-
1
-
-
21644487712
-
Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain
-
Nakamura, Y., Asada, C., & Sawada, T. (2003). Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnology and Bioprocess Engineering, 8(1), 37–40. 10.1007/BF02932896
-
(2003)
Biotechnology and Bioprocess Engineering
, vol.8
, Issue.1
, pp. 37-40
-
-
Nakamura, Y.1
Asada, C.2
Sawada, T.3
-
2
-
-
37349049987
-
Violacein: properties and biological activities
-
Durán, N., Justo, G. Z., Ferreira, C. V., Melo, P. S., Cordi, L., & Martins, D. (2007). Violacein: properties and biological activities. Biotechnology and Applied Biochemistry, 48(3), 127. 10.1042/BA20070115
-
(2007)
Biotechnology and Applied Biochemistry
, vol.48
, Issue.3
, pp. 127
-
-
Durán, N.1
Justo, G.Z.2
Ferreira, C.V.3
Melo, P.S.4
Cordi, L.5
Martins, D.6
-
3
-
-
0346991927
-
Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum
-
Andrighetti-Fröhner, C. R., Antonio, R. V., Creczynski-Pasa, T. B., Barardi, C. R. M., & Simões, C. M. O. (2003). Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Memórias do Instituto Oswaldo Cruz, 98(6), 843–848. 10.1590/S0074-02762003000600023
-
(2003)
Memórias do Instituto Oswaldo Cruz
, vol.98
, Issue.6
, pp. 843-848
-
-
Andrighetti-Fröhner, C.R.1
Antonio, R.V.2
Creczynski-Pasa, T.B.3
Barardi, C.R.M.4
Simões, C.M.O.5
-
4
-
-
70350475894
-
The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus
-
Becker, M. H., Brucker, R. M., Schwantes, C. R., Harris, R. N., & Minbiole, K. P. C. (2009). The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Applied and Environmental Microbiology, 75(21), 6635–6638. 10.1128/AEM.01294-09
-
(2009)
Applied and Environmental Microbiology
, vol.75
, Issue.21
, pp. 6635-6638
-
-
Becker, M.H.1
Brucker, R.M.2
Schwantes, C.R.3
Harris, R.N.4
Minbiole, K.P.C.5
-
5
-
-
77950630020
-
Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts
-
Jiang, P. X., Wang, H. S., Zhang, C., Lou, K., & Xing, X. H. (2010). Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Applied Microbiology and Biotechnology, 86(4), 1077–1088. 10.1007/s00253-009-2375-z
-
(2010)
Applied Microbiology and Biotechnology
, vol.86
, Issue.4
, pp. 1077-1088
-
-
Jiang, P.X.1
Wang, H.S.2
Zhang, C.3
Lou, K.4
Xing, X.H.5
-
6
-
-
0035931447
-
Violacein transformation by peroxidases and oxidases: implications on its biological properties
-
Bromberg, N., & Durán, N. (2001). Violacein transformation by peroxidases and oxidases: implications on its biological properties. Journal of Molecular Catalysis B: Enzymatic, 11(4–6), 463–467. 10.1016/S1381-1177(00)00171-5
-
(2001)
Journal of Molecular Catalysis B: Enzymatic
, vol.11
, Issue.4-6
, pp. 463-467
-
-
Bromberg, N.1
Durán, N.2
-
7
-
-
84867285266
-
Pathway redesign for deoxyviolacein biosynthesis in Citrobacter freundii and characterization of this pigment
-
Jiang, P. X., Wang, H. S., Xiao, S., Fang, M. Y., Zhang, R. P., He, S. Y., … Xing, X. H. (2012). Pathway redesign for deoxyviolacein biosynthesis in Citrobacter freundii and characterization of this pigment. Applied Microbiology and Biotechnology, 94(6), 1521–1532. doi:10.1007/s00253-012-3960-0
-
(2012)
Applied Microbiology and Biotechnology
, vol.94
, Issue.6
, pp. 1521-1532
-
-
Jiang, P.-X.1
Wang, H.-S.2
Xiao, S.3
Fang, M.-Y.4
Zhang, R.-P.5
He, S.-Y.6
Lou, K.7
Xing, X.-H.8
-
8
-
-
80053589978
-
Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol
-
Yang, C., Jiang, P., Xiao, S., Zhang, C., Lou, K., & Xing, X. H. (2011). Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol. Biochemical Engineering Journal, 57(1), 55–62. 10.1016/j.bej.2011.08.008
-
(2011)
Biochemical Engineering Journal
, vol.57
, Issue.1
, pp. 55-62
-
-
Yang, C.1
Jiang, P.2
Xiao, S.3
Zhang, C.4
Lou, K.5
Xing, X.H.6
-
9
-
-
84890395226
-
Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay
-
Lee, M. E., Aswani, A., Han, A. S., Tomlin, C. J., & Dueber, J. E. (2013). Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 41(22), 10668–10678. 10.1093/nar/gkt809
-
(2013)
Nucleic Acids Research
, vol.41
, Issue.22
, pp. 10668-10678
-
-
Lee, M.E.1
Aswani, A.2
Han, A.S.3
Tomlin, C.J.4
Dueber, J.E.5
-
10
-
-
84939609554
-
YeastFab: the design and construction of standard biological parts for metabolic engineering inSaccharomyces cerevisiae
-
Guo, Y., Dong, J., Zhou, T., Auxillos, J., Li, T., Zhang, W., … Dai, J. (2015). YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Research, 43(13), e88. doi:10.1093/nar/gkv464
-
(2015)
Nucleic Acids Research
, vol.43
, Issue.13
, pp. e88
-
-
Guo, Y.1
Dong, J.2
Zhou, T.3
Auxillos, J.4
Li, T.5
Zhang, W.6
Wang, L.7
Shen, Y.8
Luo, Y.9
Zheng, Y.10
Lin, J.11
Chen, G.-Q.12
Wu, Q.13
Cai, Y.14
Dai, J.15
-
11
-
-
85045642536
-
MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae
-
Zhou, Y., Li, G., Dong, J., Xing, X., Dai, J., & Zhang, C. (2018). MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metabolic Engineering, 47, 294–302. 10.1016/j.ymben.2018.03.020
-
(2018)
Metabolic Engineering
, vol.47
, pp. 294-302
-
-
Zhou, Y.1
Li, G.2
Dong, J.3
Xing, X.4
Dai, J.5
Zhang, C.6
-
12
-
-
85046649083
-
Escherichia coli as a host for metabolic engineering
-
…
-
Pontrelli, S., Chiu, T., Lan, E. I., Chen, F. Y., Chang, P., Liao, J. C., … Liao, J. C. (2018). Escherichia coli as a host for metabolic engineering. Metabolic Engineering. doi:10.1016/j.ymben.2018.04.008
-
(2018)
Metabolic Engineering
-
-
Pontrelli, S.1
Chiu, T.2
Lan, E.I.3
Chen, F.Y.4
Chang, P.5
Liao, J.C.6
Liao, J.C.7
-
13
-
-
84884166429
-
Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein
-
Rodrigues, A. L., Trachtmann, N., Becker, J., Lohanatha, A. F., Blotenberg, J., Bolten, C. J., Korneli, C., de Souza Lima, A. O., Porto, L. M., Sprenger, G. A., & Wittmann, C. (2013). Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metabolic Engineering, 20, 29–41. 10.1016/j.ymben.2013.08.004
-
(2013)
Metabolic Engineering
, vol.20
, pp. 29-41
-
-
Rodrigues, A.L.1
Trachtmann, N.2
Becker, J.3
Lohanatha, A.F.4
Blotenberg, J.5
Bolten, C.J.6
Korneli, C.7
de Souza Lima, A.O.8
Porto, L.M.9
Sprenger, G.A.10
Wittmann, C.11
-
14
-
-
84923923224
-
Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol
-
Rodrigues, A. L., Becker, J., de Souza Lima, A. O., Porto, L. M., & Wittmann, C. (2014). Systems metabolic engineering of Escherichia coli for gram scale production of the antitumor drug deoxyviolacein from glycerol. Biotechnology and Bioengineering, 111(11), 2280–2289. 10.1002/bit.25297
-
(2014)
Biotechnology and Bioengineering
, vol.111
, Issue.11
, pp. 2280-2289
-
-
Rodrigues, A.L.1
Becker, J.2
de Souza Lima, A.O.3
Porto, L.M.4
Wittmann, C.5
-
15
-
-
84924140841
-
High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway
-
Fang, M.-Y., Zhang, C., Yang, S., Cui, J.-Y., Jiang, P.-X., Lou, K., … Xing, X.-H. (2015). High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microbial Cell Factories, 14(1), 8. doi:10.1186/s12934-015-0192-x
-
(2015)
Microbial Cell Factories
, vol.14
, Issue.1
, pp. 8
-
-
Fang, M.-Y.1
Zhang, C.2
Yang, S.3
Cui, J.-Y.4
Jiang, P.-X.5
Lou, K.6
Xing, X.-H.7
-
16
-
-
84947734391
-
Intermediate-sensor assisted push–pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli
-
Fang, M., Wang, T., Zhang, C., Bai, J., Zheng, X., Zhao, X., … Xing, X. H. (2016). Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metabolic Engineering, 33, 41–51. doi:10.1016/j.ymben.2015.10.006
-
(2016)
Metabolic Engineering
, vol.33
, pp. 41-51
-
-
Fang, M.1
Wang, T.2
Zhang, C.3
Bai, J.4
Zheng, X.5
Zhao, X.6
Lou, C.7
Xing, X.-H.8
-
17
-
-
33947305443
-
Production of MBP-HepA fusion protein in recombinant Escherichia coli by optimization of culture medium
-
Chen, Y., Xing, X. H., Ye, F., Kuang, Y., & Luo, M. (2007). Production of MBP-HepA fusion protein in recombinant Escherichia coli by optimization of culture medium. Biochemical Engineering Journal, 34(2), 114–121. 10.1016/j.bej.2006.11.020
-
(2007)
Biochemical Engineering Journal
, vol.34
, Issue.2
, pp. 114-121
-
-
Chen, Y.1
Xing, X.H.2
Ye, F.3
Kuang, Y.4
Luo, M.5
-
18
-
-
67349270900
-
Enzymatic assembly of DNA molecules up to several hundred kilobases
-
Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A, Smith, H. O., … America, N. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343–5. doi:10.1038/nmeth.1318
-
(2009)
Nature Methods
, vol.6
, Issue.5
, pp. 343-345
-
-
Gibson, D.G.1
Young, L.2
Chuang, R.-Y.3
Venter, J.C.4
Hutchison, C.A.5
Smith, H.O.6
-
19
-
-
33747333106
-
Use of dinitrosalicylic acid reagent for determination of reducing sugar
-
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. 10.1021/ac60147a030
-
(1959)
Analytical Chemistry
, vol.31
, Issue.3
, pp. 426-428
-
-
Miller, G.L.1
|