메뉴 건너뛰기




Volumn 113, Issue 12, 2016, Pages 2661-2669

Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering

Author keywords

directed co evolution; isoprene; MEP pathway; modular pathway engineering

Indexed keywords

BIOCHEMISTRY; BIOSYNTHESIS; ENZYMES; ESCHERICHIA COLI; GENETIC ENGINEERING; INDUSTRIAL RESEARCH; ISOPRENE; METABOLIC ENGINEERING; METABOLISM; PROTEINS; RECOMBINANT PROTEINS; THROUGHPUT;

EID: 84992451563     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.26034     Document Type: Article
Times cited : (54)

References (37)
  • 2
    • 0032883216 scopus 로고    scopus 로고
    • Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin
    • Albrecht M, Misawa N, Sandmann G. 1999. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin. Biotechnol Lett 21(9):791–795.
    • (1999) Biotechnol Lett , vol.21 , Issue.9 , pp. 791-795
    • Albrecht, M.1    Misawa, N.2    Sandmann, G.3
  • 3
    • 0001270261 scopus 로고    scopus 로고
    • Design by directed evolution
    • Arnold FH. 1998. Design by directed evolution. Acc Chem Res 31(3):125–131.
    • (1998) Acc Chem Res , vol.31 , Issue.3 , pp. 125-131
    • Arnold, F.H.1
  • 4
    • 0028485650 scopus 로고
    • Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942
    • Cunningham FX, Jr., Sun Z, Chamovitz D, Hirschberg J, Gantt E. 1994. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6(8):1107–1121.
    • (1994) Plant Cell , vol.6 , Issue.8 , pp. 1107-1121
    • Cunningham, F.X.1    Sun, Z.2    Chamovitz, D.3    Hirschberg, J.4    Gantt, E.5
  • 5
    • 84865645644 scopus 로고    scopus 로고
    • The role of residue S139 of mandelate racemase: Synergistic effect of S139 and E317 on transition state stabilization
    • Gu JL, Yu HW. 2012. The role of residue S139 of mandelate racemase: Synergistic effect of S139 and E317 on transition state stabilization. J Biomol Struct Dyn 30(5):585–593.
    • (2012) J Biomol Struct Dyn , vol.30 , Issue.5 , pp. 585-593
    • Gu, J.L.1    Yu, H.W.2
  • 6
    • 84930804841 scopus 로고    scopus 로고
    • Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae
    • Jendresen CB, Stahlhut SG, Li M, Gaspar P, Siedler S, Forster J, Maury J, Borodina I, Nielsen AT. 2015. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl Environ Microbiol 81(13):4458–4476.
    • (2015) Appl Environ Microbiol , vol.81 , Issue.13 , pp. 4458-4476
    • Jendresen, C.B.1    Stahlhut, S.G.2    Li, M.3    Gaspar, P.4    Siedler, S.5    Forster, J.6    Maury, J.7    Borodina, I.8    Nielsen, A.T.9
  • 8
    • 0030970352 scopus 로고    scopus 로고
    • Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli
    • Kajiwara S, Fraser PD, Kondo K, Misawa N. 1997. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324(Pt 2):421–426.
    • (1997) Biochem J , vol.324 , pp. 421-426
    • Kajiwara, S.1    Fraser, P.D.2    Kondo, K.3    Misawa, N.4
  • 9
    • 0035916370 scopus 로고    scopus 로고
    • Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production
    • Kim SW, Keasling J. 2001. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72(4):408–415.
    • (2001) Biotechnol Bioeng , vol.72 , Issue.4 , pp. 408-415
    • Kim, S.W.1    Keasling, J.2
  • 10
    • 66049098477 scopus 로고    scopus 로고
    • High-level production of lycopene in metabolically engineered E. coli
    • Kim SW, Kim JB, Ryu JM, Jung JK, Kim JH. 2009. High-level production of lycopene in metabolically engineered E. coli. Process Biochem 44(8):899–905.
    • (2009) Process Biochem , vol.44 , Issue.8 , pp. 899-905
    • Kim, S.W.1    Kim, J.B.2    Ryu, J.M.3    Jung, J.K.4    Kim, J.H.5
  • 11
    • 41549107616 scopus 로고    scopus 로고
    • Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua
    • Kirby J, Romanini DW, Paradise EM, Keasling JD. 2008. Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua. FEBS J 275(8):1852–1859.
    • (2008) FEBS J , vol.275 , Issue.8 , pp. 1852-1859
    • Kirby, J.1    Romanini, D.W.2    Paradise, E.M.3    Keasling, J.D.4
  • 12
    • 0033009129 scopus 로고    scopus 로고
    • Isoprene synthase activity and its relation to isoprene emission in Quercus robur L-leaves
    • Lehning A, Zimmer I, Steinbrecher R, Bruggemann N, Schnitzler JP. 1999. Isoprene synthase activity and its relation to isoprene emission in Quercus robur L-leaves. Plant Cell Environ 22(5):495–504.
    • (1999) Plant Cell Environ , vol.22 , Issue.5 , pp. 495-504
    • Lehning, A.1    Zimmer, I.2    Steinbrecher, R.3    Bruggemann, N.4    Schnitzler, J.P.5
  • 14
    • 70449336249 scopus 로고    scopus 로고
    • Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism
    • Lindberg P, Park S, Melis A. 2010. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79.
    • (2010) Metab Eng , vol.12 , Issue.1 , pp. 70-79
    • Lindberg, P.1    Park, S.2    Melis, A.3
  • 15
    • 84878858289 scopus 로고    scopus 로고
    • Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli
    • Lv XM, Xu HM, Yu HW. 2013. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol 97(6):2357–2365.
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.6 , pp. 2357-2365
    • Lv, X.M.1    Xu, H.M.2    Yu, H.W.3
  • 16
  • 17
    • 9644301008 scopus 로고    scopus 로고
    • The crystal structure of E. coli 1-deoxy-D-xylulose-5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation
    • Mac Sweeney A, Lange R, Fernandes RP, Schulz H, Dale GE, Douangamath A, Proteau PJ, Oefner C. 2005. The crystal structure of E. coli 1-deoxy-D-xylulose-5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation. J Mol Biol 345(1):115–127.
    • (2005) J Mol Biol , vol.345 , Issue.1 , pp. 115-127
    • Mac Sweeney, A.1    Lange, R.2    Fernandes, R.P.3    Schulz, H.4    Dale, G.E.5    Douangamath, A.6    Proteau, P.J.7    Oefner, C.8
  • 18
    • 0038391517 scopus 로고    scopus 로고
    • Engineering a mevalonate pathway in Escherichia coli for production of terpenoids
    • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. 2003. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802.
    • (2003) Nat Biotechnol , vol.21 , Issue.7 , pp. 796-802
    • Martin, V.J.J.1    Pitera, D.J.2    Withers, S.T.3    Newman, J.D.4    Keasling, J.D.5
  • 19
    • 0034105938 scopus 로고    scopus 로고
    • Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase
    • Matthews P, Wurtzel ET. 2000. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol 53(4):396–400.
    • (2000) Appl Microbiol Biotechnol , vol.53 , Issue.4 , pp. 396-400
    • Matthews, P.1    Wurtzel, E.T.2
  • 20
    • 32944474480 scopus 로고    scopus 로고
    • Microbial isoprenoid production: An example of green chemistry through metabolic engineering
    • Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J. 2005. Microbial isoprenoid production: An example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19–51.
    • (2005) Adv Biochem Eng Biotechnol , vol.100 , pp. 19-51
    • Maury, J.1    Asadollahi, M.A.2    Moller, K.3    Clark, A.4    Nielsen, J.5
  • 21
    • 0034913742 scopus 로고    scopus 로고
    • First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli
    • Miller B, Oschinski C, Zimmer W. 2001. First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213(3):483–487.
    • (2001) Planta , vol.213 , Issue.3 , pp. 483-487
    • Miller, B.1    Oschinski, C.2    Zimmer, W.3
  • 22
    • 33847309176 scopus 로고    scopus 로고
    • Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli
    • Pitera DJ, Paddon CJ, Newman JD, Keasling JD. 2007. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9(2):193–207.
    • (2007) Metab Eng , vol.9 , Issue.2 , pp. 193-207
    • Pitera, D.J.1    Paddon, C.J.2    Newman, J.D.3    Keasling, J.D.4
  • 23
    • 84855188601 scopus 로고    scopus 로고
    • Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains
    • Rad SA, Zahiri HS, Noghabi KA, Rajaei S, Heidari R, Mojallali L. 2012. Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains. World J Microbiol Biotechnol 28(1):313–321.
    • (2012) World J Microbiol Biotechnol , vol.28 , Issue.1 , pp. 313-321
    • Rad, S.A.1    Zahiri, H.S.2    Noghabi, K.A.3    Rajaei, S.4    Heidari, R.5    Mojallali, L.6
  • 24
    • 0027368126 scopus 로고
    • Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate
    • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. 1993. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(Pt 2):517–524.
    • (1993) Biochem J , vol.295 , pp. 517-524
    • Rohmer, M.1    Knani, M.2    Simonin, P.3    Sutter, B.4    Sahm, H.5
  • 25
    • 17644362282 scopus 로고    scopus 로고
    • Gene expression and characterization of isoprene synthase from Populus alba
    • Sasaki K, Ohara K, Yazaki K. 2005. Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett 579(11):2514–2518.
    • (2005) FEBS Lett , vol.579 , Issue.11 , pp. 2514-2518
    • Sasaki, K.1    Ohara, K.2    Yazaki, K.3
  • 28
    • 84855278206 scopus 로고    scopus 로고
    • Evidence of isoprenoid precursor toxicity in Bacillus subtilis
    • Sivy TL, Fall R, Rosenstiel TN. 2011. Evidence of isoprenoid precursor toxicity in Bacillus subtilis. Biosci Biotechnol Biochem 75(12):2376–2383.
    • (2011) Biosci Biotechnol Biochem , vol.75 , Issue.12 , pp. 2376-2383
    • Sivy, T.L.1    Fall, R.2    Rosenstiel, T.N.3
  • 29
    • 0034518317 scopus 로고    scopus 로고
    • Directed evolution of metabolically engineered Escherichia coli for carotenoid production
    • Wang CW, Oh MK, Liao JC. 2000. Directed evolution of metabolically engineered Escherichia coli for carotenoid production. Biotechnol Progr 16(6):922–926.
    • (2000) Biotechnol Progr , vol.16 , Issue.6 , pp. 922-926
    • Wang, C.W.1    Oh, M.K.2    Liao, J.C.3
  • 30
    • 84866508244 scopus 로고    scopus 로고
    • Enhanced activity of Rhizomucor miehei lipase by directed evolution with simultaneous evolution of the propeptide
    • Wang J, Wang D, Wang B, Mei ZH, Liu J, Yu HW. 2012. Enhanced activity of Rhizomucor miehei lipase by directed evolution with simultaneous evolution of the propeptide. Appl Microbiol Biotechnol 96(2):443–450.
    • (2012) Appl Microbiol Biotechnol , vol.96 , Issue.2 , pp. 443-450
    • Wang, J.1    Wang, D.2    Wang, B.3    Mei, Z.H.4    Liu, J.5    Yu, H.W.6
  • 31
    • 33748538349 scopus 로고    scopus 로고
    • Automatic atom type and bond type perception in molecular mechanical calculations
    • Wang J, Wang W, Kollman PA, Case DA. 2006. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graphics Modell 25(2):247–260.
    • (2006) J Mol Graphics Modell , vol.25 , Issue.2 , pp. 247-260
    • Wang, J.1    Wang, W.2    Kollman, P.A.3    Case, D.A.4
  • 33
    • 34047252866 scopus 로고    scopus 로고
    • Crystal structure of 1-deoxy-D-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis
    • Xiang S, Usunow G, Lange G, Busch M, Tong L. 2007. Crystal structure of 1-deoxy-D-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. J Biol Chem 282(4):2676–2682.
    • (2007) J Biol Chem , vol.282 , Issue.4 , pp. 2676-2682
    • Xiang, S.1    Usunow, G.2    Lange, G.3    Busch, M.4    Tong, L.5
  • 34
    • 84917707014 scopus 로고    scopus 로고
    • Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae
    • Xie W, Ye L, Lv X, Xu H, Yu H. 2014a. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng 28C:8–18.
    • (2014) Metab Eng , vol.28C , pp. 8-18
    • Xie, W.1    Ye, L.2    Lv, X.3    Xu, H.4    Yu, H.5
  • 35
    • 84888060999 scopus 로고    scopus 로고
    • Construction of a controllable beta-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae
    • Xie WP, Liu M, Lv XM, Lu WQ, Gu JL, Yu HW. 2014b. Construction of a controllable beta-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng 111(1):125–133.
    • (2014) Biotechnol Bioeng , vol.111 , Issue.1 , pp. 125-133
    • Xie, W.P.1    Liu, M.2    Lv, X.M.3    Lu, W.Q.4    Gu, J.L.5    Yu, H.W.6
  • 36
    • 22144478327 scopus 로고    scopus 로고
    • Metabolic engineering of anthocyanin biosynthesis in Escherichia coli
    • Yan Y, Chemler J, Huang L, Martens S, Koffas MA. 2005. Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71(7):3617–3623.
    • (2005) Appl Environ Microbiol , vol.71 , Issue.7 , pp. 3617-3623
    • Yan, Y.1    Chemler, J.2    Huang, L.3    Martens, S.4    Koffas, M.A.5
  • 37
    • 79958232375 scopus 로고    scopus 로고
    • Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway
    • Zhao YR, Yang JM, Qin B, Li YH, Sun YZ, Su SZ, Xian M. 2011. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol 90(6):1915–1922.
    • (2011) Appl Microbiol Biotechnol , vol.90 , Issue.6 , pp. 1915-1922
    • Zhao, Y.R.1    Yang, J.M.2    Qin, B.3    Li, Y.H.4    Sun, Y.Z.5    Su, S.Z.6    Xian, M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.