메뉴 건너뛰기




Volumn 11, Issue 18, 2014, Pages 59-65

Methods for integration of transcriptomic data in genome-scale metabolic models

Author keywords

Contraint based model; Flux balance analysis; Omics

Indexed keywords


EID: 84928412434     PISSN: None     EISSN: 20010370     Source Type: Journal    
DOI: 10.1016/j.csbj.2014.08.009     Document Type: Review
Times cited : (57)

References (57)
  • 1
    • 0032600888 scopus 로고    scopus 로고
    • Metabolic fluxes and metabolic engineering
    • G. Stephanopoulos Metabolic fluxes and metabolic engineering Metab Eng 1 1999 1 11
    • (1999) Metab Eng , vol.1 , pp. 1-11
    • Stephanopoulos, G.1
  • 2
    • 84901321053 scopus 로고    scopus 로고
    • Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes
    • A. Zelezniak, S. Sheridan, and K.R. Patil Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes PLoS Comput Biol 10 2014 e1003572
    • (2014) PLoS Comput Biol , vol.10 , pp. e1003572
    • Zelezniak, A.1    Sheridan, S.2    Patil, K.R.3
  • 3
    • 0034741983 scopus 로고    scopus 로고
    • 13C metabolic flux analysis
    • 13C metabolic flux analysis Metab Eng 3 2001 195 206
    • (2001) Metab Eng , vol.3 , pp. 195-206
    • Wiechert, W.1
  • 6
    • 0347506028 scopus 로고    scopus 로고
    • It is all about metabolic fluxes
    • J. Nielsen It is all about metabolic fluxes J Bacteriol 185 2003 7031 7035
    • (2003) J Bacteriol , vol.185 , pp. 7031-7035
    • Nielsen, J.1
  • 7
    • 84919394581 scopus 로고    scopus 로고
    • 13C-fluxomics: A tool for measuring metabolic phenotypes
    • 13C-fluxomics: a tool for measuring metabolic phenotypes Aust Biochem 40 2009 17 20
    • (2009) Aust Biochem , vol.40 , pp. 17-20
    • Krömer, J.1    Quek, L.-E.2    Nielsen, L.3
  • 8
    • 33846061120 scopus 로고    scopus 로고
    • 13C-based flux analysis
    • 13C-based flux analysis Mol Syst Biol 2 2006 62
    • (2006) Mol Syst Biol , vol.2 , pp. 62
    • Sauer, U.1
  • 9
    • 84865574629 scopus 로고    scopus 로고
    • A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation
    • M. Celton, I. Sanchez, A. Goelzer, V. Fromion, C. Camarasa, and S. Dequin A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation BMC Genomics 2012 317
    • (2012) BMC Genomics , pp. 317
    • Celton, M.1    Sanchez, I.2    Goelzer, A.3    Fromion, V.4    Camarasa, C.5    Dequin, S.6
  • 10
    • 84880044091 scopus 로고    scopus 로고
    • Fluxomics - Connecting 'omics analysis and phenotypes
    • G. Winter, and J.O. Krömer Fluxomics - connecting 'omics analysis and phenotypes Environ Microbiol 15 2013 1901 1916
    • (2013) Environ Microbiol , vol.15 , pp. 1901-1916
    • Winter, G.1    Krömer, J.O.2
  • 12
    • 84866487453 scopus 로고    scopus 로고
    • Integration of expression data in genome-scale metabolic network reconstructions
    • A.S. Blazier, and J.A. Papin Integration of expression data in genome-scale metabolic network reconstructions Front Physiol 3 299 2012
    • (2012) Front Physiol , vol.3 , Issue.299
    • Blazier, A.S.1    Papin, J.A.2
  • 13
    • 84857999389 scopus 로고    scopus 로고
    • A metabolic network approach for the identification and prioritization of antimicrobial drug targets
    • A.K. Chavali, K.M. D'Auria, E.L. Hewlett, R.D. Pearson, and J.A. Papin A metabolic network approach for the identification and prioritization of antimicrobial drug targets Trends Microbiol 2012 113 123
    • (2012) Trends Microbiol , pp. 113-123
    • Chavali, A.K.1    D'Auria, K.M.2    Hewlett, E.L.3    Pearson, R.D.4    Papin, J.A.5
  • 14
    • 84872093417 scopus 로고    scopus 로고
    • Analysis of omics data with genome-scale models of metabolism
    • D.R. Hyduke, N.E. Lewis, and B.∅. Palsson Analysis of omics data with genome-scale models of metabolism Mol Biosyst 9 2013 167 174
    • (2013) Mol Biosyst , vol.9 , pp. 167-174
    • Hyduke, D.R.1    Lewis, N.E.2    Palsson, B.O.3
  • 16
    • 9544253891 scopus 로고    scopus 로고
    • Genome-scale models of microbial cells: Evaluating the consequences of constraints
    • N.D. Price, J.L. Reed, and B.∅. Palsson Genome-scale models of microbial cells: evaluating the consequences of constraints Nat Rev Microbiol 2 2004 886 897
    • (2004) Nat Rev Microbiol , vol.2 , pp. 886-897
    • Price, N.D.1    Reed, J.L.2    Palsson, B.O.3
  • 18
    • 76449115656 scopus 로고    scopus 로고
    • Integrating multiple "omics" analysis for microbial biology: Application and methodologies
    • W. Zhang, F. Li, and L. Nie Integrating multiple "omics" analysis for microbial biology: application and methodologies Microbiology 156 2010 287 301
    • (2010) Microbiology , vol.156 , pp. 287-301
    • Zhang, W.1    Li, F.2    Nie, L.3
  • 19
    • 0035989610 scopus 로고    scopus 로고
    • In silico biology through "omics"
    • B. Palsson In silico biology through "omics" Nat Biotechnol 20 2002 649 650
    • (2002) Nat Biotechnol , vol.20 , pp. 649-650
    • Palsson, B.1
  • 20
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • N.E. Lewis, H. Nagarajan, and B.O. Palsson Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nat Rev Microbiol 10 2012 291 305
    • (2012) Nat Rev Microbiol , vol.10 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.O.3
  • 22
    • 67650709732 scopus 로고    scopus 로고
    • Metabolomics: Ready for the prime time?
    • M. Mayr Metabolomics: ready for the prime time? Circ Cardiovasc Genet 1 2008 58 65
    • (2008) Circ Cardiovasc Genet , vol.1 , pp. 58-65
    • Mayr, M.1
  • 23
    • 84895963679 scopus 로고    scopus 로고
    • What mRNA abundances can tell us about metabolism
    • A. Hoppe What mRNA abundances can tell us about metabolism Metabolites 2012 614 631
    • (2012) Metabolites , pp. 614-631
    • Hoppe, A.1
  • 24
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Z. Wang, M. Gerstein, and M. Snyder RNA-Seq: a revolutionary tool for transcriptomics Nat Rev Genet 10 2009 57 63
    • (2009) Nat Rev Genet , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 25
    • 79957665988 scopus 로고    scopus 로고
    • Microarrays, deep sequencing and the true measure of the transcriptome
    • J.H. Malone, and B. Oliver Microarrays, deep sequencing and the true measure of the transcriptome BMC Biol 9 2011 34
    • (2011) BMC Biol , vol.9 , pp. 34
    • Malone, J.H.1    Oliver, B.2
  • 26
    • 77958460555 scopus 로고    scopus 로고
    • The challenges of integrating multi-omic data sets
    • B. Palsson, and K. Zengler The challenges of integrating multi-omic data sets Nat Chem Biol 6 2010 787 789
    • (2010) Nat Chem Biol , vol.6 , pp. 787-789
    • Palsson, B.1    Zengler, K.2
  • 27
    • 14544268137 scopus 로고    scopus 로고
    • Uncovering transcriptional regulation of metabolism by using metabolic network topology
    • K.R. Patil, and J. Nielsen Uncovering transcriptional regulation of metabolism by using metabolic network topology Proc Natl Acad Sci U S A 102 2005 2685 2689
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 2685-2689
    • Patil, K.R.1    Nielsen, J.2
  • 28
    • 59149103774 scopus 로고    scopus 로고
    • Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae
    • P.H. Bradley, M.J. Brauer, J.D. Rabinowitz, and O.G. Troyanskaya Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae PLoS Comput Biol 5 2009
    • (2009) PLoS Comput Biol , vol.5
    • Bradley, P.H.1    Brauer, M.J.2    Rabinowitz, J.D.3    Troyanskaya, O.G.4
  • 29
    • 66149122278 scopus 로고    scopus 로고
    • Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p
    • J.F. Moxley, M.C. Jewett, M.R. Antoniewicz, S.G. Villas-Boas, H. Alper Alper, and RT Wheeler Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p Proc Natl Acad Sci U S A 106 2009 6477 6482
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 6477-6482
    • Moxley, J.F.1    Jewett, M.C.2    Antoniewicz, M.R.3    Villas-Boas, S.G.4    Alper Alper, H.5    Wheeler, R.T.6
  • 30
    • 84866128045 scopus 로고    scopus 로고
    • Shrinking the metabolic solution space using experimental datasets
    • J.L. Reed Shrinking the metabolic solution space using experimental datasets PLoS Comput Biol 2012 e1002662
    • (2012) PLoS Comput Biol , pp. e1002662
    • Reed, J.L.1
  • 31
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: Integrating 'omics' data sets
    • A.R. Joyce, and B.∅. Palsson The model organism as a system: integrating 'omics' data sets Nat Rev Mol Cell Biol 7 2006 198 210
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 198-210
    • Joyce, A.R.1    Palsson, B.O.2
  • 32
    • 84895986259 scopus 로고    scopus 로고
    • Recent advances in the reconstruction of metabolic models and integration of omics data
    • R. Saha, A. Chowdhury, and C.D. Maranas Recent advances in the reconstruction of metabolic models and integration of omics data Curr Opin Biotechnol 29C 2014 39 45
    • (2014) Curr Opin Biotechnol , vol.29 C , pp. 39-45
    • Saha, R.1    Chowdhury, A.2    Maranas, C.D.3
  • 33
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • D. Machado, and M. Herrgård Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism PLoS Comput Biol 10 2014 e1003580
    • (2014) PLoS Comput Biol , vol.10 , pp. e1003580
    • Machado, D.1    Herrgård, M.2
  • 34
    • 84890092837 scopus 로고    scopus 로고
    • GIM3E: Condition-specific models of cellular metabolism developed from metabolomics and expression data
    • B.J. Schmidt, A. Ebrahim, T.O. Metz, J.N. Adkins, B. Palsson, and DR. Hyduke GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data Bioinformatics 29 2013 2900 2908
    • (2013) Bioinformatics , vol.29 , pp. 2900-2908
    • Schmidt, B.J.1    Ebrahim, A.2    Metz, T.O.3    Adkins, J.N.4    Palsson, B.5    Hyduke, D.R.6
  • 35
    • 84883808938 scopus 로고    scopus 로고
    • Flux-coupled genes and their use in metabolic flux analysis
    • H.U. Kim, W.J. Kim, and S.Y. Lee Flux-coupled genes and their use in metabolic flux analysis Biotechnol J 8 2013 1035 1042
    • (2013) Biotechnol J , vol.8 , pp. 1035-1042
    • Kim, H.U.1    Kim, W.J.2    Lee, S.Y.3
  • 36
    • 84866539049 scopus 로고    scopus 로고
    • RELATCH: Relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations
    • J. Kim, and J.L. Reed RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations Genome Biol 2012 R78
    • (2012) Genome Biol , pp. R78
    • Kim, J.1    Reed, J.L.2
  • 38
    • 78049255973 scopus 로고    scopus 로고
    • Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis
    • S. Chandrasekaran, and N.D. Price Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis Proc Natl Acad Sci U S A 107 2010 17845 17850
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 17845-17850
    • Chandrasekaran, S.1    Price, N.D.2
  • 39
    • 79951536020 scopus 로고    scopus 로고
    • Functional integration of a metabolic network model and expression data without arbitrary thresholding
    • P.A. Jensen, and J.A. Papin Functional integration of a metabolic network model and expression data without arbitrary thresholding Bioinformatics 27 2011 541 547
    • (2011) Bioinformatics , vol.27 , pp. 541-547
    • Jensen, P.A.1    Papin, J.A.2
  • 41
    • 6044265058 scopus 로고    scopus 로고
    • Integration of gene expression data into genome-scale metabolic models
    • M. Åkesson, J. Förster, and J. Nielsen Integration of gene expression data into genome-scale metabolic models Metab Eng 6 2004 285 293
    • (2004) Metab Eng , vol.6 , pp. 285-293
    • Åkesson, M.1    Förster, J.2    Nielsen, J.3
  • 42
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • J. Förster, I. Famili, P. Fu, B.∅. Palsson, and J. Nielsen Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network Genome Res 13 2003 244 253
    • (2003) Genome Res , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3    Palsson, B.O.4    Nielsen, J.5
  • 43
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • S.A. Becker, and B.O. Palsson Context-specific metabolic networks are consistent with experiments PLoS Comput Biol 4 2008 e1000082
    • (2008) PLoS Comput Biol , vol.4 , pp. e1000082
    • Becker, S.A.1    Palsson, B.O.2
  • 44
    • 79951745716 scopus 로고    scopus 로고
    • IMAT: An integrative metabolic analysis tool
    • H. Zur, E. Ruppin, and T. Shlomi iMAT: an integrative metabolic analysis tool Bioinformatics 26 2010 3140 3142
    • (2010) Bioinformatics , vol.26 , pp. 3140-3142
    • Zur, H.1    Ruppin, E.2    Shlomi, T.3
  • 46
    • 84875977583 scopus 로고    scopus 로고
    • Inferring metabolic states in uncharacterized environments using gene-expression measurements
    • S. Rossell, M.A. Huynen, and R.A. Notebaart Inferring metabolic states in uncharacterized environments using gene-expression measurements PLoS Comput Biol 9 2013
    • (2013) PLoS Comput Biol , vol.9
    • Rossell, S.1    Huynen, M.A.2    Notebaart, R.A.3
  • 47
    • 70049110173 scopus 로고    scopus 로고
    • Interpreting expression data with metabolic flux models: Predicting Mycobacterium tuberculosis mycolic acid production
    • C. Colijn, A. Brandes, J. Zucker, D.S. Lun, B. Weiner, and MR Farhat Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production PLoS Comput Biol 5 2009 e1000489
    • (2009) PLoS Comput Biol , vol.5 , pp. e1000489
    • Colijn, C.1    Brandes, A.2    Zucker, J.3    Lun, D.S.4    Weiner, B.5    Farhat, M.R.6
  • 48
    • 84860998236 scopus 로고    scopus 로고
    • Inferring carbon sources from gene expression profiles using metabolic flux models
    • A. Brandes, D.S. Lun, K. Ip, J. Zucker, C. Colijn, and B Weiner Inferring carbon sources from gene expression profiles using metabolic flux models PLoS One 2012 e36947
    • (2012) PLoS One , pp. e36947
    • Brandes, A.1    Lun, D.S.2    Ip, K.3    Zucker, J.4    Colijn, C.5    Weiner, B.6
  • 50
    • 0023709196 scopus 로고
    • Metabolic control theory: A structural approach
    • C. Reder Metabolic control theory: a structural approach J Theor Biol 135 1988 175 201
    • (1988) J Theor Biol , vol.135 , pp. 175-201
    • Reder, C.1
  • 52
    • 0343035686 scopus 로고    scopus 로고
    • Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements
    • J. Pramanik, and J.D. Keasling Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements Biotechnol Bioeng 56 1997 398 421
    • (1997) Biotechnol Bioeng , vol.56 , pp. 398-421
    • Pramanik, J.1    Keasling, J.D.2
  • 53
    • 0020687005 scopus 로고
    • Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate
    • H.V. Westerhoff, K.J. Hellingwerf, and K. Van Dam Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate Proc Natl Acad Sci U S A 80 1983 305 309
    • (1983) Proc Natl Acad Sci U S A , vol.80 , pp. 305-309
    • Westerhoff, H.V.1    Hellingwerf, K.J.2    Van Dam, K.3
  • 55
    • 67449096729 scopus 로고    scopus 로고
    • Flux balance analysis of biological systems: Applications and challenges
    • K. Raman, and N. Chandra Flux balance analysis of biological systems: applications and challenges Brief Bioinform 10 2009 435 449
    • (2009) Brief Bioinform , vol.10 , pp. 435-449
    • Raman, K.1    Chandra, N.2
  • 57
    • 0027146142 scopus 로고
    • Batch kinetics of Corynebacterium glutamicum during growth on various carbon substrates: Use of substrate mixtures to localise metabolic bottlenecks
    • M. Cocaign, C. Monnet, and N. Lindley Batch kinetics of Corynebacterium glutamicum during growth on various carbon substrates: use of substrate mixtures to localise metabolic bottlenecks Appl Microbiol Biotechnol 40 1993 526 530
    • (1993) Appl Microbiol Biotechnol , vol.40 , pp. 526-530
    • Cocaign, M.1    Monnet, C.2    Lindley, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.