메뉴 건너뛰기




Volumn 38, Issue 7, 2020, Pages 745-765

Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis

Author keywords

E. coli; enzyme engineering; metabolic flux optimization; natural products; systems metabolic engineering

Indexed keywords

ADDITIVES; BIOCHEMISTRY; BIOSYNTHESIS; CELL ENGINEERING; ESCHERICHIA COLI; METABOLISM;

EID: 85077559158     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2019.11.007     Document Type: Review
Times cited : (250)

References (121)
  • 1
    • 11344292132 scopus 로고    scopus 로고
    • The role of natural product chemistry in drug discovery
    • Butler, M.S., The role of natural product chemistry in drug discovery. J. Nat. Prod. 67 (2004), 2141–2153.
    • (2004) J. Nat. Prod. , vol.67 , pp. 2141-2153
    • Butler, M.S.1
  • 2
    • 84939879331 scopus 로고    scopus 로고
    • The pharmaceutical industry and natural products: historical status and new trends
    • David, B., et al. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev. 14 (2015), 299–315.
    • (2015) Phytochem. Rev. , vol.14 , pp. 299-315
    • David, B.1
  • 3
    • 84860904403 scopus 로고    scopus 로고
    • Plant natural products: history, limitations and the potential of cambial meristematic cells
    • Yun, U.W., et al. Plant natural products: history, limitations and the potential of cambial meristematic cells. Biotechnol. Genet. Eng. Rev. 28 (2012), 47–59.
    • (2012) Biotechnol. Genet. Eng. Rev. , vol.28 , pp. 47-59
    • Yun, U.W.1
  • 4
    • 51649130191 scopus 로고    scopus 로고
    • Green chemistry for chemical synthesis
    • Li, C.J., Trost, B.M., Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 13197–13202.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 13197-13202
    • Li, C.J.1    Trost, B.M.2
  • 5
    • 85052701919 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms for the production of natural compounds
    • Park, S.Y., et al. Metabolic engineering of microorganisms for the production of natural compounds. Adv. Biosyst., 2, 2018, 1700190.
    • (2018) Adv. Biosyst. , vol.2 , pp. 1700190
    • Park, S.Y.1
  • 6
    • 0029874193 scopus 로고    scopus 로고
    • High cell-density culture of Escherichia coli
    • Lee, S.Y., High cell-density culture of Escherichia coli. Trends Biotechnol. 14 (1996), 98–105.
    • (1996) Trends Biotechnol. , vol.14 , pp. 98-105
    • Lee, S.Y.1
  • 7
    • 85045348745 scopus 로고    scopus 로고
    • Current state and applications of microbial genome-scale metabolic models
    • Kim, W.J., et al. Current state and applications of microbial genome-scale metabolic models. Curr. Opin. Syst. Biol. 2 (2017), 10–18.
    • (2017) Curr. Opin. Syst. Biol. , vol.2 , pp. 10-18
    • Kim, W.J.1
  • 8
    • 0029874193 scopus 로고    scopus 로고
    • High cell-density culture of Escherichia coli
    • Lee, S.Y., High cell-density culture of Escherichia coli. Trends Biotechnol. 14 (1996), 98–105.
    • (1996) Trends Biotechnol. , vol.14 , pp. 98-105
    • Lee, S.Y.1
  • 9
    • 85060796220 scopus 로고    scopus 로고
    • Engineering Escherichia coli as a platform for the in vivo synthesis of prenylated aromatics
    • Qian, S., et al. Engineering Escherichia coli as a platform for the in vivo synthesis of prenylated aromatics. Biotechnol. Bioeng. 116 (2019), 1116–1127.
    • (2019) Biotechnol. Bioeng. , vol.116 , pp. 1116-1127
    • Qian, S.1
  • 10
    • 85013188408 scopus 로고    scopus 로고
    • Engineering of taxadiene synthase for improved selectivity and yield of a key taxol biosynthetic intermediate
    • Edgar, S., et al. Engineering of taxadiene synthase for improved selectivity and yield of a key taxol biosynthetic intermediate. ACS Synth. Biol. 6 (2016), 201–205.
    • (2016) ACS Synth. Biol. , vol.6 , pp. 201-205
    • Edgar, S.1
  • 11
    • 85021239673 scopus 로고    scopus 로고
    • Production of jet fuel precursor monoterpenoids from engineered Escherichia coli
    • Mendez-Perez, D., et al. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol. Bioeng. 114 (2017), 1703–1712.
    • (2017) Biotechnol. Bioeng. , vol.114 , pp. 1703-1712
    • Mendez-Perez, D.1
  • 12
    • 85065169335 scopus 로고    scopus 로고
    • Mechanism-based tuning of insect 3, 4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids
    • Vavricka, C.J., et al. Mechanism-based tuning of insect 3, 4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids. Nat. Commun., 10, 2019, 2015.
    • (2019) Nat. Commun. , vol.10 , pp. 2015
    • Vavricka, C.J.1
  • 13
    • 85010192491 scopus 로고    scopus 로고
    • Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor
    • Xiong, D., et al. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metab. Eng. 40 (2017), 115–123.
    • (2017) Metab. Eng. , vol.40 , pp. 115-123
    • Xiong, D.1
  • 14
    • 84992451563 scopus 로고    scopus 로고
    • Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering
    • Lv, X., et al. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering. Biotechnol. Bioeng. 113 (2016), 2661–2669.
    • (2016) Biotechnol. Bioeng. , vol.113 , pp. 2661-2669
    • Lv, X.1
  • 15
    • 78649442425 scopus 로고    scopus 로고
    • Molecular mechanisms modulating glutamate kinase activity. Identification of the proline feedback inhibitor binding site
    • Pérez-Arellano, I., et al. Molecular mechanisms modulating glutamate kinase activity. Identification of the proline feedback inhibitor binding site. J. Mol. Biol. 404 (2010), 890–901.
    • (2010) J. Mol. Biol. , vol.404 , pp. 890-901
    • Pérez-Arellano, I.1
  • 16
    • 85048962896 scopus 로고    scopus 로고
    • Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli
    • Shomar, H., et al. Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli. Nat. Chem. Biol. 14 (2018), 794–800.
    • (2018) Nat. Chem. Biol. , vol.14 , pp. 794-800
    • Shomar, H.1
  • 17
    • 85040024093 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of indirubin from glucose
    • Du, J., et al. Metabolic engineering of Escherichia coli for the production of indirubin from glucose. J. Biotechnol. 267 (2018), 19–28.
    • (2018) J. Biotechnol. , vol.267 , pp. 19-28
    • Du, J.1
  • 18
    • 85066236098 scopus 로고    scopus 로고
    • Microbial production of methyl anthranilate, a grape flavor compound
    • Luo, Z.W., et al. Microbial production of methyl anthranilate, a grape flavor compound. Proc. Natl. Acad. Sci. U. S. A. 116 (2019), 10749–10756.
    • (2019) Proc. Natl. Acad. Sci. U. S. A. , vol.116 , pp. 10749-10756
    • Luo, Z.W.1
  • 19
    • 85051394496 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity
    • Park, S.Y., et al. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab. Eng. 49 (2018), 105–115.
    • (2018) Metab. Eng. , vol.49 , pp. 105-115
    • Park, S.Y.1
  • 20
    • 84994810158 scopus 로고    scopus 로고
    • Cytochrome P450 organization and function are modulated by endoplasmic reticulum phospholipid heterogeneity
    • Brignac-Huber, L.M., et al. Cytochrome P450 organization and function are modulated by endoplasmic reticulum phospholipid heterogeneity. Drug Metab. Disposition 44 (2016), 1859–1866.
    • (2016) Drug Metab. Disposition , vol.44 , pp. 1859-1866
    • Brignac-Huber, L.M.1
  • 21
    • 34247182988 scopus 로고    scopus 로고
    • Engineering Escherichia coli for production of functionalized terpenoids using plant P450s
    • Chang, M.C., et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3 (2007), 274–277.
    • (2007) Nat. Chem. Biol. , vol.3 , pp. 274-277
    • Chang, M.C.1
  • 22
    • 84876784070 scopus 로고    scopus 로고
    • High-level semi-synthetic production of the potent antimalarial artemisinin
    • Paddon, C.J., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496 (2013), 528–532.
    • (2013) Nature , vol.496 , pp. 528-532
    • Paddon, C.J.1
  • 23
    • 84899051891 scopus 로고    scopus 로고
    • Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
    • Paddon, C.J., Keasling, J.D., Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12 (2014), 355–367.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 355-367
    • Paddon, C.J.1    Keasling, J.D.2
  • 24
    • 77957329119 scopus 로고    scopus 로고
    • Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
    • Ajikumar, P.K., et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330 (2010), 70–74.
    • (2010) Science , vol.330 , pp. 70-74
    • Ajikumar, P.K.1
  • 25
    • 84962250132 scopus 로고    scopus 로고
    • Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia coli
    • Biggs, B.W., et al. Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 3209–3214.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 3209-3214
    • Biggs, B.W.1
  • 26
    • 31544449418 scopus 로고    scopus 로고
    • Heterologous production of epothilone C and D in Escherichia coli
    • Mutka, S.C., et al. Heterologous production of epothilone C and D in Escherichia coli. Biochemistry 45 (2006), 1321–1330.
    • (2006) Biochemistry , vol.45 , pp. 1321-1330
    • Mutka, S.C.1
  • 27
    • 78649386219 scopus 로고    scopus 로고
    • Complete biosynthesis of erythromycin A and designed analogs using E. coli as a heterologous host
    • Zhang, H., et al. Complete biosynthesis of erythromycin A and designed analogs using E. coli as a heterologous host. Chem. Biol. 17 (2010), 1232–1240.
    • (2010) Chem. Biol. , vol.17 , pp. 1232-1240
    • Zhang, H.1
  • 28
    • 85058529198 scopus 로고    scopus 로고
    • Combinatorial optimization of resveratrol production in engineered E. coli
    • Zhao, Y., et al. Combinatorial optimization of resveratrol production in engineered E. coli. J. Agric. Food Chem. 66 (2018), 13444–13453.
    • (2018) J. Agric. Food Chem. , vol.66 , pp. 13444-13453
    • Zhao, Y.1
  • 29
    • 63649137435 scopus 로고    scopus 로고
    • Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering
    • Zha, W., et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab. Eng. 11 (2009), 192–198.
    • (2009) Metab. Eng. , vol.11 , pp. 192-198
    • Zha, W.1
  • 30
    • 85054360865 scopus 로고    scopus 로고
    • Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria
    • Yang, D., et al. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 9835–9844.
    • (2018) Proc. Natl. Acad. Sci. U. S. A. , vol.115 , pp. 9835-9844
    • Yang, D.1
  • 31
    • 85015798130 scopus 로고    scopus 로고
    • Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli
    • Wu, J., et al. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 44 (2017), 1083–1095.
    • (2017) J. Ind. Microbiol. Biotechnol. , vol.44 , pp. 1083-1095
    • Wu, J.1
  • 32
    • 77952265112 scopus 로고    scopus 로고
    • In silico identification of gene amplification targets for improvement of lycopene production
    • Choi, H.S., et al. In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 76 (2010), 3097–3105.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 3097-3105
    • Choi, H.S.1
  • 33
    • 0035128694 scopus 로고    scopus 로고
    • Precursor balancing for metabolic engineering of lycopene production in Escherichia coli
    • Farmer, W.R., Liao, J.C., Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol. Prog. 17 (2001), 57–61.
    • (2001) Biotechnol. Prog. , vol.17 , pp. 57-61
    • Farmer, W.R.1    Liao, J.C.2
  • 34
    • 84995437675 scopus 로고    scopus 로고
    • Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli
    • Jung, J., et al. Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli. Metab. Eng. 38 (2016), 401–408.
    • (2016) Metab. Eng. , vol.38 , pp. 401-408
    • Jung, J.1
  • 35
    • 84969858015 scopus 로고    scopus 로고
    • Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli
    • Yang, C., et al. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab. Eng. 37 (2016), 79–91.
    • (2016) Metab. Eng. , vol.37 , pp. 79-91
    • Yang, C.1
  • 36
    • 79957546214 scopus 로고    scopus 로고
    • A bacterial platform for fermentative production of plant alkaloids
    • Nakagawa, A., et al. A bacterial platform for fermentative production of plant alkaloids. Nat. Commun., 2, 2011, 326.
    • (2011) Nat. Commun. , vol.2 , pp. 326
    • Nakagawa, A.1
  • 37
    • 85061114862 scopus 로고    scopus 로고
    • Cytochrome P450 monooxygenases in biotechnology and synthetic biology
    • Urlacher, V.B., Girhard, M., Cytochrome P450 monooxygenases in biotechnology and synthetic biology. Trends Biotechnol. 37 (2019), 882–897.
    • (2019) Trends Biotechnol. , vol.37 , pp. 882-897
    • Urlacher, V.B.1    Girhard, M.2
  • 38
    • 84920161546 scopus 로고    scopus 로고
    • Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering
    • Zhao, S., et al. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab. Eng. 28 (2015), 43–53.
    • (2015) Metab. Eng. , vol.28 , pp. 43-53
    • Zhao, S.1
  • 39
    • 85053507552 scopus 로고    scopus 로고
    • Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production
    • Tao, S., et al. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production. Microb. Cell Fact., 17, 2018, 147.
    • (2018) Microb. Cell Fact. , vol.17 , pp. 147
    • Tao, S.1
  • 40
    • 84957553896 scopus 로고    scopus 로고
    • Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli
    • Nakagawa, A., et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun., 7, 2016, 10390.
    • (2016) Nat. Commun. , vol.7 , pp. 10390
    • Nakagawa, A.1
  • 41
    • 84902287559 scopus 로고    scopus 로고
    • Production of lycopene by metabolically-engineered Escherichia coli
    • Sun, T., et al. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol. Lett. 36 (2014), 1515–1522.
    • (2014) Biotechnol. Lett. , vol.36 , pp. 1515-1522
    • Sun, T.1
  • 42
    • 33747078696 scopus 로고    scopus 로고
    • Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes
    • Pfleger, B.F., et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24 (2006), 1027–1032.
    • (2006) Nat. Biotechnol. , vol.24 , pp. 1027-1032
    • Pfleger, B.F.1
  • 43
    • 84982792232 scopus 로고    scopus 로고
    • Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis
    • Shen, H.-J., et al. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Metab. Eng. 38 (2016), 180–190.
    • (2016) Metab. Eng. , vol.38 , pp. 180-190
    • Shen, H.-J.1
  • 44
    • 68449088806 scopus 로고    scopus 로고
    • Synthetic protein scaffolds provide modular control over metabolic flux
    • Dueber, J.E., et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27 (2009), 753–759.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 753-759
    • Dueber, J.E.1
  • 45
    • 84863229940 scopus 로고    scopus 로고
    • DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency
    • Conrado, R.J., et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res. 40 (2011), 1879–1889.
    • (2011) Nucleic Acids Res. , vol.40 , pp. 1879-1889
    • Conrado, R.J.1
  • 46
    • 85034750457 scopus 로고    scopus 로고
    • Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning
    • Gao, C., et al. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol. Bioeng. 115 (2018), 661–672.
    • (2018) Biotechnol. Bioeng. , vol.115 , pp. 661-672
    • Gao, C.1
  • 47
    • 84926646130 scopus 로고    scopus 로고
    • Distributing a metabolic pathway among a microbial consortium enhances production of natural products
    • Zhou, K., et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33 (2015), 377–383.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 377-383
    • Zhou, K.1
  • 48
    • 85046960495 scopus 로고    scopus 로고
    • Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli
    • Zhang, C., et al. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli. Nat. Commun., 9, 2018, 1858.
    • (2018) Nat. Commun. , vol.9 , pp. 1858
    • Zhang, C.1
  • 49
    • 85021929291 scopus 로고    scopus 로고
    • Complete biosynthesis of anthocyanins using E. coli polycultures
    • e00621-17
    • Jones, J.A., et al. Complete biosynthesis of anthocyanins using E. coli polycultures. mBio, 8, 2017 e00621-17.
    • (2017) mBio , vol.8
    • Jones, J.A.1
  • 50
    • 85062616858 scopus 로고    scopus 로고
    • Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering
    • Li, Z., et al. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. Metab. Eng. 54 (2019), 1–11.
    • (2019) Metab. Eng. , vol.54 , pp. 1-11
    • Li, Z.1
  • 51
    • 84994806228 scopus 로고    scopus 로고
    • E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent
    • Ahmadi, M.K., et al. E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent. Metab. Eng. 38 (2016), 382–388.
    • (2016) Metab. Eng. , vol.38 , pp. 382-388
    • Ahmadi, M.K.1
  • 52
    • 84922803616 scopus 로고    scopus 로고
    • (R,S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli
    • Nakagawa, A., et al. (R,S)-Tetrahydropapaveroline production by stepwise fermentation using engineered Escherichia coli. Sci. Rep., 4, 2014, 6695.
    • (2014) Sci. Rep. , vol.4 , pp. 6695
    • Nakagawa, A.1
  • 53
    • 85060331549 scopus 로고    scopus 로고
    • A comprehensive metabolic map for production of bio-based chemicals
    • Lee, S.Y., et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2 (2019), 18–33.
    • (2019) Nat. Catal. , vol.2 , pp. 18-33
    • Lee, S.Y.1
  • 54
    • 85061013548 scopus 로고    scopus 로고
    • Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering
    • Choi, K.R., et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37 (2019), 817–837.
    • (2019) Trends Biotechnol. , vol.37 , pp. 817-837
    • Choi, K.R.1
  • 55
    • 85031310018 scopus 로고    scopus 로고
    • iML1515, a knowledgebase that computes Escherichia coli traits
    • Monk, J.M., et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35 (2017), 904–908.
    • (2017) Nat. Biotechnol. , vol.35 , pp. 904-908
    • Monk, J.M.1
  • 56
    • 85067295598 scopus 로고    scopus 로고
    • Current status and applications of genome-scale metabolic models
    • Gu, C., et al. Current status and applications of genome-scale metabolic models. Genome Biol., 20, 2019, 121.
    • (2019) Genome Biol. , vol.20 , pp. 121
    • Gu, C.1
  • 57
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • O'Brien, E.J., et al. Using genome-scale models to predict biological capabilities. Cell 161 (2015), 971–987.
    • (2015) Cell , vol.161 , pp. 971-987
    • O'Brien, E.J.1
  • 58
    • 80052021573 scopus 로고    scopus 로고
    • Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
    • Xu, P., et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 13 (2011), 578–587.
    • (2011) Metab. Eng. , vol.13 , pp. 578-587
    • Xu, P.1
  • 59
    • 85070061002 scopus 로고    scopus 로고
    • Assembling a plug-and-play production line for combinatorial biosynthesis of aromatic polyketides in Escherichia coli
    • Cummings, M., et al. Assembling a plug-and-play production line for combinatorial biosynthesis of aromatic polyketides in Escherichia coli. PLoS Biol., 17, 2019, e3000347.
    • (2019) PLoS Biol. , vol.17 , pp. e3000347
    • Cummings, M.1
  • 60
    • 85065862749 scopus 로고    scopus 로고
    • A white-box machine learning approach for revealing antibiotic mechanisms of action
    • Yang, J.H., et al. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell 177 (2019), 1649–1661.
    • (2019) Cell , vol.177 , pp. 1649-1661
    • Yang, J.H.1
  • 61
    • 85059811943 scopus 로고    scopus 로고
    • Machine learning of designed translational control allows predictive pathway optimization in Escherichia coli
    • Jervis, A.J., et al. Machine learning of designed translational control allows predictive pathway optimization in Escherichia coli. ACS Synth. Biol. 8 (2018), 127–136.
    • (2018) ACS Synth. Biol. , vol.8 , pp. 127-136
    • Jervis, A.J.1
  • 62
    • 85064552294 scopus 로고    scopus 로고
    • Enzyme promiscuity shapes adaptation to novel growth substrates
    • Guzmán, G.I., et al. Enzyme promiscuity shapes adaptation to novel growth substrates. Mol. Syst. Biol., 15, 2019, e8462.
    • (2019) Mol. Syst. Biol. , vol.15 , pp. e8462
    • Guzmán, G.I.1
  • 63
    • 85062101707 scopus 로고    scopus 로고
    • Adaptive laboratory evolution of a genome-reduced Escherichia coli
    • Choe, D., et al. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat. Commun., 10, 2019, 935.
    • (2019) Nat. Commun. , vol.10 , pp. 935
    • Choe, D.1
  • 64
    • 85056081944 scopus 로고    scopus 로고
    • Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution and modular co-culture engineering
    • Niu, F.-X., et al. Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution and modular co-culture engineering. Front. Microbiol., 9, 2018, 1623.
    • (2018) Front. Microbiol. , vol.9 , pp. 1623
    • Niu, F.-X.1
  • 65
    • 84922245805 scopus 로고    scopus 로고
    • 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli
    • 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metab. Eng. 28 (2015), 151–158.
    • (2015) Metab. Eng. , vol.28 , pp. 151-158
    • Crown, S.B.1
  • 66
    • 78650574197 scopus 로고    scopus 로고
    • 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in E. coli
    • 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in E. coli. Metab. Eng. 13 (2011), 38–48.
    • (2011) Metab. Eng. , vol.13 , pp. 38-48
    • Chen, X.1
  • 67
    • 85002523976 scopus 로고    scopus 로고
    • 13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli
    • 13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli. J. Biosci. Bioeng. 123 (2017), 177–182.
    • (2017) J. Biosci. Bioeng. , vol.123 , pp. 177-182
    • Wada, K.1
  • 68
    • 84924140841 scopus 로고    scopus 로고
    • High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway
    • Fang, M.-Y., et al. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microb. Cell Fact., 14, 2015, 8.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 8
    • Fang, M.-Y.1
  • 69
    • 85064434076 scopus 로고    scopus 로고
    • Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown
    • Yang, D., et al. Expanded synthetic small regulatory RNA expression platforms for rapid and multiplex gene expression knockdown. Metab. Eng. 54 (2019), 180–190.
    • (2019) Metab. Eng. , vol.54 , pp. 180-190
    • Yang, D.1
  • 70
    • 85057602225 scopus 로고    scopus 로고
    • Escherichia coli 'marionette' strains with 12 highly optimized small-molecule sensors
    • Meyer, A.J., et al. Escherichia coli 'marionette' strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15 (2019), 196–204.
    • (2019) Nat. Chem. Biol. , vol.15 , pp. 196-204
    • Meyer, A.J.1
  • 71
    • 85054849150 scopus 로고    scopus 로고
    • A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli
    • Kim, S.K., et al. A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli. ACS Synth. Biol. 7 (2018), 2379–2390.
    • (2018) ACS Synth. Biol. , vol.7 , pp. 2379-2390
    • Kim, S.K.1
  • 72
    • 84873596341 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
    • Na, D., et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31 (2013), 170–174.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 170-174
    • Na, D.1
  • 73
    • 85030148668 scopus 로고    scopus 로고
    • Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli
    • Noh, M., et al. Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Syst. 5 (2017), 418–426.
    • (2017) Cell Syst. , vol.5 , pp. 418-426
    • Noh, M.1
  • 74
    • 0015211527 scopus 로고
    • Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia
    • Wani, M.C., et al. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93 (1971), 2325–2327.
    • (1971) J. Am. Chem. Soc. , vol.93 , pp. 2325-2327
    • Wani, M.C.1
  • 75
    • 0034838359 scopus 로고    scopus 로고
    • Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol
    • Huang, Q., et al. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Biorg. Med. Chem. 9 (2001), 2237–2242.
    • (2001) Biorg. Med. Chem. , vol.9 , pp. 2237-2242
    • Huang, Q.1
  • 76
    • 79958224739 scopus 로고    scopus 로고
    • High-yield resveratrol production in engineered Escherichia coli
    • Lim, C.G., et al. High-yield resveratrol production in engineered Escherichia coli. Appl. Environ. Microbiol. 77 (2011), 3451–3460.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 3451-3460
    • Lim, C.G.1
  • 77
    • 84964378468 scopus 로고    scopus 로고
    • De novo biosynthesis of resveratrol by site-specific integration of heterologous genes in Escherichia coli
    • Liu, X., et al. De novo biosynthesis of resveratrol by site-specific integration of heterologous genes in Escherichia coli. FEMS Microbiol. Lett., 363, 2016.
    • (2016) FEMS Microbiol. Lett. , vol.363
    • Liu, X.1
  • 78
    • 84988955364 scopus 로고    scopus 로고
    • Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol
    • Camacho-Zaragoza, J.M., et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb. Cell Fact., 15, 2016, 163.
    • (2016) Microb. Cell Fact. , vol.15 , pp. 163
    • Camacho-Zaragoza, J.M.1
  • 79
    • 85047317727 scopus 로고    scopus 로고
    • Escherichia coli modular coculture system for resveratrol glucosides production
    • Thuan, N.H., et al. Escherichia coli modular coculture system for resveratrol glucosides production. World J. Microbiol. Biotechnol., 34, 2018, 75.
    • (2018) World J. Microbiol. Biotechnol. , vol.34 , pp. 75
    • Thuan, N.H.1
  • 80
    • 85013947298 scopus 로고    scopus 로고
    • Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea
    • Wu, H., et al. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea. Synth. Syst. Biotechnol. 1 (2016), 39–46.
    • (2016) Synth. Syst. Biotechnol. , vol.1 , pp. 39-46
    • Wu, H.1
  • 81
    • 0035793858 scopus 로고    scopus 로고
    • Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli
    • Pfeifer, B.A., et al. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291 (2001), 1790–1792.
    • (2001) Science , vol.291 , pp. 1790-1792
    • Pfeifer, B.A.1
  • 82
    • 79954618309 scopus 로고    scopus 로고
    • Multi-factorial engineering of heterologous polyketide production in Escherichia coli reveals complex pathway interactions
    • Boghigian, B.A., et al. Multi-factorial engineering of heterologous polyketide production in Escherichia coli reveals complex pathway interactions. Biotechnol. Bioeng. 108 (2011), 1360–1371.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 1360-1371
    • Boghigian, B.A.1
  • 83
    • 85053467814 scopus 로고    scopus 로고
    • Broadened glycosylation patterning of heterologously produced erythromycin
    • Fang, L., et al. Broadened glycosylation patterning of heterologously produced erythromycin. Biotechnol. Bioeng. 115 (2018), 2771–2777.
    • (2018) Biotechnol. Bioeng. , vol.115 , pp. 2771-2777
    • Fang, L.1
  • 84
    • 85065511410 scopus 로고    scopus 로고
    • Machine learning-assisted directed protein evolution with combinatorial libraries
    • Wu, Z., et al. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl. Acad. Sci. U. S. A. 116 (2019), 8852–8858.
    • (2019) Proc. Natl. Acad. Sci. U. S. A. , vol.116 , pp. 8852-8858
    • Wu, Z.1
  • 85
    • 85054968290 scopus 로고    scopus 로고
    • Engineering strategies for rational polyketide synthase design
    • Klaus, M., Grininger, M., Engineering strategies for rational polyketide synthase design. Nat. Prod. Rep. 35 (2018), 1070–1081.
    • (2018) Nat. Prod. Rep. , vol.35 , pp. 1070-1081
    • Klaus, M.1    Grininger, M.2
  • 86
    • 85069741083 scopus 로고    scopus 로고
    • De novo design of bioactive protein switches
    • Langan, R.A., et al. De novo design of bioactive protein switches. Nature 572 (2019), 205–210.
    • (2019) Nature , vol.572 , pp. 205-210
    • Langan, R.A.1
  • 87
    • 84982710140 scopus 로고    scopus 로고
    • Human commensals producing a novel antibiotic impair pathogen colonization
    • Zipperer, A., et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535 (2016), 511–516.
    • (2016) Nature , vol.535 , pp. 511-516
    • Zipperer, A.1
  • 88
    • 85050632805 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of isoprenoids
    • Ward, V.C.A., et al. Metabolic engineering of Escherichia coli for the production of isoprenoids. FEMS Microbiol. Lett., 365, 2018, fny079.
    • (2018) FEMS Microbiol. Lett. , vol.365 , pp. fny079
    • Ward, V.C.A.1
  • 89
    • 85032975347 scopus 로고    scopus 로고
    • Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories
    • Johnson, A.O., et al. Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Metab. Eng. 44 (2017), 253–264.
    • (2017) Metab. Eng. , vol.44 , pp. 253-264
    • Johnson, A.O.1
  • 90
    • 37349092706 scopus 로고    scopus 로고
    • 6-Deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli
    • Wang, Y., Pfeifer, B.A., 6-Deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli. Metab. Eng. 10 (2008), 33–38.
    • (2008) Metab. Eng. , vol.10 , pp. 33-38
    • Wang, Y.1    Pfeifer, B.A.2
  • 91
    • 84856576230 scopus 로고    scopus 로고
    • Improved E. coli erythromycin a production through the application of metabolic and bioprocess engineering
    • Zhang, H., et al. Improved E. coli erythromycin a production through the application of metabolic and bioprocess engineering. Biotechnol. Prog. 28 (2012), 292–296.
    • (2012) Biotechnol. Prog. , vol.28 , pp. 292-296
    • Zhang, H.1
  • 92
    • 78649323531 scopus 로고    scopus 로고
    • Engineered polyketide biosynthesis and biocatalysis in Escherichia coli
    • Gao, X., et al. Engineered polyketide biosynthesis and biocatalysis in Escherichia coli. Appl. Microbiol. Biotechnol. 88 (2010), 1233–1242.
    • (2010) Appl. Microbiol. Biotechnol. , vol.88 , pp. 1233-1242
    • Gao, X.1
  • 93
    • 77951294519 scopus 로고    scopus 로고
    • Nonribosomal peptide synthetases: structures and dynamics
    • Strieker, M., et al. Nonribosomal peptide synthetases: structures and dynamics. Curr. Opin. Struct. Biol. 20 (2010), 234–240.
    • (2010) Curr. Opin. Struct. Biol. , vol.20 , pp. 234-240
    • Strieker, M.1
  • 94
    • 84958729722 scopus 로고    scopus 로고
    • Microbial factories for the production of benzylisoquinoline alkaloids
    • Narcross, L., et al. Microbial factories for the production of benzylisoquinoline alkaloids. Trends Biotechnol. 34 (2016), 228–241.
    • (2016) Trends Biotechnol. , vol.34 , pp. 228-241
    • Narcross, L.1
  • 95
    • 84855932564 scopus 로고    scopus 로고
    • Synthesis of morphine alkaloids and derivatives
    • Rinner, U., Hudlicky, T., Synthesis of morphine alkaloids and derivatives. Top. Curr. Chem. 309 (2012), 33–66.
    • (2012) Top. Curr. Chem. , vol.309 , pp. 33-66
    • Rinner, U.1    Hudlicky, T.2
  • 96
    • 84941346066 scopus 로고    scopus 로고
    • Complete biosynthesis of opioids in yeast
    • Galanie, S., et al. Complete biosynthesis of opioids in yeast. Science 349 (2015), 1095–1100.
    • (2015) Science , vol.349 , pp. 1095-1100
    • Galanie, S.1
  • 97
    • 0142216401 scopus 로고    scopus 로고
    • Antioxidant activity of carotenoids
    • Stahl, W., Sies, H., Antioxidant activity of carotenoids. Mol. Aspects Med. 24 (2003), 345–351.
    • (2003) Mol. Aspects Med. , vol.24 , pp. 345-351
    • Stahl, W.1    Sies, H.2
  • 98
    • 84964313167 scopus 로고    scopus 로고
    • Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways
    • Yang, J., Guo, L., Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb. Cell Fact., 13, 2014, 160.
    • (2014) Microb. Cell Fact. , vol.13 , pp. 160
    • Yang, J.1    Guo, L.2
  • 99
    • 84937045641 scopus 로고    scopus 로고
    • 50 carotenoids assembled from moderately selective enzymes
    • 50 carotenoids assembled from moderately selective enzymes. Nat. Commun., 6, 2015, 7534.
    • (2015) Nat. Commun. , vol.6 , pp. 7534
    • Furubayashi, M.1
  • 100
    • 85062233897 scopus 로고    scopus 로고
    • 50-cyclases in Escherichia coli
    • 50-cyclases in Escherichia coli. Sci. Rep., 9, 2019, 2982.
    • (2019) Sci. Rep. , vol.9 , pp. 2982
    • Li, L.1
  • 101
    • 37349049987 scopus 로고    scopus 로고
    • Violacein: properties and biological activities
    • Duran, N., et al. Violacein: properties and biological activities. Biotechnol. Appl. Biochem. 48 (2007), 127–133.
    • (2007) Biotechnol. Appl. Biochem. , vol.48 , pp. 127-133
    • Duran, N.1
  • 102
    • 84884166429 scopus 로고    scopus 로고
    • Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein
    • Rodrigues, A.L., et al. Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab. Eng. 20 (2013), 29–41.
    • (2013) Metab. Eng. , vol.20 , pp. 29-41
    • Rodrigues, A.L.1
  • 103
    • 85047343210 scopus 로고    scopus 로고
    • Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(s) involved in violacein biosynthesis
    • Zhou, Y., et al. Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(s) involved in violacein biosynthesis. Appl. Biochem. Biotechnol. 186 (2018), 909–916.
    • (2018) Appl. Biochem. Biotechnol. , vol.186 , pp. 909-916
    • Zhou, Y.1
  • 104
    • 0041528152 scopus 로고    scopus 로고
    • High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis
    • Kwon, S.J., et al. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69 (2003), 4875–4883.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 4875-4883
    • Kwon, S.J.1
  • 105
    • 85053065721 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for secretory production of free haem
    • Zhao, X.R., et al. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1 (2018), 720–728.
    • (2018) Nat. Catal. , vol.1 , pp. 720-728
    • Zhao, X.R.1
  • 106
    • 85013196997 scopus 로고    scopus 로고
    • Direct combinatorial pathway optimization
    • Coussement, P., et al. Direct combinatorial pathway optimization. ACS Synth. Biol. 6 (2017), 224–232.
    • (2017) ACS Synth. Biol. , vol.6 , pp. 224-232
    • Coussement, P.1
  • 107
    • 85069677581 scopus 로고    scopus 로고
    • Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli
    • Shukal, S., et al. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metab. Eng. 55 (2019), 170–178.
    • (2019) Metab. Eng. , vol.55 , pp. 170-178
    • Shukal, S.1
  • 108
    • 84960844069 scopus 로고    scopus 로고
    • Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture
    • Liu, W., et al. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Biotechnol. Biofuels, 9, 2016, 58.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 58
    • Liu, W.1
  • 109
    • 85069268968 scopus 로고    scopus 로고
    • Construction of Escherichia coli cell factories for crocin biosynthesis
    • Wang, W., et al. Construction of Escherichia coli cell factories for crocin biosynthesis. Microb. Cell Fact., 18, 2019, 120.
    • (2019) Microb. Cell Fact. , vol.18 , pp. 120
    • Wang, W.1
  • 110
    • 84878387809 scopus 로고    scopus 로고
    • Alternative sigma factor over-expression enables heterologous expression of a type II polyketide biosynthetic pathway in Escherichia coli
    • Stevens, D.C., et al. Alternative sigma factor over-expression enables heterologous expression of a type II polyketide biosynthetic pathway in Escherichia coli. PLoS One, 8, 2013, e64858.
    • (2013) PLoS One , vol.8 , pp. e64858
    • Stevens, D.C.1
  • 111
    • 85049681840 scopus 로고    scopus 로고
    • Synthetic pathway for the production of olivetolic acid in Escherichia coli
    • Tan, Z., et al. Synthetic pathway for the production of olivetolic acid in Escherichia coli. ACS Synth. Biol. 7 (2018), 1886–1896.
    • (2018) ACS Synth. Biol. , vol.7 , pp. 1886-1896
    • Tan, Z.1
  • 112
    • 84940840437 scopus 로고    scopus 로고
    • Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli
    • Wu, J., et al. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci. Rep., 5, 2015, 13477.
    • (2015) Sci. Rep. , vol.5 , pp. 13477
    • Wu, J.1
  • 113
    • 85047376657 scopus 로고    scopus 로고
    • Efficient biotransformation of isoeugenol to vanillin in recombinant strains of Escherichia coli by using engineered isoeugenol monooxygenase and sol-gel chitosan membrane
    • Zhao, L.Q., et al. Efficient biotransformation of isoeugenol to vanillin in recombinant strains of Escherichia coli by using engineered isoeugenol monooxygenase and sol-gel chitosan membrane. Process Biochem. 71 (2018), 76–81.
    • (2018) Process Biochem. , vol.71 , pp. 76-81
    • Zhao, L.Q.1
  • 114
    • 84940879312 scopus 로고    scopus 로고
    • Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources
    • Ni, J., et al. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Sci. Rep., 5, 2015, 13670.
    • (2015) Sci. Rep. , vol.5 , pp. 13670
    • Ni, J.1
  • 115
    • 84958250665 scopus 로고    scopus 로고
    • Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids
    • Jones, J.A., et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35 (2016), 55–63.
    • (2016) Metab. Eng. , vol.35 , pp. 55-63
    • Jones, J.A.1
  • 116
    • 85008156860 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for microbial synthesis of monolignols
    • Chen, Z., et al. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols. Metab. Eng. 39 (2017), 102–109.
    • (2017) Metab. Eng. , vol.39 , pp. 102-109
    • Chen, Z.1
  • 117
    • 84941650968 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides
    • De Bruyn, F., et al. Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides. Microb. Cell Fact., 14, 2015, 138.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 138
    • De Bruyn, F.1
  • 118
    • 84978698481 scopus 로고    scopus 로고
    • Efficient biosynthesis of (2S)-pinocembrin from D-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy
    • Wu, J., et al. Efficient biosynthesis of (2S)-pinocembrin from D-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. Bioresour. Technol. 218 (2016), 999–1007.
    • (2016) Bioresour. Technol. , vol.218 , pp. 999-1007
    • Wu, J.1
  • 119
    • 85065298040 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of L-DOPA from D-glucose
    • Fordjour, E., et al. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of L-DOPA from D-glucose. Microb. Cell Fact., 18, 2019, 74.
    • (2019) Microb. Cell Fact. , vol.18 , pp. 74
    • Fordjour, E.1
  • 120
    • 84937899255 scopus 로고    scopus 로고
    • Total biosynthesis and diverse applications of the nonribosomal peptide-polyketide siderophore yersiniabactin
    • Ahmadi, M.K., et al. Total biosynthesis and diverse applications of the nonribosomal peptide-polyketide siderophore yersiniabactin. Appl. Environ. Microbiol. 81 (2015), 5290–5298.
    • (2015) Appl. Environ. Microbiol. , vol.81 , pp. 5290-5298
    • Ahmadi, M.K.1
  • 121
    • 33746354671 scopus 로고    scopus 로고
    • Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli
    • Watanabe, K., et al. Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nat. Chem. Biol. 2 (2006), 423–428.
    • (2006) Nat. Chem. Biol. , vol.2 , pp. 423-428
    • Watanabe, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.