37: 588-600.
    • (2005) Exp Mol Med , vol.37 , pp. 588-600
    • Namkoong, S.1    Lee, S.J.2    Kim, C.K.3
  • 117
    • 34447135497 scopus 로고    scopus 로고
    • Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo
    • Rao R, Redha R, Macias-Perez I, et al. Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. J Biol Chem 2007; 282: 16959-68.
    • (2007) J Biol Chem , vol.282 , pp. 16959-16968
    • Rao, R.1    Redha, R.2    Macias-Perez, I.3
  • 118
    • 67049134758 scopus 로고    scopus 로고
    • Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation
    • Hoggatt J, Singh P, Sampath J, et al. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009; 113: 5444-55.
    • (2009) Blood , vol.113 , pp. 5444-5455
    • Hoggatt, J.1    Singh, P.2    Sampath, J.3
  • 120
    • 0028263883 scopus 로고
    • Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts
    • Harada S, Nagy JA, Sullivan KA, et al. Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts. J clinical investigation 1994; 93: 2490-6.
    • (1994) J clinical investigation , vol.93 , pp. 2490-2496
    • Harada, S.1    Nagy, J.A.2    Sullivan, K.A.3
  • 121
    • 15744392220 scopus 로고    scopus 로고
    • Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1
    • Kobayashi Y, Mizoguchi T, Take I, et al. Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1. J Biological Chem 2005; 280: 11395-403.
    • (2005) J Biological Chem , vol.280 , pp. 11395-11403
    • Kobayashi, Y.1    Mizoguchi, T.2    Take, I.3
  • 122
    • 27844592641 scopus 로고    scopus 로고
    • Prostaglandin E2 strongly inhibits human osteoclast formation
    • Take I, Kobayashi Y, Yamamoto Y, et al. Prostaglandin E2 strongly inhibits human osteoclast formation. Endocrinology 2005; 146: 5204-14.
    • (2005) Endocrinology , vol.146 , pp. 5204-5214
    • Take, I.1    Kobayashi, Y.2    Yamamoto, Y.3
  • 124
    • 0034746416 scopus 로고    scopus 로고
    • Systemic prostaglandin E2 increases cancellous bone formation and mass in aging rats and stimulates their bone marrow osteogenic capacity in vivo and in vitro
    • Keila S, Kelner A, Weinreb M. Systemic prostaglandin E2 increases cancellous bone formation and mass in aging rats and stimulates their bone marrow osteogenic capacity in vivo and in vitro. J Endocrinol 2001; 168: 131-9.
    • (2001) J Endocrinol , vol.168 , pp. 131-139
    • Keila, S.1    Kelner, A.2    Weinreb, M.3
  • 125
    • 0034954444 scopus 로고    scopus 로고
    • Prostaglandin receptor EP(4) mediates the bone anabolic effects of PGE(2)
    • Machwate M, Harada S, Leu CT, et al. Prostaglandin receptor EP(4) mediates the bone anabolic effects of PGE(2). Molecular pharmacology 2001; 60: 36-41.
    • (2001) Molecular pharmacology , vol.60 , pp. 36-41
    • McHwate, M.1    Harada, S.2    Leu, C.T.3
  • 126
    • 34547889884 scopus 로고    scopus 로고
    • Nanogel-based delivery system enhances PGE2 effects on bone formation
    • Kato N, Hasegawa U, Morimoto N, et al. Nanogel-based delivery system enhances PGE2 effects on bone formation. J Cellular Biochem 2007; 101: 1063-70.
    • (2007) J Cellular Biochem , vol.101 , pp. 1063-1070
    • Kato, N.1    Hasegawa, U.2    Morimoto, N.3
  • 127
    • 2942548967 scopus 로고    scopus 로고
    • Prostaglandin E2 receptor (EP4) selective agonist (ONO-4819. CD) accelerates bone repair of femoral cortex after drill-hole injury associated with local upregulation of bone turnover in mature rats
    • Tanaka M, Sakai A, Uchida S, et al. Prostaglandin E2 receptor (EP4) selective agonist (ONO-4819. CD) accelerates bone repair of femoral cortex after drill-hole injury associated with local upregulation of bone turnover in mature rats. Bone 2004; 34: 940-8.
    • (2004) Bone , vol.34 , pp. 940-948
    • Tanaka, M.1    Sakai, A.2    Uchida, S.3
  • 128
    • 0036259278 scopus 로고    scopus 로고
    • Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair
    • Zhang X, Schwarz EM, Young DA, et al. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J clinical Investigation 2002; 109: 1405-15.
    • (2002) J clinical Investigation , vol.109 , pp. 1405-1415
    • Zhang, X.1    Schwarz, E.M.2    Young, D.A.3
  • 129
    • 0035992648 scopus 로고    scopus 로고
    • Bone morphogenetic protein 2 induces cyclo-oxygenase 2 in osteoblasts via a Cbfal binding site: Role in effects of bone morphogenetic protein 2 in vitro and in vivo
    • Chikazu D, Li X, Kawaguchi H, et al. Bone morphogenetic protein 2 induces cyclo-oxygenase 2 in osteoblasts via a Cbfal binding site: role in effects of bone morphogenetic protein 2 in vitro and in vivo. Journal of bone and mineral research: the official J Am Soc Bone Mineral Res 2002; 17: 1430-40.
    • (2002) Journal of bone and mineral research: The official J Am Soc Bone Mineral Res , vol.17 , pp. 1430-1440
    • Chikazu, D.1    Li, X.2    Kawaguchi, H.3
  • 130
    • 77957593126 scopus 로고    scopus 로고
    • The effects of COX-2 inhibitor during osteogenic differentiation of bone marrow-derived human mesenchymal stem cells
    • Yoon DS, Yoo JH, Kim YH, et al. The effects of COX-2 inhibitor during osteogenic differentiation of bone marrow-derived human mesenchymal stem cells. Stem Cells Dev 2010; 19: 1523-33.
    • (2010) Stem Cells Dev , vol.19 , pp. 1523-1533
    • Yoon, D.S.1    Yoo, J.H.2    Kim, Y.H.3
  • 131
    • 24944446761 scopus 로고    scopus 로고
    • Augmentation of bone morphogenetic protein-induced bone mass by local delivery of a prostaglandin E EP4 receptor agonist
    • Toyoda H, Terai H, Sasaoka R, et al. Augmentation of bone morphogenetic protein-induced bone mass by local delivery of a prostaglandin E EP4 receptor agonist. Bone 2005; 37: 555-62.
    • (2005) Bone , vol.37 , pp. 555-562
    • Toyoda, H.1    Terai, H.2    Sasaoka, R.3
  • 132
    • 79953692404 scopus 로고    scopus 로고
    • Nanogel-based scaffold delivery of prostaglandin E(2) receptor-specific agonist in combination with a low dose of growth factor heals critical-size bone defects in mice
    • Kamolratanakul P, Hayata T, Ezura Y, et al. Nanogel-based scaffold delivery of prostaglandin E(2) receptor-specific agonist in combination with a low dose of growth factor heals critical-size bone defects in mice. Arthritis Rheumatism 2011; 63: 1021-33.
    • (2011) Arthritis Rheumatism , vol.63 , pp. 1021-1033
    • Kamolratanakul, P.1    Hayata, T.2    Ezura, Y.3
  • 133
    • 34548532872 scopus 로고    scopus 로고
    • Prostaglandin E2 EP4 agonist (ONO-4819) accelerates BMP-induced osteoblastic differentiation
    • Nakagawa K, Imai Y, Ohta Y, et al. Prostaglandin E2 EP4 agonist (ONO-4819) accelerates BMP-induced osteoblastic differentiation. Bone 2007; 41: 543-8.
    • (2007) Bone , vol.41 , pp. 543-548
    • Nakagawa, K.1    Imai, Y.2    Ohta, Y.3
  • 134
    • 77952565720 scopus 로고    scopus 로고
    • Adenosine receptors as drug targets
    • Fredholm BB. Adenosine receptors as drug targets. Exp Cell Res 2010; 316: 1284-8.
    • (2010) Exp Cell Res , vol.316 , pp. 1284-1288
    • Fredholm, B.B.1
  • 135
    • 0022553197 scopus 로고
    • Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane
    • Dusseau JW, Hutchins PM, Malbasa DS. Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res 1986; 59: 163-70.
    • (1986) Circ Res , vol.59 , pp. 163-170
    • Dusseau, J.W.1    Hutchins, P.M.2    Malbasa, D.S.3
  • 136
    • 33846407222 scopus 로고    scopus 로고
    • Role of adenosine receptors in the regulation of angiogenic factors and neovascularization in hypoxia
    • Ryzhov S, McCaleb JL, Goldstein AE, et al. Role of adenosine receptors in the regulation of angiogenic factors and neovascularization in hypoxia. J Pharmacol Exp Ther 2007; 320: 565-72.
    • (2007) J Pharmacol Exp Ther , vol.320 , pp. 565-572
    • Ryzhov, S.1    McCaleb, J.L.2    Goldstein, A.E.3
  • 137
    • 38649135367 scopus 로고    scopus 로고
    • The A2b adenosine receptor protects against vascular injury
    • Yang D, Koupenova M, McCrann DJ, et al. The A2b adenosine receptor protects against vascular injury. Proc Natl Acad Sci USA 2008; 105: 792-6.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 792-796
    • Yang, D.1    Koupenova, M.2    McCrann, D.J.3
  • 138
    • 0037155773 scopus 로고    scopus 로고
    • Differential expression of adenosine receptors in human endothelial cells: Role of A2B receptors in angiogenic factor regulation
    • Feoktistov I, Goldstein AE, Ryzhov S, et al. Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res 2002; 90: 531-8.
    • (2002) Circ Res , vol.90 , pp. 531-538
    • Feoktistov, I.1    Goldstein, A.E.2    Ryzhov, S.3
  • 139
    • 2442689337 scopus 로고    scopus 로고
    • Adenosine A(2A) receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis
    • Montesinos MC, Shaw JP, Yee H, et al. Adenosine A(2A) receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am J Pathol 2004; 164: 1887-92.
    • (2004) Am J Pathol , vol.164 , pp. 1887-1892
    • Montesinos, M.C.1    Shaw, J.P.2    Yee, H.3
  • 140
    • 0036087180 scopus 로고    scopus 로고
    • Synergistic upregulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin
    • Leibovich SJ, Chen JF, Pinhal-Enfield G, et al. Synergistic upregulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. Am J Pathol 2002; 160: 2231-44.
    • (2002) Am J Pathol , vol.160 , pp. 2231-2244
    • Leibovich, S.J.1    Chen, J.F.2    Pinhal-Enfield, G.3
  • 141
    • 76349124646 scopus 로고    scopus 로고
    • Adenosine up-regulates vascular endothelial growth factor in human macrophages
    • Ernens I, Leonard F, Vausort M, et al. Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochemical Biophysical Res Communications 2010; 392: 351-6.
    • (2010) Biochemical Biophysical Res Communications , vol.392 , pp. 351-356
    • Ernens, I.1    Leonard, F.2    Vausort, M.3
  • 142
    • 36348967128 scopus 로고    scopus 로고
    • A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes
    • Clark AN, Youkey R, Liu X, et al. A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ Res 2007; 101: 1130-8.
    • (2007) Circ Res , vol.101 , pp. 1130-1138
    • Clark, A.N.1    Youkey, R.2    Liu, X.3
  • 143
    • 0037459368 scopus 로고    scopus 로고
    • Mast cell-mediated stimulation of angiogenesis: Cooperative interaction between A2B and A3 adenosine receptors
    • Feoktistov I, Ryzhov S, Goldstein AE, et al. Mast cell-mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors. Circ Res 2003; 92: 485-92.
    • (2003) Circ Res , vol.92 , pp. 485-492
    • Feoktistov, I.1    Ryzhov, S.2    Goldstein, A.E.3
  • 144
    • 79951807194 scopus 로고    scopus 로고
    • On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells
    • Costa MA, Barbosa A, Neto E, et al. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells. J Cell Physiol 2011; 226: 1353-66.
    • (2011) J Cell Physiol , vol.226 , pp. 1353-1366
    • Costa, M.A.1    Barbosa, A.2    Neto, E.3
  • 145
    • 84860849772 scopus 로고    scopus 로고
    • A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo
    • Carroll SH, Wigner NA, Kulkarni N, et al. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biological Chem 2012; 287: 15718-27.
    • (2012) J Biological Chem , vol.287 , pp. 15718-15727
    • Carroll, S.H.1    Wigner, N.A.2    Kulkarni, N.3
  • 146
    • 77954447976 scopus 로고    scopus 로고
    • Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function
    • Kara FM, Chitu V, Sloane J, et al. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. FASEB J 2010; 24: 2325-33.
    • (2010) FASEB J , vol.24 , pp. 2325-2333
    • Kara, F.M.1    Chitu, V.2    Sloane, J.3
  • 147
    • 84855992815 scopus 로고    scopus 로고
    • Adenosine A(2A) receptor ligation inhibits osteoclast formation
    • Mediero A, Kara FM, Wilder T, et al. Adenosine A(2A) receptor ligation inhibits osteoclast formation. Am J Pathol 2012; 180: 775-86.
    • (2012) Am J Pathol , vol.180 , pp. 775-786
    • Mediero, A.1    Kara, F.M.2    Wilder, T.3
  • 148
    • 31544472329 scopus 로고    scopus 로고
    • Bone morphogenetic protein activities are enhanced by 3',5'-cyclic adenosine monophosphate through suppression of Smad6 expression in osteoprogenitor cells
    • Sugama R, Koike T, Imai Y, et al. Bone morphogenetic protein activities are enhanced by 3',5'-cyclic adenosine monophosphate through suppression of Smad6 expression in osteoprogenitor cells. Bone 2006; 38: 206-14.
    • (2006) Bone , vol.38 , pp. 206-214
    • Sugama, R.1    Koike, T.2    Imai, Y.3
  • 149
    • 44449142598 scopus 로고    scopus 로고
    • cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo
    • Siddappa R, Martens A, Doorn J, et al. cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci USA 2008; 105: 7281-6.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 7281-7286
    • Siddappa, R.1    Martens, A.2    Doorn, J.3
  • 150
    • 79959870159 scopus 로고    scopus 로고
    • Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells
    • Doorn J, van de Peppel J, van Leeuwen JP, et al. Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells. Biomaterials 2011; 32: 6089-98.
    • (2011) Biomaterials , vol.32 , pp. 6089-6098
    • Doorn, J.1    van de Peppel, J.2    van Leeuwen, J.P.3
  • 151
    • 80052708936 scopus 로고    scopus 로고
    • The small molecule PKAspecific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization
    • Lo KW, Kan HM, Ashe KM, et al. The small molecule PKAspecific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med 2012; 6: 40-8.
    • (2012) J Tissue Eng Regen Med , vol.6 , pp. 40-48
    • Lo, K.W.1    Kan, H.M.2    Ashe, K.M.3
  • 152
    • 0034685669 scopus 로고    scopus 로고
    • Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells
    • Sugiyama M, Kodama T, Konishi K, et al. Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochemical Biophysical Res Communications 2000; 271: 688-92.
    • (2000) Biochemical Biophysical Res Communications , vol.271 , pp. 688-692
    • Sugiyama, M.1    Kodama, T.2    Konishi, K.3
  • 153
    • 0037318567 scopus 로고    scopus 로고
    • Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation
    • Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology 2003; 144: 681-92.
    • (2003) Endocrinology , vol.144 , pp. 681-692
    • Maeda, T.1    Kawane, T.2    Horiuchi, N.3
  • 154
    • 0033521078 scopus 로고    scopus 로고
    • Stimulation of bone formation in vitro and in rodents by statins
    • Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999; 286: 1946-9.
    • (1999) Science , vol.286 , pp. 1946-1949
    • Mundy, G.1    Garrett, R.2    Harris, S.3
  • 155
    • 0042666802 scopus 로고    scopus 로고
    • Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells
    • Song C, Guo Z, Ma Q, et al. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochemical Biophysical Res Communications 2003; 308: 458-62.
    • (2003) Biochemical Biophysical Res Communications , vol.308 , pp. 458-462
    • Song, C.1    Guo, Z.2    Ma, Q.3
  • 156
    • 34547808130 scopus 로고    scopus 로고
    • Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures
    • Ruiz-Gaspa S, Nogues X, Enjuanes A, et al. Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures. J Cellular Biochem 2007; 101: 1430-8.
    • (2007) J Cellular Biochem , vol.101 , pp. 1430-1438
    • Ruiz-Gaspa, S.1    Nogues, X.2    Enjuanes, A.3
  • 157
    • 0037474528 scopus 로고    scopus 로고
    • Simvastatin stimulates VEGF release via p44/p42 MAP kinase in vascular smooth muscle cells
    • Takenaka M, Hirade K, Tanabe K, et al. Simvastatin stimulates VEGF release via p44/p42 MAP kinase in vascular smooth muscle cells. Biochemical Biophysical Res communications 2003; 301: 198-203.
    • (2003) Biochemical Biophysical Res communications , vol.301 , pp. 198-203
    • Takenaka, M.1    Hirade, K.2    Tanabe, K.3
  • 159
    • 13044283050 scopus 로고    scopus 로고
    • Alendronate mechanism of action: Geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro
    • Fisher JE, Rogers MJ, Halasy JM, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA 1999; 96: 133-8.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 133-138
    • Fisher, J.E.1    Rogers, M.J.2    Halasy, J.M.3
  • 160
    • 0141813534 scopus 로고    scopus 로고
    • Skeletal reconstruction by vascularized allogenic bone transplantation: Effects of statin in rats
    • Ohno T, Shigetomi M, Ihara K, et al. Skeletal reconstruction by vascularized allogenic bone transplantation: effects of statin in rats. Transplantation 2003; 76: 869-71.
    • (2003) Transplantation , vol.76 , pp. 869-871
    • Ohno, T.1    Shigetomi, M.2    Ihara, K.3
  • 161
    • 80051469068 scopus 로고    scopus 로고
    • Evaluation of the osteoconductivity of alpha-tricalcium phosphate, beta-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect
    • Rojbani H, Nyan M, Ohya K, et al. Evaluation of the osteoconductivity of alpha-tricalcium phosphate, beta-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res A 2011; 98: 488-98.
    • (2011) J Biomed Mater Res A , vol.98 , pp. 488-498
    • Rojbani, H.1    Nyan, M.2    Ohya, K.3
  • 162
    • 77949495453 scopus 로고    scopus 로고
    • Molecular and tissue responses in the healing of rat calvarial defects after local application of simvastatin combined with alpha tricalcium phosphate
    • Nyan M, Miyahara T, Noritake K, et al. Molecular and tissue responses in the healing of rat calvarial defects after local application of simvastatin combined with alpha tricalcium phosphate. J Biomed Mater Res B Appl Biomater 2010; 93: 65-73.
    • (2010) J Biomed Mater Res B Appl Biomater , vol.93 , pp. 65-73
    • Nyan, M.1    Miyahara, T.2    Noritake, K.3
  • 163
    • 34249785648 scopus 로고    scopus 로고
    • Effect of local simvastatin application on mandibular defects
    • Ozec I, Kilic E, Gumus C, et al. Effect of local simvastatin application on mandibular defects. J Craniofac Surg 2007; 18: 546-50.
    • (2007) J Craniofac Surg , vol.18 , pp. 546-550
    • Ozec, I.1    Kilic, E.2    Gumus, C.3
  • 164
    • 80051531038 scopus 로고    scopus 로고
    • Highly efficient release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles enhances bone repair in rats
    • Ho MH, Chiang CP, Liu YF, et al. Highly efficient release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles enhances bone repair in rats. J Orthop Res 2011; 29: 1504-10.
    • (2011) J Orthop Res , vol.29 , pp. 1504-1510
    • Ho, M.H.1    Chiang, C.P.2    Liu, Y.F.3
  • 165
    • 84904970992 scopus 로고    scopus 로고
    • Local injection of lovastatin in biodegradable polyurethane scaffolds enhances bone regeneration in a critical-sized segmental defect in rat femora
    • Yoshii T, Hafeman AE, Esparza JM, et al. Local injection of lovastatin in biodegradable polyurethane scaffolds enhances bone regeneration in a critical-sized segmental defect in rat femora. J Tissue Eng Regen Med 2012
    • (2012) J Tissue Eng Regen Med
    • Yoshii, T.1    Hafeman, A.E.2    Esparza, J.M.3
  • 166
    • 0034898468 scopus 로고    scopus 로고
    • HMG-CoA reductase inhibitor mobilizes bone marrow--derived endothelial progenitor cells
    • Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow--derived endothelial progenitor cells. J Clinical Investigation 2001; 108: 399-405.
    • (2001) J Clinical Investigation , vol.108 , pp. 399-405
    • Llevadot, J.1    Murasawa, S.2    Kureishi, Y.3
  • 167
    • 0034908652 scopus 로고    scopus 로고
    • HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway
    • Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clinical Investigation 2001; 108: 391-7.
    • (2001) J Clinical Investigation , vol.108 , pp. 391-397
    • Dimmeler, S.1    Aicher, A.2    Vasa, M.3
  • 168
    • 0037173080 scopus 로고    scopus 로고
    • Statin therapy accelerates reendothelialization: A novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells
    • Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 2002; 105: 3017-24.
    • (2002) Circulation , vol.105 , pp. 3017-3024
    • Walter, D.H.1    Rittig, K.2    Bahlmann, F.H.3
  • 169
    • 47949091512 scopus 로고    scopus 로고
    • Statin and stromal cell-derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels
    • Shao H, Tan Y, Eton D, et al. Statin and stromal cell-derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels. Stem Cells 2008; 26: 1376-84.
    • (2008) Stem Cells , vol.26 , pp. 1376-1384
    • Shao, H.1    Tan, Y.2    Eton, D.3
  • 170
    • 0029761644 scopus 로고    scopus 로고
    • Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1
    • Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604-13.
    • (1996) Mol Cell Biol , vol.16 , pp. 4604-4613
    • Forsythe, J.A.1    Jiang, B.H.2    Iyer, N.V.3
  • 171
    • 0028068606 scopus 로고
    • Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1
    • Semenza GL, Roth PH, Fang HM, et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994; 269: 23757-63.
    • (1994) J Biol Chem , vol.269 , pp. 23757-23763
    • Semenza, G.L.1    Roth, P.H.2    Fang, H.M.3
  • 172
    • 0033571939 scopus 로고    scopus 로고
    • Protection from Oxidative Stress-Induced Apoptosis in Cortical Neuronal Cultures by Iron Chelators Is Associated with Enhanced DNA Binding of Hypoxia-Inducible Factor-1 and ATF-1/CREB and Increased Expression of Glycolytic Enzymes, p21waf1/cip1, and Erythropoietin
    • Zaman K, Ryu H, Hall D, et al. Protection from Oxidative Stress-Induced Apoptosis in Cortical Neuronal Cultures by Iron Chelators Is Associated with Enhanced DNA Binding of Hypoxia-Inducible Factor-1 and ATF-1/CREB and Increased Expression of Glycolytic Enzymes, p21waf1/cip1, and Erythropoietin. J Neurosci 1999; 19: 9821-30.
    • (1999) J Neurosci , vol.19 , pp. 9821-9830
    • Zaman, K.1    Ryu, H.2    Hall, D.3
  • 173
    • 0027136260 scopus 로고
    • Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: Implications for models of hypoxia signal transduction
    • Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 1993; 82: 3610-5.
    • (1993) Blood , vol.82 , pp. 3610-3615
    • Wang, G.L.1    Semenza, G.L.2
  • 174
    • 0028816847 scopus 로고
    • Purification and characterization of hypoxia-inducible factor 1
    • Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biological Chem 1995; 270: 1230-7.
    • (1995) J Biological Chem , vol.270 , pp. 1230-1237
    • Wang, G.L.1    Semenza, G.L.2
  • 175
    • 0034021690 scopus 로고    scopus 로고
    • Hypoxia, clonal selection, and the role of HIF-1 in tumor progression
    • Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 2000; 35: 71-103.
    • (2000) Crit Rev Biochem Mol Biol , vol.35 , pp. 71-103
    • Semenza, G.L.1
  • 176
    • 0029859510 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension
    • Jiang BH, Semenza GL, Bauer C, et al. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996; 271: C1172-80.
    • (1996) Am J Physiol , vol.271 , pp. 1172-1180
    • Jiang, B.H.1    Semenza, G.L.2    Bauer, C.3
  • 177
    • 0035834409 scopus 로고    scopus 로고
    • A conserved family of prolyl-4-hydroxylases that modify HIF
    • Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294: 1337-40.
    • (2001) Science , vol.294 , pp. 1337-1340
    • Bruick, R.K.1    McKnight, S.L.2
  • 178
    • 0035917808 scopus 로고    scopus 로고
    • Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
    • Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468-72.
    • (2001) Science , vol.292 , pp. 468-472
    • Jaakkola, P.1    Mole, D.R.2    Tian, Y.M.3
  • 179
    • 0037015019 scopus 로고    scopus 로고
    • Physiology meets biophysics: Visualizing the interaction of hypoxia-inducible factor 1 alpha with p300 and CBP
    • Semenza GL. Physiology meets biophysics: visualizing the interaction of hypoxia-inducible factor 1 alpha with p300 and CBP. Proc Natl Acad Sci USA 2002; 99: 11570-2.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 11570-11572
    • Semenza, G.L.1
  • 180
    • 15444342958 scopus 로고    scopus 로고
    • Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha
    • Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Development 1998; 12: 149-62.
    • (1998) Genes Development , vol.12 , pp. 149-162
    • Iyer, N.V.1    Kotch, L.E.2    Agani, F.3
  • 181
    • 0033562569 scopus 로고    scopus 로고
    • Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death
    • Kotch LE, Iyer NV, Laughner E, et al. Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Developmental Biol 1999; 209: 254-67.
    • (1999) Developmental Biol , vol.209 , pp. 254-267
    • Kotch, L.E.1    Iyer, N.V.2    Laughner, E.3
  • 182
    • 38649128127 scopus 로고    scopus 로고
    • Activation of the hypoxiainducible factor-1alpha pathway accelerates bone regeneration
    • Wan C, Gilbert SR, Wang Y, et al. Activation of the hypoxiainducible factor-1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci USA 2008; 105: 686-91.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 686-691
    • Wan, C.1    Gilbert, S.R.2    Wang, Y.3
  • 183
    • 0034531766 scopus 로고    scopus 로고
    • HIF-1: Using two hands to flip the angiogenic switch
    • Semenza GL. HIF-1: using two hands to flip the angiogenic switch. Cancer Metastasis Rev 2000; 19: 59-65.
    • (2000) Cancer Metastasis Rev , vol.19 , pp. 59-65
    • Semenza, G.L.1
  • 184
    • 77950976195 scopus 로고    scopus 로고
    • Hypoxia influences the vascular expansion and differentiation of embryonic stem cell cultures through the temporal expression of vascular endothelial growth factor receptors in an ARNT-dependent manner
    • Han Y, Kuang SZ, Gomer A, et al. Hypoxia influences the vascular expansion and differentiation of embryonic stem cell cultures through the temporal expression of vascular endothelial growth factor receptors in an ARNT-dependent manner. Stem Cells 2010; 28: 799-809.
    • (2010) Stem Cells , vol.28 , pp. 799-809
    • Han, Y.1    Kuang, S.Z.2    Gomer, A.3
  • 185
    • 0344012597 scopus 로고    scopus 로고
    • Identification of hypoxiaresponse element in the human endothelial nitric-oxide synthase gene promoter
    • Coulet F, Nadaud S, Agrapart M, et al. Identification of hypoxiaresponse element in the human endothelial nitric-oxide synthase gene promoter. J Biological Chem 2003; 278: 46230-40.
    • (2003) J Biological Chem , vol.278 , pp. 46230-46240
    • Coulet, F.1    Nadaud, S.2    Agrapart, M.3
  • 186
    • 85047685683 scopus 로고    scopus 로고
    • Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia
    • Synnestvedt K, Furuta GT, Comerford KM, et al. Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clinical Investigation 2002; 110: 993-1002.
    • (2002) J Clinical Investigation , vol.110 , pp. 993-1002
    • Synnestvedt, K.1    Furuta, G.T.2    Comerford, K.M.3
  • 187
    • 79954994463 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1alpha-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5'-nucleotidase (CD73) and the A2B adenosine receptor
    • Hart ML, Grenz A, Gorzolla IC, et al. Hypoxia-inducible factor-1alpha-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5'-nucleotidase (CD73) and the A2B adenosine receptor. J Immunology 2011; 186: 4367-74.
    • (2011) J Immunology , vol.186 , pp. 4367-4374
    • Hart, M.L.1    Grenz, A.2    Gorzolla, I.C.3
  • 188
    • 34249913494 scopus 로고    scopus 로고
    • The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development
    • Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 2007; 117: 1616-26.
    • (2007) J Clin Invest , vol.117 , pp. 1616-1626
    • Wang, Y.1    Wan, C.2    Deng, L.3
  • 189
    • 84859207905 scopus 로고    scopus 로고
    • The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO
    • Rankin EB, Wu C, Khatri R, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 2012; 149: 63-74.
    • (2012) Cell , vol.149 , pp. 63-74
    • Rankin, E.B.1    Wu, C.2    Khatri, R.3
  • 190
    • 0035499204 scopus 로고    scopus 로고
    • Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival
    • Schipani E, Ryan HE, Didrickson S, et al. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes & development 2001; 15: 2865-76.
    • (2001) Genes & development , vol.15 , pp. 2865-2876
    • Schipani, E.1    Ryan, H.E.2    Didrickson, S.3
  • 191
    • 0037608771 scopus 로고    scopus 로고
    • Hypoxia is a major stimulator of osteoclast formation and bone resorption
    • Arnett TR, Gibbons DC, Utting JC, et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 2003; 196: 2-8.
    • (2003) J Cell Physiol , vol.196 , pp. 2-8
    • Arnett, T.R.1    Gibbons, D.C.2    Utting, J.C.3
  • 192
    • 78649722176 scopus 로고    scopus 로고
    • Hypoxiainducible factor regulates osteoclast-mediated bone resorption: Role of angiopoietin-like 4
    • Knowles HJ, Cleton-Jansen AM, Korsching E, et al. Hypoxiainducible factor regulates osteoclast-mediated bone resorption: role of angiopoietin-like 4. FASEB J 2010; 24: 4648-59.
    • (2010) FASEB J , vol.24 , pp. 4648-4659
    • Knowles, H.J.1    Cleton-Jansen, A.M.2    Korsching, E.3
  • 193
    • 77956940751 scopus 로고    scopus 로고
    • Inhibition of osteoclastogenesis by prolyl hydroxylase inhibitor dimethyloxallyl glycine
    • Leger AJ, Altobelli A, Mosquea LM, et al. Inhibition of osteoclastogenesis by prolyl hydroxylase inhibitor dimethyloxallyl glycine. J Bone Miner Metab 2010; 28: 510-9.
    • (2010) J Bone Miner Metab , vol.28 , pp. 510-519
    • Leger, A.J.1    Altobelli, A.2    Mosquea, L.M.3
  • 194
    • 35448961940 scopus 로고    scopus 로고
    • HIF-1 mediates the Warburg effect in clear cell renal carcinoma
    • Semenza GL. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr 2007; 39: 231-4.
    • (2007) J Bioenerg Biomembr , vol.39 , pp. 231-234
    • Semenza, G.L.1
  • 195
    • 33744954065 scopus 로고    scopus 로고
    • Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: The role of HIF-1alpha, HIF-2alpha, and other pathways
    • Elvidge GP, Glenny L, Appelhoff RJ, et al. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem 2006; 281: 15215-26.
    • (2006) J Biol Chem , vol.281 , pp. 15215-15226
    • Elvidge, G.P.1    Glenny, L.2    Appelhoff, R.J.3
  • 196
    • 0038380470 scopus 로고    scopus 로고
    • Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors
    • Warnecke C, Griethe W, Weidemann A, et al. Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J 2003; 17: 1186-8.
    • (2003) FASEB J , vol.17 , pp. 1186-1188
    • Warnecke, C.1    Griethe, W.2    Weidemann, A.3
  • 197
    • 79960019915 scopus 로고    scopus 로고
    • Protective effect of deferoxamine on experimental spinal cord injury in rat
    • Liu J, Tang T, Yang H. Protective effect of deferoxamine on experimental spinal cord injury in rat. Injury 2011; 42: 742-5.
    • (2011) Injury , vol.42 , pp. 742-745
    • Liu, J.1    Tang, T.2    Yang, H.3
  • 198
    • 79953031023 scopus 로고    scopus 로고
    • Deferoxamine promotes angiogenesis via the activation of vascular endothelial cell function
    • Ikeda Y, Tajima S, Yoshida S, et al. Deferoxamine promotes angiogenesis via the activation of vascular endothelial cell function. Atherosclerosis 2011; 215: 339-47.
    • (2011) Atherosclerosis , vol.215 , pp. 339-347
    • Ikeda, Y.1    Tajima, S.2    Yoshida, S.3
  • 199
    • 70349220913 scopus 로고    scopus 로고
    • Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice
    • Shen X, Wan C, Ramaswamy G, et al. Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J Orthop Res 2009; 27: 1298-305.
    • (2009) J Orthop Res , vol.27 , pp. 1298-1305
    • Shen, X.1    Wan, C.2    Ramaswamy, G.3
  • 200
    • 0037108807 scopus 로고    scopus 로고
    • Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor
    • Ivan M, Haberberger T, Gervasi DC, et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Nat Acad Sci USA 2002; 99: 13459-64.
    • (2002) Proc Nat Acad Sci USA , vol.99 , pp. 13459-13464
    • Ivan, M.1    Haberberger, T.2    Gervasi, D.C.3
  • 201
    • 84859368193 scopus 로고    scopus 로고
    • Deferoxamine enhances the vascular response of bone regeneration in mandibular distraction osteogenesis
    • Donneys A, Farberg AS, Tchanque-Fossuo CN, et al. Deferoxamine enhances the vascular response of bone regeneration in mandibular distraction osteogenesis. Plastic Reconstructive Surgery 2012; 129: 850-6.
    • (2012) Plastic Reconstructive Surgery , vol.129 , pp. 850-856
    • Donneys, A.1    Farberg, A.S.2    Tchanque-Fossuo, C.N.3
  • 202
    • 84861986053 scopus 로고    scopus 로고
    • Wnt/beta-catenin signaling and disease
    • Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell 2012; 149: 1192-205.
    • (2012) Cell , vol.149 , pp. 1192-1205
    • Clevers, H.1    Nusse, R.2
  • 203
    • 14744275847 scopus 로고    scopus 로고
    • Regulation of osteoblastogenesis and bone mass by Wnt10b
    • Bennett CN, Longo KA, Wright WS, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proce Natl Acad Sci USA 2005; 102: 3324-9.
    • (2005) Proce Natl Acad Sci USA , vol.102 , pp. 3324-3329
    • Bennett, C.N.1    Longo, K.A.2    Wright, W.S.3
  • 205
    • 27944444857 scopus 로고    scopus 로고
    • The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis
    • Bodine PV, Billiard J, Moran RA, et al. The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cellular Biochem 2005; 96: 1212-30.
    • (2005) J Cellular Biochem , vol.96 , pp. 1212-1230
    • Bodine, P.V.1    Billiard, J.2    Moran, R.A.3
  • 206
    • 58849119932 scopus 로고    scopus 로고
    • Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis
    • Daneman R, Agalliu D, Zhou L, et al. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci USA 2009; 106: 641-6.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 641-646
    • Daneman, R.1    Agalliu, D.2    Zhou, L.3
  • 208
    • 84856968521 scopus 로고    scopus 로고
    • GSK-3 inhibition by an orally active small molecule increases bone mass in rats
    • Marsell R, Sisask G, Nilsson Y, et al. GSK-3 inhibition by an orally active small molecule increases bone mass in rats. Bone 2012; 50: 619-27.
    • (2012) Bone , vol.50 , pp. 619-627
    • Marsell, R.1    Sisask, G.2    Nilsson, Y.3
  • 209
    • 84862892969 scopus 로고    scopus 로고
    • Bisindoylmaleimide I enhances osteogenic differentiation
    • Zhou F, Huang H, Zhang L. Bisindoylmaleimide I enhances osteogenic differentiation. Protein Cell 2012; 3: 311-20.
    • (2012) Protein Cell , vol.3 , pp. 311-320
    • Zhou, F.1    Huang, H.2    Zhang, L.3
  • 210
    • 67349126564 scopus 로고    scopus 로고
    • A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation
    • Bodine PV, Stauffer B, Ponce-de-Leon H, et al. A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone 2009; 44: 1063-8.
    • (2009) Bone , vol.44 , pp. 1063-1068
    • Bodine, P.V.1    Stauffer, B.2    Ponce-de-Leon, H.3
  • 211
    • 70949108320 scopus 로고    scopus 로고
    • (1-(4-(Naphthalen-2-yl)pyrimidin-2-yl)piperidin-4-yl)methanamine: A wingless betacatenin agonist that increases bone formation rate
    • Pelletier JC, Lundquist JTt, Gilbert AM, et al. (1-(4-(Naphthalen-2-yl)pyrimidin-2-yl)piperidin-4-yl)methanamine: a wingless betacatenin agonist that increases bone formation rate. J Med Chem 2009; 52: 6962-5.
    • (2009) J Med Chem , vol.52 , pp. 6962-6965
    • Pelletier, J.C.1    Lundquist, J.T.2    Gilbert, A.M.3
  • 212
    • 84855497795 scopus 로고    scopus 로고
    • Small molecule-based disruption of the Axin/beta-catenin protein complex regulates mesenchymal stem cell differentiation
    • Gwak J, Hwang SG, Park HS, et al. Small molecule-based disruption of the Axin/beta-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Res 2012; 22: 237-47.
    • (2012) Cell Res , vol.22 , pp. 237-247
    • Gwak, J.1    Hwang, S.G.2    Park, H.S.3
  • 213
    • 79957918508 scopus 로고    scopus 로고
    • Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling
    • Yonezawa T, Lee JW, Hibino A, et al. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling. Biochemical Biophysical Res Communications 2011; 409: 260-5.
    • (2011) Biochemical Biophysical Res Communications , vol.409 , pp. 260-265
    • Yonezawa, T.1    Lee, J.W.2    Hibino, A.3
  • 214
    • 0036786236 scopus 로고    scopus 로고
    • Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix
    • Higuchi C, Myoui A, Hashimoto N, et al. Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. Journal of bone and mineral research: the official J Am Soc Bone Mineral Res 2002; 17: 1785-94.
    • (2002) Journal of bone and mineral research: The official J Am Soc Bone Mineral Res , vol.17 , pp. 1785-1794
    • Higuchi, C.1    Myoui, A.2    Hashimoto, N.3
  • 215
    • 70350418644 scopus 로고    scopus 로고
    • VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote bloodvessel formation by inducing alpha5-integrin expression
    • Liu Z, Kobayashi K, van Dinther M, et al. VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote bloodvessel formation by inducing alpha5-integrin expression. J Cell Sci 2009; 122: 3294-302.
    • (2009) J Cell Sci , vol.122 , pp. 3294-3302
    • Liu, Z.1    Kobayashi, K.2    van Dinther, M.3
  • 216
    • 66349091350 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate: A novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells
    • Michaud MD, Robitaille GA, Gratton JP, et al. Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells. Arterioscler Thromb Vasc Biol 2009; 29: 902-8.
    • (2009) Arterioscler Thromb Vasc Biol , vol.29 , pp. 902-908
    • Michaud, M.D.1    Robitaille, G.A.2    Gratton, J.P.3
  • 217
    • 65949092331 scopus 로고    scopus 로고
    • When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: New targets for cancer therapy
    • Ader I, Malavaud B, Cuvillier O. When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Res 2009; 69: 3723-6.
    • (2009) Cancer Res , vol.69 , pp. 3723-3726
    • Ader, I.1    Malavaud, B.2    Cuvillier, O.3
  • 218
    • 70349246856 scopus 로고    scopus 로고
    • The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor-1alpha in macrophages via sphingosine-1-phosphate and transforming growth factor-beta
    • Herr B, Zhou J, Werno C, et al. The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor-1alpha in macrophages via sphingosine-1-phosphate and transforming growth factor-beta. Blood 2009; 114: 2140-8.
    • (2009) Blood , vol.114 , pp. 2140-2148
    • Herr, B.1    Zhou, J.2    Werno, C.3
  • 219
    • 0037044854 scopus 로고    scopus 로고
    • Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS)
    • Tanimoto T, Jin ZG, Berk BC. Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biological Chem 2002; 277: 42997-3001.
    • (2002) J Biological Chem , vol.277 , pp. 42997-43001
    • Tanimoto, T.1    Jin, Z.G.2    Berk, B.C.3
  • 220
    • 0141591547 scopus 로고    scopus 로고
    • VEGF induces S1P1 receptors in endothelial cells: Implications for cross-talk between sphingolipid and growth factor receptors
    • Igarashi J, Erwin PA, Dantas AP, et al. VEGF induces S1P1 receptors in endothelial cells: Implications for cross-talk between sphingolipid and growth factor receptors. Proc Natl Acad Sci USA 2003; 100: 10664-9.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10664-10669
    • Igarashi, J.1    Erwin, P.A.2    Dantas, A.P.3
  • 221
    • 79960151477 scopus 로고    scopus 로고
    • Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2
    • Brecht K, Weigert A, Hu J, et al. Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. FASEB J 2011; 25: 2408-17.
    • (2011) FASEB J , vol.25 , pp. 2408-2417
    • Brecht, K.1    Weigert, A.2    Hu, J.3
  • 222
    • 33845577788 scopus 로고    scopus 로고
    • Effects of sphingosine-1-phosphate and ceramide-1-phosphate on rat intestinal smooth muscle cells: Implications for postoperative ileus
    • Dragusin M, Wehner S, Kelly S, et al. Effects of sphingosine-1-phosphate and ceramide-1-phosphate on rat intestinal smooth muscle cells: implications for postoperative ileus. FASEB J 2006; 20: 1930-2.
    • (2006) FASEB J , vol.20 , pp. 1930-1932
    • Dragusin, M.1    Wehner, S.2    Kelly, S.3
  • 223
    • 58549115903 scopus 로고    scopus 로고
    • Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate
    • Pederson L, Ruan M, Westendorf JJ, et al. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 2008; 105: 20764-9.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 20764-20769
    • Pederson, L.1    Ruan, M.2    Westendorf, J.J.3
  • 224
    • 53149085754 scopus 로고    scopus 로고
    • Novel pathway compendium analysis elucidates mechanism of pro-angiogenic synthetic small molecule
    • Wieghaus KA, Gianchandani EP, Paige MA, et al. Novel pathway compendium analysis elucidates mechanism of pro-angiogenic synthetic small molecule. Bioinformatics 2008; 24: 2384-90.
    • (2008) Bioinformatics , vol.24 , pp. 2384-2390
    • Wieghaus, K.A.1    Gianchandani, E.P.2    Paige, M.A.3
  • 225
    • 13444292249 scopus 로고    scopus 로고
    • Using genome-wide transcriptional profiling to elucidate small-molecule mechanism
    • Butcher RA, Schreiber SL. Using genome-wide transcriptional profiling to elucidate small-molecule mechanism. Curr Opin Chem Biol 2005; 9: 25-30.
    • (2005) Curr Opin Chem Biol , vol.9 , pp. 25-30
    • Butcher, R.A.1    Schreiber, S.L.2
  • 226
    • 78649392879 scopus 로고    scopus 로고
    • High-throughput screening of a small molecule library for promoters and inhibitors of mesenchymal stem cell osteogenic differentiation
    • Brey DM, Motlekar NA, Diamond SL, et al. High-throughput screening of a small molecule library for promoters and inhibitors of mesenchymal stem cell osteogenic differentiation. Biotechnol Bioeng 2011; 108: 163-74.
    • (2011) Biotechnol Bioeng , vol.108 , pp. 163-174
    • Brey, D.M.1    Motlekar, N.A.2    Diamond, S.L.3
  • 227
    • 69949147260 scopus 로고    scopus 로고
    • High-throughput and combinatorial technologies for tissue engineering applications
    • Peters A, Brey DM, Burdick JA. High-throughput and combinatorial technologies for tissue engineering applications. Tissue Eng Part B Rev 2009; 15: 225-39.
    • (2009) Tissue Eng Part B Rev , vol.15 , pp. 225-239
    • Peters, A.1    Brey, D.M.2    Burdick, J.A.3
  • 228
    • 33947583822 scopus 로고    scopus 로고
    • Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems
    • Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nature Reviews Immunol 2007; 7: 292-304.
    • (2007) Nature Reviews Immunol , vol.7 , pp. 292-304
    • Takayanagi, H.1
  • 229
    • 76749122400 scopus 로고    scopus 로고
    • High-content drug screening with engineered musculoskeletal tissues
    • Vandenburgh H. High-content drug screening with engineered musculoskeletal tissues. Tissue Eng Part B Rev 2010; 16: 55-64.
    • (2010) Tissue Eng Part B Rev , vol.16 , pp. 55-64
    • Vandenburgh, H.1
  • 230
    • 0035860831 scopus 로고    scopus 로고
    • Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration
    • Kluk MJ, Hla T. Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. Circ Res 2001; 89: 496-502.
    • (2001) Circ Res , vol.89 , pp. 496-502
    • Kluk, M.J.1    Hla, T.2
  • 231
    • 1842610148 scopus 로고    scopus 로고
    • Functional characterization of sphingosine 1-phosphate receptor agonist in human endothelial cells
    • Butler J, Lana D, Round O, et al. Functional characterization of sphingosine 1-phosphate receptor agonist in human endothelial cells. Prostaglandins Other Lipid Mediat 2004; 73: 29-45.
    • (2004) Prostaglandins Other Lipid Mediat , vol.73 , pp. 29-45
    • Butler, J.1    Lana, D.2    Round, O.3
  • 232
    • 81455142639 scopus 로고    scopus 로고
    • FTY720-loaded poly(DL-lactide-co-glycolide) electrospun scaffold significantly increases microvessel density over 7 days in streptozotocin-induced diabetic C57b16/J mice: Preliminary results
    • Bowers DT, Chhabra P, Langman L, et al. FTY720-loaded poly(DL-lactide-co-glycolide) electrospun scaffold significantly increases microvessel density over 7 days in streptozotocin-induced diabetic C57b16/J mice: preliminary results. Transplant Proc 2011; 43: 3285-7.
    • (2011) Transplant Proc , vol.43 , pp. 3285-3287
    • Bowers, D.T.1    Chhabra, P.2    Langman, L.3
  • 233
    • 84865159873 scopus 로고    scopus 로고
    • FTY720 Markedly Increases Alloengraftment but Does Not Eliminate Host Anti-Donor T Cells that Cause Graft Rejection on Its Withdrawal
    • Taylor PA, Kelly RM, Bade ND, et al. FTY720 Markedly Increases Alloengraftment but Does Not Eliminate Host Anti-Donor T Cells that Cause Graft Rejection on Its Withdrawal. Biol Blood Marrow Transplant 2012; 18: 1341-52.
    • (2012) Biol Blood Marrow Transplant , vol.18 , pp. 1341-1352
    • Taylor, P.A.1    Kelly, R.M.2    Bade, N.D.3
  • 234
    • 79551652731 scopus 로고    scopus 로고
    • Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: Mechanistic similarities with angiopoietin-1
    • Hoang MV, Nagy JA, Senger DR. Active Rac1 improves pathologic VEGF neovessel architecture and reduces vascular leak: mechanistic similarities with angiopoietin-1. Blood 2011; 117: 1751-60.
    • (2011) Blood , vol.117 , pp. 1751-1760
    • Hoang, M.V.1    Nagy, J.A.2    Senger, D.R.3
  • 235
    • 0036434445 scopus 로고    scopus 로고
    • Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist
    • Osada M, Yatomi Y, Ohmori T, et al. Enhancement of sphingosine 1-phosphate-induced migration of vascular endothelial cells and smooth muscle cells by an EDG-5 antagonist. Biochem Biophys Res Commun 2002; 299: 483-7.
    • (2002) Biochem Biophys Res Commun , vol.299 , pp. 483-487
    • Osada, M.1    Yatomi, Y.2    Ohmori, T.3
  • 236
    • 33744985806 scopus 로고    scopus 로고
    • Negative regulation of endothelial morphogenesis and angiogenesis by S1P2 receptor
    • Inoki I, Takuwa N, Sugimoto N, et al. Negative regulation of endothelial morphogenesis and angiogenesis by S1P2 receptor. Biochem Biophys Res Commun 2006; 346: 293-300.
    • (2006) Biochem Biophys Res Commun , vol.346 , pp. 293-300
    • Inoki, I.1    Takuwa, N.2    Sugimoto, N.3
  • 237
    • 78650866759 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis
    • Skoura A, Michaud J, Im DS, et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31: 81-5.
    • (2011) Arterioscler Thromb Vasc Biol , vol.31 , pp. 81-85
    • Skoura, A.1    Michaud, J.2    Im, D.S.3
  • 238
    • 78650413566 scopus 로고    scopus 로고
    • Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo
    • Ishii M, Kikuta J, Shimazu Y, et al. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med 2010; 207: 2793-8.
    • (2010) J Exp Med , vol.207 , pp. 2793-2798
    • Ishii, M.1    Kikuta, J.2    Shimazu, Y.3
  • 239
    • 84859362960 scopus 로고    scopus 로고
    • Bone regeneration in distraction osteogenesis demonstrates significantly increased vascularity in comparison to fracture repair in the mandible
    • Donneys A, Tchanque-Fossuo CN, Farberg AS, et al. Bone regeneration in distraction osteogenesis demonstrates significantly increased vascularity in comparison to fracture repair in the mandible. J Craniofac Surg 2012; 23: 328-32.
    • (2012) J Craniofac Surg , vol.23 , pp. 328-332
    • Donneys, A.1    Tchanque-Fossuo, C.N.2    Farberg, A.S.3
  • 240
    • 77249164474 scopus 로고    scopus 로고
    • Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model
    • Fan W, Crawford R, Xiao Y. Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials 2010; 31: 3580-9.
    • (2010) Biomaterials , vol.31 , pp. 3580-3589
    • Fan, W.1    Crawford, R.2    Xiao, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.