메뉴 건너뛰기




Volumn 9, Issue 11, 2014, Pages

Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA;

EID: 84911888355     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0112524     Document Type: Article
Times cited : (34)

References (41)
  • 1
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives
    • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84: 37-53.
    • (2009) Appl Microbiol Biotechnol , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 2
    • 84863230581 scopus 로고    scopus 로고
    • Metabolic network modeling and simulation for drug targeting and discovery
    • Kim HU, Sohn SB, Lee SY (2012) Metabolic network modeling and simulation for drug targeting and discovery. Biotechnol J 7: 330-342.
    • (2012) Biotechnol J , vol.7 , pp. 330-342
    • Kim, H.U.1    Sohn, S.B.2    Lee, S.Y.3
  • 4
    • 80054969621 scopus 로고    scopus 로고
    • A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology
    • Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BO, et al. (2011) A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst Biol 5: 180.
    • (2011) BMC Syst Biol , vol.5 , pp. 180
    • Bordbar, A.1    Feist, A.M.2    Usaite-Black, R.3    Woodcock, J.4    Palsson, B.O.5
  • 6
    • 33846061120 scopus 로고    scopus 로고
    • Metabolic networks in motion: 13C-based flux analysis
    • Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2: 62.
    • (2006) Mol Syst Biol , vol.2 , pp. 62
    • Sauer, U.1
  • 8
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5: 320.
    • (2009) Mol Syst Biol , vol.5 , pp. 320
    • Oberhardt, M.A.1    Palsson, B.O.2    Papin, J.A.3
  • 9
    • 84867554554 scopus 로고    scopus 로고
    • Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling
    • Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin Cancer Res 18: 5572-5584.
    • (2012) Clin Cancer Res , vol.18 , pp. 5572-5584
    • Jerby, L.1    Ruppin, E.2
  • 10
    • 84866487453 scopus 로고    scopus 로고
    • Integration of expression data in genome-scale metabolic network reconstructions
    • Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 3: 299.
    • (2012) Front Physiol , vol.3 , pp. 299
    • Blazier, A.S.1    Papin, J.A.2
  • 11
    • 6044265058 scopus 로고    scopus 로고
    • Integration of gene expression data into genome-scale metabolic models
    • Akesson M, Forster J, Nielsen J (2004) Integration of gene expression data into genome-scale metabolic models. Metab Eng 6: 285-293.
    • (2004) Metab Eng , vol.6 , pp. 285-293
    • Akesson, M.1    Forster, J.2    Nielsen, J.3
  • 12
    • 84872093417 scopus 로고    scopus 로고
    • Analysis of omics data with genomescale models of metabolism
    • Hyduke DR, Lewis NE, Palsson BO (2013) Analysis of omics data with genomescale models of metabolism. Mol Biosyst 9: 167-174.
    • (2013) Mol Biosyst , vol.9 , pp. 167-174
    • Hyduke, D.R.1    Lewis, N.E.2    Palsson, B.O.3
  • 13
    • 2342648924 scopus 로고    scopus 로고
    • Integrating high-throughput and computational data elucidates bacterial networks
    • Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429: 92-96.
    • (2004) Nature , vol.429 , pp. 92-96
    • Covert, M.W.1    Knight, E.M.2    Reed, J.L.3    Herrgard, M.J.4    Palsson, B.O.5
  • 15
    • 84866925914 scopus 로고    scopus 로고
    • Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia
    • Fang X, Wallqvist A, Reifman J (2012) Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia. PLOS Comput Biol 8: e1002688.
    • (2012) PLOS Comput Biol , vol.8 , pp. e1002688
    • Fang, X.1    Wallqvist, A.2    Reifman, J.3
  • 16
    • 84880335117 scopus 로고    scopus 로고
    • Bridging the gap between gene expression and metabolic phenotype via kinetic models
    • Vital-Lopez FG, Wallqvist A, Reifman J (2013) Bridging the gap between gene expression and metabolic phenotype via kinetic models. BMC Syst Biol 7: 63.
    • (2013) BMC Syst Biol , vol.7 , pp. 63
    • Vital-Lopez, F.G.1    Wallqvist, A.2    Reifman, J.3
  • 17
    • 70049110173 scopus 로고    scopus 로고
    • Interpreting expression data with metabolic flux models: Predicting Mycobacterium tuberculosis mycolic acid production
    • Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, et al. (2009) Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLOS Comput Biol 5: e1000489.
    • (2009) PLOS Comput Biol , vol.5 , pp. e1000489
    • Colijn, C.1    Brandes, A.2    Zucker, J.3    Lun, D.S.4    Weiner, B.5
  • 18
    • 79951745716 scopus 로고    scopus 로고
    • IMAT: An integrative metabolic analysis tool
    • Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26: 3140-3142.
    • (2010) Bioinformatics , vol.26 , pp. 3140-3142
    • Zur, H.1    Ruppin, E.2    Shlomi, T.3
  • 19
    • 84862301363 scopus 로고    scopus 로고
    • Improving metabolic flux predictions using absolute gene expression data
    • Lee D, Smallbone K, Dunn WB, Murabito E, Winder CL, et al. (2012) Improving metabolic flux predictions using absolute gene expression data. BMC Syst Biol 6: 73.
    • (2012) BMC Syst Biol , vol.6 , pp. 73
    • Lee, D.1    Smallbone, K.2    Dunn, W.B.3    Murabito, E.4    Winder, C.L.5
  • 20
    • 43449132092 scopus 로고    scopus 로고
    • Is maximization of molar yield in metabolic networks favoured by evolution?
    • Schuster S, Pfeiffer T, Fell DA (2008) Is maximization of molar yield in metabolic networks favoured by evolution? J Theor Biol 252: 497-504.
    • (2008) J Theor Biol , vol.252 , pp. 497-504
    • Schuster, S.1    Pfeiffer, T.2    Fell, D.A.3
  • 21
    • 84858155067 scopus 로고    scopus 로고
    • Dynamic models of metabolism: Review of the cybernetic approach
    • Ramkrishna D, Song HS (2012) Dynamic models of metabolism: review of the cybernetic approach. AIChE J 58: 986-997.
    • (2012) AIChE J , vol.58 , pp. 986-997
    • Ramkrishna, D.1    Song, H.S.2
  • 22
    • 3242795003 scopus 로고    scopus 로고
    • The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks
    • Holzhutter HG (2004) The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem 271: 2905-2922.
    • (2004) Eur J Biochem , vol.271 , pp. 2905-2922
    • Holzhutter, H.G.1
  • 23
    • 34447523907 scopus 로고    scopus 로고
    • Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
    • Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3: 119.
    • (2007) Mol Syst Biol , vol.3 , pp. 119
    • Schuetz, R.1    Kuepfer, L.2    Sauer, U.3
  • 26
    • 84875977583 scopus 로고    scopus 로고
    • Inferring metabolic states in uncharacterized environments using gene-expression measurements
    • Rossell S, Huynen MA, Notebaart RA (2013) Inferring metabolic states in uncharacterized environments using gene-expression measurements. PLOS Comput Biol 9: e1002988.
    • (2013) PLOS Comput Biol , vol.9 , pp. e1002988
    • Rossell, S.1    Huynen, M.A.2    Notebaart, R.A.3
  • 27
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLOS Comput Biol 4: e1000082.
    • (2008) PLOS Comput Biol , vol.4 , pp. e1000082
    • Becker, S.A.1    Palsson, B.O.2
  • 28
    • 84861744439 scopus 로고    scopus 로고
    • Yeast 5 - An expanded reconstruction of the Saccharomyces cerevisiae metabolic network
    • Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP (2012) Yeast 5 - an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst Biol 6: 55.
    • (2012) BMC Syst Biol , vol.6 , pp. 55
    • Heavner, B.D.1    Smallbone, K.2    Barker, B.3    Mendes, P.4    Walker, L.P.5
  • 29
    • 34247612307 scopus 로고    scopus 로고
    • Multiple highthroughput analyses monitor the response of E coli to perturbations
    • Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, et al. (2007) Multiple highthroughput analyses monitor the response of E. coli to perturbations. Science 316: 593-597.
    • (2007) Science , vol.316 , pp. 593-597
    • Ishii, N.1    Nakahigashi, K.2    Baba, T.3    Robert, M.4    Soga, T.5
  • 30
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genomescale metabolic network reconstructions of Escherichia coli
    • McCloskey D, Palsson BO, Feist AM (2013) Basic and applied uses of genomescale metabolic network reconstructions of Escherichia coli. Mol Syst Biol 9: 661.
    • (2013) Mol Syst Biol , vol.9 , pp. 661
    • McCloskey, D.1    Palsson, B.O.2    Feist, A.M.3
  • 31
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
    • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, et al. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3: 121.
    • (2007) Mol Syst Biol , vol.3 , pp. 121
    • Feist, A.M.1    Henry, C.S.2    Reed, J.L.3    Krummenacker, M.4    Joyce, A.R.5
  • 32
    • 0344328817 scopus 로고    scopus 로고
    • An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)
    • Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4: R54.
    • (2003) Genome Biol , vol.4 , pp. R54
    • Reed, J.L.1    Vo, T.D.2    Schilling, C.H.3    Palsson, B.O.4
  • 33
    • 84866975246 scopus 로고    scopus 로고
    • Multiscale modeling of metabolism and macromolecular synthesis in E coli and its application to the evolution of codon usage
    • Thiele I, Fleming RM, Que R, Bordbar A, Diep D, et al. (2012) Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage. PLOS ONE 7: e45635.
    • (2012) PLOS ONE , vol.7 , pp. e45635
    • Thiele, I.1    Fleming, R.M.2    Que, R.3    Bordbar, A.4    Diep, D.5
  • 35
    • 0037406843 scopus 로고    scopus 로고
    • Thirteen years of building constraint-based in silico models of Escherichia coli
    • Reed JL, Palsson BO (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185: 2692-2699.
    • (2003) J Bacteriol , vol.185 , pp. 2692-2699
    • Reed, J.L.1    Palsson, B.O.2
  • 36
    • 0037079023 scopus 로고    scopus 로고
    • Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth
    • Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186-189.
    • (2002) Nature , vol.420 , pp. 186-189
    • Ibarra, R.U.1    Edwards, J.S.2    Palsson, B.O.3
  • 37
    • 84867132196 scopus 로고    scopus 로고
    • Scheffersomyces stipitis: A comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae
    • Papini M, Nookaew I, Uhlen M, Nielsen J (2012) Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microb Cell Fact 11: 136.
    • (2012) Microb Cell Fact , vol.11 , pp. 136
    • Papini, M.1    Nookaew, I.2    Uhlen, M.3    Nielsen, J.4
  • 38
    • 77951612556 scopus 로고    scopus 로고
    • BiGG: A Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions
    • Schellenberger J, Park JO, Conrad TM, Palsson BO (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11: 213.
    • (2010) BMC Bioinformatics , vol.11 , pp. 213
    • Schellenberger, J.1    Park, J.O.2    Conrad, T.M.3    Palsson, B.O.4
  • 39
    • 80053175304 scopus 로고    scopus 로고
    • TIGER: Toolbox for integrating genomescale metabolic models, expression data, and transcriptional regulatory networks
    • Jensen PA, Lutz KA, Papin JA (2011) TIGER: Toolbox for integrating genomescale metabolic models, expression data, and transcriptional regulatory networks. BMC Syst Biol 5: 147.
    • (2011) BMC Syst Biol , vol.5 , pp. 147
    • Jensen, P.A.1    Lutz, K.A.2    Papin, J.A.3
  • 41
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573: 83-92.
    • (2004) FEBS Lett , vol.573 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3    Herzyk, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.