메뉴 건너뛰기




Volumn 39, Issue , 2017, Pages 117-127

Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks

Author keywords

DoE; FBA; GSA; Metabolic Modeling; TFBA; TMFA

Indexed keywords

BIOMOLECULES; DESIGN OF EXPERIMENTS; ENZYME ACTIVITY; METABOLISM; METABOLITES; THERMODYNAMICS;

EID: 85008259039     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2016.11.006     Document Type: Article
Times cited : (24)

References (40)
  • 1
    • 84941198229 scopus 로고    scopus 로고
    • Heading in the right direction: thermodynamics-based network analysis and pathway engineering
    • Ataman, M., Hatzimanikatis, V., Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Curr. Opin. Biotechnol. 36 (2015), 176–182.
    • (2015) Curr. Opin. Biotechnol. , vol.36 , pp. 176-182
    • Ataman, M.1    Hatzimanikatis, V.2
  • 2
    • 85009994377 scopus 로고    scopus 로고
    • redGEM: Systematic reduction of genome-scale metabolic reconstructions for development of core metabolic models
    • PLoS Comp. Biol. (submitted for publication).
    • Ataman, M., Hernandez-Gardiol, D.F., Fengos, G., Hatzimanikatis, V., 2016. redGEM: Systematic reduction of genome-scale metabolic reconstructions for development of core metabolic models. PLoS Comp. Biol. (submitted for publication).
    • (2016)
    • Ataman, M.1    Hernandez-Gardiol, D.F.2    Fengos, G.3    Hatzimanikatis, V.4
  • 3
    • 34250704722 scopus 로고    scopus 로고
    • Changes in the redox state and composition of the quinone pool of Escherichia coli during aerobic batch-culture growth
    • Bekker, M., Kramer, G., Hartog, A.F., Wagner, M.J., et al. Changes in the redox state and composition of the quinone pool of Escherichia coli during aerobic batch-culture growth. Microbiol-Sgm 153 (2007), 1974–1980.
    • (2007) Microbiol-Sgm , vol.153 , pp. 1974-1980
    • Bekker, M.1    Kramer, G.2    Hartog, A.F.3    Wagner, M.J.4
  • 4
    • 84928716941 scopus 로고    scopus 로고
    • Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes
    • Binns, M., de Atauri, P., Vlysidis, A., Cascante, M., Theodoropoulos, C., Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes. Bmc Bioinforma., 2015, 16.
    • (2015) Bmc Bioinforma. , pp. 16
    • Binns, M.1    de Atauri, P.2    Vlysidis, A.3    Cascante, M.4    Theodoropoulos, C.5
  • 5
    • 0002363078 scopus 로고
    • On the experimental attainment of optimum conditions
    • Box, G.E.P., Wilson, K.B., On the experimental attainment of optimum conditions. J. R. Stat. Soc. B 13 (1951), 1–45.
    • (1951) J. R. Stat. Soc. B , vol.13 , pp. 1-45
    • Box, G.E.P.1    Wilson, K.B.2
  • 6
    • 84946657020 scopus 로고
    • Some new three level designs for the study of Quantitative variables
    • Box, G.E.P., Behnken, D.W., Some new three level designs for the study of Quantitative variables. Technometrics 2 (1960), 455–475.
    • (1960) Technometrics , vol.2 , pp. 455-475
    • Box, G.E.P.1    Behnken, D.W.2
  • 7
    • 0003426746 scopus 로고
    • Empirical model-building and response surfaces
    • Wiley New York
    • Box, G.E.P., Draper, N.R., Empirical model-building and response surfaces. 1987, Wiley, New York.
    • (1987)
    • Box, G.E.P.1    Draper, N.R.2
  • 8
    • 84883800631 scopus 로고    scopus 로고
    • Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints
    • Chakrabarti, A., Miskovic, L., Soh, K.C., Hatzimanikatis, V., Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J. 8 (2013), 1043–U1105.
    • (2013) Biotechnol. J. , vol.8 , pp. 1043-U1105
    • Chakrabarti, A.1    Miskovic, L.2    Soh, K.C.3    Hatzimanikatis, V.4
  • 9
    • 0031361378 scopus 로고    scopus 로고
    • Sensitivity analysis of model output: variance-based methods make the difference
    • Chan, K., Saltelli, A., Tarantola, S., Sensitivity analysis of model output: variance-based methods make the difference. Proc. 1997 Winter Simul. Conf., 1997, 261–268.
    • (1997) Proc. 1997 Winter Simul. Conf. , pp. 261-268
    • Chan, K.1    Saltelli, A.2    Tarantola, S.3
  • 10
    • 78650574197 scopus 로고    scopus 로고
    • Synergy between C-13-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in E. coli
    • Chen, X.W., Alonso, A.P., Allen, D.K., Reed, J.L., Shachar-Hill, Y., Synergy between C-13-metabolic flux analysis and flux balance analysis for understanding metabolic adaption to anaerobiosis in E. coli. Metab. Eng. 13 (2011), 38–48.
    • (2011) Metab. Eng. , vol.13 , pp. 38-48
    • Chen, X.W.1    Alonso, A.P.2    Allen, D.K.3    Reed, J.L.4    Shachar-Hill, Y.5
  • 11
    • 0034519221 scopus 로고    scopus 로고
    • Robustness analysis of the Escherichia coli metabolic network
    • Edwards, J.S., Palsson, B.O., Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Progr 16 (2000), 927–939.
    • (2000) Biotechnol. Progr , vol.16 , pp. 927-939
    • Edwards, J.S.1    Palsson, B.O.2
  • 12
    • 82455167105 scopus 로고    scopus 로고
    • Determination of flux directions by thermodynamic network analysis: computing informative metabolite pools
    • Hadlich, F., Noh, K., Wiechert, W., Determination of flux directions by thermodynamic network analysis: computing informative metabolite pools. Math. Comput Simula. 82 (2011), 460–470.
    • (2011) Math. Comput Simula. , vol.82 , pp. 460-470
    • Hadlich, F.1    Noh, K.2    Wiechert, W.3
  • 13
    • 33847797256 scopus 로고    scopus 로고
    • Thermodynamics-based metabolic flux analysis
    • Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V., Thermodynamics-based metabolic flux analysis. Biophys. J. 92 (2007), 1792–1805.
    • (2007) Biophys. J. , vol.92 , pp. 1792-1805
    • Henry, C.S.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 14
    • 85009965604 scopus 로고    scopus 로고
    • Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks
    • Hoppe, A., Hoffmann, S., Holzhutter, H.G., Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. Bmc Syst. Biol., 2007, 1.
    • (2007) Bmc Syst. Biol. , pp. 1
    • Hoppe, A.1    Hoffmann, S.2    Holzhutter, H.G.3
  • 15
    • 51049107514 scopus 로고    scopus 로고
    • Group contribution method for thermodynamic analysis of complex metabolic networks
    • Jankowski, M.D., Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V., Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys. J. 95 (2008), 1487–1499.
    • (2008) Biophys. J. , vol.95 , pp. 1487-1499
    • Jankowski, M.D.1    Henry, C.S.2    Broadbelt, L.J.3    Hatzimanikatis, V.4
  • 16
    • 84866090747 scopus 로고    scopus 로고
    • Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks
    • Kelk, S.M., Olivier, B.G., Stougie, L., Bruggeman, F.J., Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Sci. Rep.-Uk, 2012, 2.
    • (2012) Sci. Rep.-Uk , pp. 2
    • Kelk, S.M.1    Olivier, B.G.2    Stougie, L.3    Bruggeman, F.J.4
  • 17
    • 84900426473 scopus 로고    scopus 로고
    • Design of In silico experiments as a tool for nonlinear sensitivity analysis of knowledge-driven models
    • Kiparissides, A., Georgakis, C., Mantalaris, A., Pistikopoulos, E.N., Design of In silico experiments as a tool for nonlinear sensitivity analysis of knowledge-driven models. Ind. Eng. Chem. Res. 53 (2014), 7517–7525.
    • (2014) Ind. Eng. Chem. Res. , vol.53 , pp. 7517-7525
    • Kiparissides, A.1    Georgakis, C.2    Mantalaris, A.3    Pistikopoulos, E.N.4
  • 18
    • 84857891327 scopus 로고    scopus 로고
    • Use of an uncertainty analysis for genome-scale models as a prediction tool for microbial growth processes in subsurface environments
    • Klier, C., Use of an uncertainty analysis for genome-scale models as a prediction tool for microbial growth processes in subsurface environments. Environ. Sci. Technol. 46 (2012), 2790–2798.
    • (2012) Environ. Sci. Technol. , vol.46 , pp. 2790-2798
    • Klier, C.1
  • 19
    • 33748464202 scopus 로고    scopus 로고
    • Flux balance analysis in the era of metabolomics
    • Lee, J.M., Gianchandani, E.P., Papin, J.A., Flux balance analysis in the era of metabolomics. Brief. Bioinform. 7 (2006), 140–150.
    • (2006) Brief. Bioinform. , vol.7 , pp. 140-150
    • Lee, J.M.1    Gianchandani, E.P.2    Papin, J.A.3
  • 20
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • Mahadevan, R., Edwards, J.S., Doyle, F.J., Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83 (2002), 1331–1340.
    • (2002) Biophys. J. , vol.83 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle, F.J.3
  • 21
    • 75949123498 scopus 로고    scopus 로고
    • Subcellular flux analysis of central metabolism in a heterotrophic arabidopsis cell suspension using steady-state stable isotope labeling
    • Masakapalli, S.K., Le Lay, P., Huddleston, J.E., Pollock, N.L., et al. Subcellular flux analysis of central metabolism in a heterotrophic arabidopsis cell suspension using steady-state stable isotope labeling. Plant Physiol. 152 (2010), 602–619.
    • (2010) Plant Physiol. , vol.152 , pp. 602-619
    • Masakapalli, S.K.1    Le Lay, P.2    Huddleston, J.E.3    Pollock, N.L.4
  • 22
    • 84894231008 scopus 로고    scopus 로고
    • A model-driven Quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 That Is biochemically and thermodynamically consistent
    • McCloskey, D., Gangoiti, J.A., King, Z.A., Naviaux, R.K., et al. A model-driven Quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 That Is biochemically and thermodynamically consistent. Biotechnol. Bioeng. 111 (2014), 803–815.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 803-815
    • McCloskey, D.1    Gangoiti, J.A.2    King, Z.A.3    Naviaux, R.K.4
  • 23
    • 77955058605 scopus 로고    scopus 로고
    • Production of biofuels and biochemicals: in need of an ORACLE
    • Miskovic, L., Hatzimanikatis, V., Production of biofuels and biochemicals: in need of an ORACLE. Trends Biotechnol. 28 (2010), 391–397.
    • (2010) Trends Biotechnol. , vol.28 , pp. 391-397
    • Miskovic, L.1    Hatzimanikatis, V.2
  • 24
    • 78650218972 scopus 로고    scopus 로고
    • Modeling of uncertainties in biochemical reactions
    • Miskovic, L., Hatzimanikatis, V., Modeling of uncertainties in biochemical reactions. Biotechnol. Bioeng. 108 (2011), 413–423.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 413-423
    • Miskovic, L.1    Hatzimanikatis, V.2
  • 25
    • 84940773663 scopus 로고    scopus 로고
    • Rites of passage: requirements and standards for building kinetic models of metabolic phenotypes
    • Miskovic, L., Tokic, M., Fengos, G., Hatzimanikatis, V., Rites of passage: requirements and standards for building kinetic models of metabolic phenotypes. Curr. Opin. Biotechnol. 36 (2015), 146–153.
    • (2015) Curr. Opin. Biotechnol. , vol.36 , pp. 146-153
    • Miskovic, L.1    Tokic, M.2    Fengos, G.3    Hatzimanikatis, V.4
  • 26
    • 84885367114 scopus 로고    scopus 로고
    • Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction
    • O'Brien, E.J., Lerman, J.A., Chang, R.L., Hyduke, D.R., Palsson, B.O., Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol., 2013, 9.
    • (2013) Mol. Syst. Biol. , pp. 9
    • O'Brien, E.J.1    Lerman, J.A.2    Chang, R.L.3    Hyduke, D.R.4    Palsson, B.O.5
  • 27
    • 34547633841 scopus 로고    scopus 로고
    • PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli
    • Ogasawara, H., Ishida, Y., Yamada, K., Yamamoto, K., Ishihama, A., PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. J. Bacteriol. 189 (2007), 5534–5541.
    • (2007) J. Bacteriol. , vol.189 , pp. 5534-5541
    • Ogasawara, H.1    Ishida, Y.2    Yamada, K.3    Yamamoto, K.4    Ishihama, A.5
  • 29
    • 80054069179 scopus 로고    scopus 로고
    • A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011
    • Orth, J.D., Conrad, T.M., Na, J., Lerman, J.A., et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol. Syst. Biol., 2011, 7.
    • (2011) Mol. Syst. Biol. , pp. 7
    • Orth, J.D.1    Conrad, T.M.2    Na, J.3    Lerman, J.A.4
  • 30
    • 84923570019 scopus 로고    scopus 로고
    • Systems Biology: Properties of Reconstructed Networks
    • Cambridge University Press New York
    • Palsson, B., Systems Biology: Properties of Reconstructed Networks. 2006, Cambridge University Press, New York.
    • (2006)
    • Palsson, B.1
  • 31
    • 76749123832 scopus 로고    scopus 로고
    • Metabolic flux analysis in mammalian cell culture
    • Quek, L.E., Dietmair, S., Kromer, J.O., Nielsen, L.K., Metabolic flux analysis in mammalian cell culture. Metab. Eng. 12 (2010), 161–171.
    • (2010) Metab. Eng. , vol.12 , pp. 161-171
    • Quek, L.E.1    Dietmair, S.2    Kromer, J.O.3    Nielsen, L.K.4
  • 32
    • 84866128045 scopus 로고    scopus 로고
    • Shrinking the metabolic solution space using experimental datasets
    • Reed, J.L., Shrinking the metabolic solution space using experimental datasets. Plos Comput. Biol., 2012, 8.
    • (2012) Plos Comput. Biol. , pp. 8
    • Reed, J.L.1
  • 33
    • 84889461919 scopus 로고    scopus 로고
    • Global Sensitivity Analysis: The Primer
    • John Wiley Chichester, England; Hoboken, NJ
    • Saltelli, A., Global Sensitivity Analysis: The Primer. 2008, John Wiley, Chichester, England; Hoboken, NJ.
    • (2008)
    • Saltelli, A.1
  • 34
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segre, D., Vitkup, D., Church, G.M., Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99 (2002), 15112–15117.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 15112-15117
    • Segre, D.1    Vitkup, D.2    Church, G.M.3
  • 35
    • 84900803503 scopus 로고    scopus 로고
    • Computational Studies on Cellular Bioenergetics
    • EPFL Lausanne
    • Soh, K.C., Computational Studies on Cellular Bioenergetics. 2013, EPFL, Lausanne.
    • (2013)
    • Soh, K.C.1
  • 36
    • 84921865747 scopus 로고    scopus 로고
    • Constraining the flux space using thermodynamics and integration of metabolomics data
    • Soh, K.C., Hatzimanikatis, V., Constraining the flux space using thermodynamics and integration of metabolomics data. Methods Mol. Biol. 1191 (2014), 49–63.
    • (2014) Methods Mol. Biol. , vol.1191 , pp. 49-63
    • Soh, K.C.1    Hatzimanikatis, V.2
  • 37
    • 84857052437 scopus 로고    scopus 로고
    • From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks
    • Soh, K.C., Miskovic, L., Hatzimanikatis, V., From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res. 12 (2012), 129–143.
    • (2012) FEMS Yeast Res. , vol.12 , pp. 129-143
    • Soh, K.C.1    Miskovic, L.2    Hatzimanikatis, V.3
  • 38
    • 84893707475 scopus 로고    scopus 로고
    • Systematic construction of kinetic models from genome-scale metabolic networks
    • Stanford, N.J., Lubitz, T., Smallbone, K., Klipp, E., et al. Systematic construction of kinetic models from genome-scale metabolic networks. Plos One, 2013, 8.
    • (2013) Plos One , pp. 8
    • Stanford, N.J.1    Lubitz, T.2    Smallbone, K.3    Klipp, E.4
  • 39
    • 58149154663 scopus 로고    scopus 로고
    • Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism
    • Trinh, C.T., Wlaschin, A., Srienc, F., Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol. Biot. 81 (2009), 813–826.
    • (2009) Appl. Microbiol. Biot. , vol.81 , pp. 813-826
    • Trinh, C.T.1    Wlaschin, A.2    Srienc, F.3
  • 40
    • 79955761880 scopus 로고    scopus 로고
    • Molecular crowding defines a common origin for the warburg effect in proliferating cells and the lactate threshold in muscle physiology
    • Vazquez, A., Oltvai, Z.N., Molecular crowding defines a common origin for the warburg effect in proliferating cells and the lactate threshold in muscle physiology. Plos One, 2011, 6.
    • (2011) Plos One , pp. 6
    • Vazquez, A.1    Oltvai, Z.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.