메뉴 건너뛰기




Volumn 31, Issue 12, 2015, Pages i268-i275

Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; CLASSIFICATION; CLUSTER ANALYSIS; HUMAN; MACHINE LEARNING; MORTALITY; NEOPLASMS; SURVIVAL;

EID: 84931091190     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv244     Document Type: Conference Paper
Times cited : (140)

References (18)
  • 1
    • 4444252785 scopus 로고    scopus 로고
    • Multi-instance kernels
    • Sammut C. and Hoffmann A.G. (eds Morgan Kaufmann, San Francisco, USA
    • Gärtner T., et al. (2002). Multi-instance kernels. In: Sammut C. and Hoffmann A.G. (eds) , Proceedings of the 19th International Conference on Machine Learning. Morgan Kaufmann, San Francisco, USA, pp. 179-186
    • (2002) Proceedings of the 19th International Conference on Machine Learning , pp. 179-186
    • Gärtner, T.1
  • 2
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan D. and Weinberg R.A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-674
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 3
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • Thrun S. et al (eds. MIT Press, Cambridge, MA
    • He X. and Niyogi P. (2004). Locality preserving projections. In: Thrun S. et al (eds.) Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, pp. 153-160
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 153-160
    • He, X.1    Niyogi, P.2
  • 6
    • 79955480657 scopus 로고    scopus 로고
    • Multiple kernel learning for dimensionality reduction
    • Lin Y.-Y., et al. (2011). Multiple kernel learning for dimensionality reduction. IEEE Trans. Pattern Anal. Machine Intell., 33, 1147-1160
    • (2011) IEEE Trans Pattern Anal. Machine Intell , vol.33 , pp. 1147-1160
    • Lin, Y.-Y.1
  • 7
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering-a resampling-based method for class discovery and visualization of gene expression microarray data
    • Kluwer Academic Publishers, Hingham, MA, USA
    • Monti S., et al. (2003). Consensus clustering-a resampling-based method for class discovery and visualization of gene expression microarray data. In: Machine Learning, Functional Genomics Special Issue. Kluwer Academic Publishers, Hingham, MA, USA, pp. 91-118
    • (2003) Machine Learning, Functional Genomics Special Issue , pp. 91-118
    • Monti, S.1
  • 8
    • 77952108366 scopus 로고    scopus 로고
    • Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma
    • Noushmehr H., et al. (2010). Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell, 17, 510-522
    • (2010) Cancer Cell , vol.17 , pp. 510-522
    • Noushmehr, H.1
  • 9
    • 84907664033 scopus 로고    scopus 로고
    • The future of glioblastoma therapy: Synergism of standard of care and immunotherapy
    • Patel M.A., et al. (2014). The future of glioblastoma therapy: synergism of standard of care and immunotherapy. Cancers, 6, 1953-1987
    • (2014) Cancers , vol.6 , pp. 1953-1987
    • Patel, M.A.1
  • 10
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. (1971). Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc., 66, 847-850
    • (1971) J. Am. Stat. Assoc , vol.66 , pp. 847-850
    • Rand, W.M.1
  • 11
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 20, 53-65
    • (1987) J. Comput. Appl. Math , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 12
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
    • Shen R., et al. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics, 25, 2906-2912
    • (2009) Bioinformatics , vol.25 , pp. 2906-2912
    • Shen, R.1
  • 13
    • 84859992638 scopus 로고    scopus 로고
    • Integrative subtype discovery in glioblastoma using iCluster
    • Shen R., et al. (2012). Integrative subtype discovery in glioblastoma using iCluster. PloS One, 7,: e35236
    • (2012) Plos One , vol.7 , pp. e35236
    • Shen, R.1
  • 14
    • 84864819611 scopus 로고    scopus 로고
    • The Cancer Genome Atlas Network
    • The Cancer Genome Atlas Network (2006). The Cancer Genome Atlas. http://cancergenome.nih.gov/
    • (2006) The Cancer Genome Atlas
  • 15
    • 73649123907 scopus 로고    scopus 로고
    • Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in pdgfra, idh1, egfr, and nf1
    • Verhaak R.G.W., et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17, 98-110
    • (2010) Cancer Cell , vol.17 , pp. 98-110
    • Verhaak, R.G.W.1
  • 16
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U. (2007). A tutorial on spectral clustering. Stat. Comput., 17, 395-416
    • (2007) Stat. Comput , vol.17 , pp. 395-416
    • Von Luxburg, U.1
  • 17
    • 84895516704 scopus 로고    scopus 로고
    • Similarity network fusion for aggregating data types on a genomic scale
    • Wang B., et al. (2014). Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods, 11, 333-337
    • (2014) Nat. Methods , vol.11 , pp. 333-337
    • Wang, B.1
  • 18
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: A general framework for dimensionality reduction
    • Yan S., et al. (2007). Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Machine Intell., 29, 40-51
    • (2007) IEEE Trans. Pattern Anal. Machine Intell , vol.29 , pp. 40-51
    • Yan, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.