메뉴 건너뛰기




Volumn 7, Issue AUG, 2016, Pages

MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models

Author keywords

Constraint based reconstruction and analysis (COBRA); Metabolic modeling; Metabolic phenotypes; Metabolism; Metabolomics; Model analysis; Protocol

Indexed keywords

GENOME; HUMAN; HUMAN CELL; HUMAN EXPERIMENT; METABOLISM; METABOLOMICS; PHENOTYPE; PLANT MODEL; STRATIFICATION; WORKFLOW;

EID: 84988890296     PISSN: None     EISSN: 1664042X     Source Type: Journal    
DOI: 10.3389/fphys.2016.00327     Document Type: Article
Times cited : (40)

References (57)
  • 1
    • 84863662483 scopus 로고    scopus 로고
    • Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
    • Agren, R., Bordel, S., Mardinoglu, A., Pornputtapong, N., Nookaew, I., and Nielsen, J. (2012). Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8:e1002518. doi: 10.1371/journal.pcbi.1002518
    • (2012) PLoS Comput. Biol. , vol.8
    • Agren, R.1    Bordel, S.2    Mardinoglu, A.3    Pornputtapong, N.4    Nookaew, I.5    Nielsen, J.6
  • 2
    • 84898663879 scopus 로고    scopus 로고
    • Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling
    • Agren, R., Mardinoglu, A., Asplund, A., Kampf, C., Uhlen, M., and Nielsen, J. (2014). Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 721. doi: 10.1002/msb.145122
    • (2014) Mol. Syst. Biol. , vol.10 , pp. 721
    • Agren, R.1    Mardinoglu, A.2    Asplund, A.3    Kampf, C.4    Uhlen, M.5    Nielsen, J.6
  • 3
    • 80052406750 scopus 로고    scopus 로고
    • Linkage of organic anion transporter-1 to metabolic pathways through integrated "omics"-driven network and functional analysis
    • Ahn, S. Y., Jamshidi, N., Mo, M. L., Wu, W., Eraly, S. A., Dnyanmote, A., et al. (2011). Linkage of organic anion transporter-1 to metabolic pathways through integrated "omics"-driven network and functional analysis. J. Biol. Chem. 286, 31522-31531. doi: 10.1074/jbc.M111.272534
    • (2011) J. Biol. Chem. , vol.286 , pp. 31522-31531
    • Ahn, S.Y.1    Jamshidi, N.2    Mo, M.L.3    Wu, W.4    Eraly, S.A.5    Dnyanmote, A.6
  • 4
    • 8144230574 scopus 로고    scopus 로고
    • Discrimination of modes of action of antifungal substances by use of metabolic footprinting
    • Allen, J., Davey, H. M., Broadhurst, D., Rowland, J. J., Oliver, S. G., and Kell, D. B. (2004). Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Appl. Environ. Microbiol. 70, 6157-6165. doi: 10.1128/AEM.70.10.6157-6165.2004
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 6157-6165
    • Allen, J.1    Davey, H.M.2    Broadhurst, D.3    Rowland, J.J.4    Oliver, S.G.5    Kell, D.B.6
  • 5
    • 84870853302 scopus 로고    scopus 로고
    • Contextualization procedure and modeling of monocyte specific TLR signaling
    • Aurich, M. K., and Thiele, I. (2012). Contextualization procedure and modeling of monocyte specific TLR signaling. PLoS ONE 7:e49978. doi: 10.1371/journal.pone.0049978
    • (2012) PLoS ONE , vol.7
    • Aurich, M.K.1    Thiele, I.2
  • 6
    • 84950258683 scopus 로고    scopus 로고
    • Computational modeling of human metabolism and its application to systems biomedicine
    • Aurich, M. K., and Thiele, I. (2016). Computational modeling of human metabolism and its application to systems biomedicine. Methods Mol. Biol. 1386, 253-281. doi: 10.1007/978-1-4939-3283-2_12
    • (2016) Methods Mol. Biol. , vol.1386 , pp. 253-281
    • Aurich, M.K.1    Thiele, I.2
  • 7
    • 84930373777 scopus 로고    scopus 로고
    • Prediction of intracellular metabolic states from extracellular metabolomic data
    • Aurich, M., Paglia, G., Rolfsson, Ó., Hrafnsdóttir, S., Magnúsdóttir, M., Stefaniak, M., et al. (2015). Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics 11, 603-619. doi: 10.1007/s11306-014-0721-3
    • (2015) Metabolomics , vol.11 , pp. 603-619
    • Aurich, M.1    Paglia, G.2    Rolfsson, Ó.3    Hrafnsdóttir, S.4    Magnúsdóttir, M.5    Stefaniak, M.6
  • 8
    • 84919935837 scopus 로고    scopus 로고
    • Getting the right answers: understanding metabolomics challenges
    • Beisken, S., Eiden, M., and Salek, R. M. (2015). Getting the right answers: understanding metabolomics challenges. Expert Rev. Mol. Diagn. 15, 97-109. doi: 10.1586/14737159.2015.974562
    • (2015) Expert Rev. Mol. Diagn. , vol.15 , pp. 97-109
    • Beisken, S.1    Eiden, M.2    Salek, R.M.3
  • 9
    • 84866487453 scopus 로고    scopus 로고
    • Integration of expression data in genome-scale metabolic network reconstructions
    • Blazier, A. S., and Papin, J. A. (2012). Integration of expression data in genome-scale metabolic network reconstructions. Front. Physiol. 3:299. doi: 10.3389/fphys.2012.00299
    • (2012) Front. Physiol. , vol.3 , pp. 299
    • Blazier, A.S.1    Papin, J.A.2
  • 10
    • 84855929956 scopus 로고    scopus 로고
    • Using the reconstructed genome-scale human metabolic network to study physiology and pathology
    • Bordbar, A., and Palsson, B. O. (2012). Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J. Intern. Med. 271, 131-141. doi: 10.1111/j.1365-2796.2011.02494.x
    • (2012) J. Intern. Med. , vol.271 , pp. 131-141
    • Bordbar, A.1    Palsson, B.O.2
  • 11
    • 77958537509 scopus 로고    scopus 로고
    • Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions
    • Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. O., and Jamshidi, N. (2010). Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422. doi: 10.1038/msb.2010.68
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 422
    • Bordbar, A.1    Lewis, N.E.2    Schellenberger, J.3    Palsson, B.O.4    Jamshidi, N.5
  • 12
    • 84863331725 scopus 로고    scopus 로고
    • Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation
    • Bordbar, A., Mo, M. L., Nakayasu, E. S., Schrimpe-Rutledge, A. C., Kim, Y. M., Metz, T. O., et al. (2012). Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol. Syst. Biol. 8, 558. doi: 10.1038/msb.2012.21
    • (2012) Mol. Syst. Biol. , vol.8 , pp. 558
    • Bordbar, A.1    Mo, M.L.2    Nakayasu, E.S.3    Schrimpe-Rutledge, A.C.4    Kim, Y.M.5    Metz, T.O.6
  • 13
    • 77954253893 scopus 로고    scopus 로고
    • MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks
    • Cottret, L., Wildridge, D., Vinson, F., Barrett, M. P., Charles, H., Sagot, M. F., et al. (2010). MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks. Nucleic Acids Res. 38, W132-W137. doi: 10.1093/nar/gkq312
    • (2010) Nucleic Acids Res. , vol.38 , pp. W132-W137
    • Cottret, L.1    Wildridge, D.2    Vinson, F.3    Barrett, M.P.4    Charles, H.5    Sagot, M.F.6
  • 14
    • 77955518663 scopus 로고    scopus 로고
    • Cell culture metabolomics: applications and future directions
    • Cuperlovic-Culf, M., Barnett, D. A., Culf, A. S., and Chute, I. (2010). Cell culture metabolomics: applications and future directions. Drug Discov. Today 15, 610-621. doi: 10.1016/j.drudis.2010.06.012
    • (2010) Drug Discov. Today , vol.15 , pp. 610-621
    • Cuperlovic-Culf, M.1    Barnett, D.A.2    Culf, A.S.3    Chute, I.4
  • 15
    • 38549127678 scopus 로고    scopus 로고
    • ChEBI: a database and ontology for chemical entities of biological interest
    • Degtyarenko, K., de Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A., et al. (2008). ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36, D344-D350. doi: 10.1093/nar/gkm791
    • (2008) Nucleic Acids Res. , vol.36 , pp. D344-D350
    • Degtyarenko, K.1    de Matos, P.2    Ennis, M.3    Hastings, J.4    Zbinden, M.5    McNaught, A.6
  • 16
    • 84890209181 scopus 로고    scopus 로고
    • Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
    • Fan, J., Kamphorst, J. J., Mathew, R., Chung, M. K., White, E., Shlomi, T., et al. (2013). Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9, 712. doi: 10.1038/msb.2013.65
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 712
    • Fan, J.1    Kamphorst, J.J.2    Mathew, R.3    Chung, M.K.4    White, E.5    Shlomi, T.6
  • 17
    • 84924020376 scopus 로고    scopus 로고
    • Pathomx: an interactive workflow-based tool for the analysis of metabolomic data
    • Fitzpatrick, M. A., McGrath, C. M., and Young, S. P. (2014). Pathomx: an interactive workflow-based tool for the analysis of metabolomic data. BMC Bioinform. 15:396. doi: 10.1186/s12859-014-0396-9
    • (2014) BMC Bioinform. , vol.15 , pp. 396
    • Fitzpatrick, M.A.1    McGrath, C.M.2    Young, S.P.3
  • 18
    • 80052580351 scopus 로고    scopus 로고
    • Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase
    • Frezza, C., Zheng, L., Folger, O., Rajagopalan, K. N., MacKenzie, E. D., Jerby, L., et al. (2011). Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225-228. doi: 10.1038/nature10363
    • (2011) Nature , vol.477 , pp. 225-228
    • Frezza, C.1    Zheng, L.2    Folger, O.3    Rajagopalan, K.N.4    MacKenzie, E.D.5    Jerby, L.6
  • 19
    • 84899489010 scopus 로고    scopus 로고
    • Exometabolome analysis reveals hypoxia at the up-scaling of a Saccharomyces cerevisiae high-cell density fed-batch biopharmaceutical process
    • Fu, Z., Verderame, T. D., Leighton, J. M., Sampey, B. P., Appelbaum, E. R., Patel, P. S., et al. (2014). Exometabolome analysis reveals hypoxia at the up-scaling of a Saccharomyces cerevisiae high-cell density fed-batch biopharmaceutical process. Microb. Cell Fact. 13:32. doi: 10.1186/1475-2859-13-32
    • (2014) Microb. Cell Fact. , vol.13 , pp. 32
    • Fu, Z.1    Verderame, T.D.2    Leighton, J.M.3    Sampey, B.P.4    Appelbaum, E.R.5    Patel, P.S.6
  • 20
    • 84936890106 scopus 로고    scopus 로고
    • Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling
    • Ghaffari, P., Mardinoglu, A., Asplund, A., Shoaie, S., Kampf, C., Uhlen, M., et al. (2015). Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci. Rep. 5:8183. doi: 10.1038/srep08183
    • (2015) Sci. Rep. , vol.5 , pp. 8183
    • Ghaffari, P.1    Mardinoglu, A.2    Asplund, A.3    Shoaie, S.4    Kampf, C.5    Uhlen, M.6
  • 21
    • 77957117220 scopus 로고    scopus 로고
    • Computationally efficient flux variability analysis
    • Gudmundsson, S., and Thiele, I. (2010). Computationally efficient flux variability analysis. BMC Bioinformatics 11:489. doi: 10.1186/1471-2105-11-489
    • (2010) BMC Bioinformatics , vol.11 , pp. 489
    • Gudmundsson, S.1    Thiele, I.2
  • 22
    • 84908698705 scopus 로고    scopus 로고
    • Comparative evaluation of open source software for mapping between metabolite identifiers in metabolic network reconstructions: application to Recon 2
    • Haraldsdottir, H. S., Thiele, I., and Fleming, R. M. (2014). Comparative evaluation of open source software for mapping between metabolite identifiers in metabolic network reconstructions: application to Recon 2. J. Cheminform. 6:2. doi: 10.1186/1758-2946-6-2
    • (2014) J. Cheminform. , vol.6 , pp. 2
    • Haraldsdottir, H.S.1    Thiele, I.2    Fleming, R.M.3
  • 23
    • 84920265598 scopus 로고    scopus 로고
    • Transparency in metabolic network reconstruction enables scalable biological discovery
    • Heavner, B. D., and Price, N. D. (2015). Transparency in metabolic network reconstruction enables scalable biological discovery. Curr. Opin. Biotechnol. 34:105-109. doi: 10.1016/j.copbio.2014.12.010
    • (2015) Curr. Opin. Biotechnol. , vol.34 , pp. 105-109
    • Heavner, B.D.1    Price, N.D.2
  • 24
    • 84861420588 scopus 로고    scopus 로고
    • Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation
    • Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., et al. (2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 36, 1040-1044. doi: 10.1126/science.1218595
    • (2012) Science , vol.36 , pp. 1040-1044
    • Jain, M.1    Nilsson, R.2    Sharma, S.3    Madhusudhan, N.4    Kitami, T.5    Souza, A.L.6
  • 25
    • 83655183165 scopus 로고    scopus 로고
    • Individualized therapy of HHT driven by network analysis of metabolomic profiles
    • Jamshidi, N., Miller, F. J., Mandel, J., Evans, T., and Kuo, M. D. (2011). Individualized therapy of HHT driven by network analysis of metabolomic profiles. BMC Syst. Biol. 5:200. doi: 10.1186/1752-0509-5-200
    • (2011) BMC Syst. Biol. , vol.5 , pp. 200
    • Jamshidi, N.1    Miller, F.J.2    Mandel, J.3    Evans, T.4    Kuo, M.D.5
  • 26
    • 77956417789 scopus 로고    scopus 로고
    • Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism
    • Jerby, L., Shlomi, T., and Ruppin, E. (2010). Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6:401. doi: 10.1038/msb.2010.56
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 401
    • Jerby, L.1    Shlomi, T.2    Ruppin, E.3
  • 27
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: integrating 'omics' data sets
    • Joyce, A. R., and Palsson, B. O. (2006). The model organism as a system: integrating 'omics' data sets. Nat. Rev. Mol. Cell Biol. 7, 198-210. doi: 10.1038/nrm1857
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 198-210
    • Joyce, A.R.1    Palsson, B.O.2
  • 28
    • 2942676743 scopus 로고    scopus 로고
    • Metabolomics and systems biology: making sense of the soup
    • Kell, D. B. (2004). Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296-307. doi: 10.1016/j.mib.2004.04.012
    • (2004) Curr. Opin. Microbiol. , vol.7 , pp. 296-307
    • Kell, D.B.1
  • 29
    • 84861790964 scopus 로고    scopus 로고
    • The dynamic range of the human metabolome revealed by challenges
    • Krug, S., Kastenmuller, G., Stuckler, F., Rist, M. J., Skurk, T., Sailer, M., et al. (2012). The dynamic range of the human metabolome revealed by challenges. FASEB J. 26, 2607-2619. doi: 10.1096/fj.11-198093
    • (2012) FASEB J. , vol.26 , pp. 2607-2619
    • Krug, S.1    Kastenmuller, G.2    Stuckler, F.3    Rist, M.J.4    Skurk, T.5    Sailer, M.6
  • 30
    • 84922201382 scopus 로고    scopus 로고
    • Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells
    • Kucharzewska, P., Christianson, H. C., and Belting, M. (2015). Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS ONE 10:e0116740. doi: 10.1371/journal.pone.0116740
    • (2015) PLoS ONE , vol.10
    • Kucharzewska, P.1    Christianson, H.C.2    Belting, M.3
  • 31
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • Lewis, N. E., Nagarajan, H., and Palsson, B. O. (2012). Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291-305. doi: 10.1038/nrmicro2737
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.O.3
  • 32
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • Machado, D., and Herrgard, M. (2014). Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 10:e1003580. doi: 10.1371/journal.pcbi.1003580
    • (2014) PLoS Comput. Biol. , vol.10
    • Machado, D.1    Herrgard, M.2
  • 33
    • 84883787394 scopus 로고    scopus 로고
    • Integration of clinical data with a genome-scale metabolic model of the human adipocyte
    • Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Nookaew, I., Jacobson, P., et al. (2013). Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9, 649. doi: 10.1038/msb.2013.5
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 649
    • Mardinoglu, A.1    Agren, R.2    Kampf, C.3    Asplund, A.4    Nookaew, I.5    Jacobson, P.6
  • 34
    • 84898011025 scopus 로고    scopus 로고
    • Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease
    • Mardinoglu, A., Agren, R., Kampf, C., Asplund, A., Uhlen, M., and Nielsen, J. (2014b). Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5:3083. doi: 10.1038/ncomms4083
    • (2014) Nat. Commun. , vol.5 , pp. 3083
    • Mardinoglu, A.1    Agren, R.2    Kampf, C.3    Asplund, A.4    Uhlen, M.5    Nielsen, J.6
  • 35
    • 84908884352 scopus 로고    scopus 로고
    • Defining the human adipose tissue proteome to reveal metabolic alterations in obesity
    • Mardinoglu, A., Kampf, C., Asplund, A., Fagerberg, L., Hallstrom, B. M., Edlund, K., et al. (2014a). Defining the human adipose tissue proteome to reveal metabolic alterations in obesity. J. Proteome Res. 13, 5106-5119. doi: 10.1021/pr500586e
    • (2014) J. Proteome Res. , vol.13 , pp. 5106-5119
    • Mardinoglu, A.1    Kampf, C.2    Asplund, A.3    Fagerberg, L.4    Hallstrom, B.M.5    Edlund, K.6
  • 36
    • 84952863976 scopus 로고    scopus 로고
    • Updates in metabolomics tools and resources: 2014-2015
    • Misra, B. B., and van der Hooft, J. J. (2016). Updates in metabolomics tools and resources: 2014-2015. Electrophoresis 37, 86-110. doi: 10.1002/elps.201500417
    • (2016) Electrophoresis , vol.37 , pp. 86-110
    • Misra, B.B.1    van der Hooft, J.J.2
  • 37
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo, M. L., Palsson, B. O., and Herrgard, M. J. (2009). Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3:37. doi: 10.1186/1752-0509-3-37
    • (2009) BMC Syst. Biol. , vol.3 , pp. 37
    • Mo, M.L.1    Palsson, B.O.2    Herrgard, M.J.3
  • 39
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • Orth, J. D., Thiele, I., and Palsson, B. O. (2010). What is flux balance analysis? Nat. Biotechnol. 28, 245-248. doi: 10.1038/nbt.1614
    • (2010) Nat. Biotechnol. , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.O.3
  • 40
    • 84856231790 scopus 로고    scopus 로고
    • Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-ToF-MS)
    • Paglia, G., Hrafnsdottir, S., Magnusdottir, M., Fleming, R. M., Thorlacius, S., Palsson, B. O., et al. (2012). Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-ToF-MS). Anal. Bioanal. Chem. 402, 1183-1198. doi: 10.1007/s00216-011-5556-4
    • (2012) Anal. Bioanal. Chem. , vol.402 , pp. 1183-1198
    • Paglia, G.1    Hrafnsdottir, S.2    Magnusdottir, M.3    Fleming, R.M.4    Thorlacius, S.5    Palsson, B.O.6
  • 41
    • 84897372328 scopus 로고    scopus 로고
    • Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits
    • Petersen, A. K., Zeilinger, S., Kastenmuller, G., Romisch-Margl, W., Brugger, M., Peters, A., et al. (2013). Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum. Mol. Genet. 23, 534-545. doi: 10.1093/hmg/ddt430
    • (2013) Hum. Mol. Genet. , vol.23 , pp. 534-545
    • Petersen, A.K.1    Zeilinger, S.2    Kastenmuller, G.3    Romisch-Margl, W.4    Brugger, M.5    Peters, A.6
  • 42
    • 8544235670 scopus 로고    scopus 로고
    • Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies
    • Price, N. D., Schellenberger, J., and Palsson, B. O. (2004). Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. Biophys. J. 87, 2172-2186. doi: 10.1529/biophysj.104.043000
    • (2004) Biophys. J. , vol.87 , pp. 2172-2186
    • Price, N.D.1    Schellenberger, J.2    Palsson, B.O.3
  • 43
    • 84897931922 scopus 로고    scopus 로고
    • Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease
    • Sahoo, S., Aurich, M. K., Jonsson, J. J., and Thiele, I. (2014). Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front. Physiol. 5:91. doi: 10.3389/fphys.2014.00091
    • (2014) Front. Physiol. , vol.5 , pp. 91
    • Sahoo, S.1    Aurich, M.K.2    Jonsson, J.J.3    Thiele, I.4
  • 44
    • 77951880802 scopus 로고    scopus 로고
    • Metabolomics for functional genomics, systems biology, and biotechnology
    • Saito, K., and Matsuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 61, 463-489. doi: 10.1146/annurev.arplant.043008.092035
    • (2010) Annu. Rev. Plant Biol. , vol.61 , pp. 463-489
    • Saito, K.1    Matsuda, F.2
  • 45
    • 65549092780 scopus 로고    scopus 로고
    • Use of randomized sampling for analysis of metabolic networks
    • Schellenberger, J., and Palsson, B. O. (2009). Use of randomized sampling for analysis of metabolic networks. J. Biol. Chem. 284, 5457-5461. doi: 10.1074/jbc.R800048200
    • (2009) J. Biol. Chem. , vol.284 , pp. 5457-5461
    • Schellenberger, J.1    Palsson, B.O.2
  • 46
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
    • Schellenberger, J., Que, R., Fleming, R. M., Thiele, I., Orth, J. D., Feist, A. M., et al. (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290-1307. doi: 10.1038/nprot.2011.308
    • (2011) Nat. Protoc. , vol.6 , pp. 1290-1307
    • Schellenberger, J.1    Que, R.2    Fleming, R.M.3    Thiele, I.4    Orth, J.D.5    Feist, A.M.6
  • 47
    • 84890092837 scopus 로고    scopus 로고
    • GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data
    • Schmidt, B. J., Ebrahim, A., Metz, T. O., Adkins, J. N., Palsson, B. O., and Hyduke, D. R. (2013). GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics 29, 2900-2908. doi: 10.1093/bioinformatics/btt493
    • (2013) Bioinformatics , vol.29 , pp. 2900-2908
    • Schmidt, B.J.1    Ebrahim, A.2    Metz, T.O.3    Adkins, J.N.4    Palsson, B.O.5    Hyduke, D.R.6
  • 48
    • 84919381769 scopus 로고    scopus 로고
    • Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for Alzheimer's disease
    • Stempler, S., Yizhak, K., and Ruppin, E. (2014). Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for Alzheimer's disease. PLoS ONE 9:e105383. doi: 10.1371/journal.pone.0105383
    • (2014) PLoS ONE , vol.9
    • Stempler, S.1    Yizhak, K.2    Ruppin, E.3
  • 49
    • 78651467275 scopus 로고    scopus 로고
    • A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2
    • Thiele, I., Hyduke, D. R., Steeb, B., Fankam, G., Allen, D. K., Bazzani, S., et al. (2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst. Biol. 5:8. doi: 10.1186/1752-0509-5-8
    • (2011) BMC Syst. Biol. , vol.5 , pp. 8
    • Thiele, I.1    Hyduke, D.R.2    Steeb, B.3    Fankam, G.4    Allen, D.K.5    Bazzani, S.6
  • 50
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele, I., and Palsson, B. O. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93-121. doi: 10.1038/nprot.2009.203
    • (2010) Nat. Protoc. , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, B.O.2
  • 53
    • 79960126760 scopus 로고    scopus 로고
    • rBioNet: a COBRA toolbox extension for reconstructing high-quality biochemical networks
    • Thorleifsson, S. G., and Thiele, I. (2011). rBioNet: a COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27, 2009-2010. doi: 10.1093/bioinformatics/btr308
    • (2011) Bioinformatics , vol.27 , pp. 2009-2010
    • Thorleifsson, S.G.1    Thiele, I.2
  • 54
    • 84964754404 scopus 로고    scopus 로고
    • Improved metabolite identification with MIDAS and MAGMa through MS/MS spectral dataset-driven parameter optimization
    • Verdegem, D., Lambrechts, D., Carmeliet, P., and Ghesquière, B. (2016). Improved metabolite identification with MIDAS and MAGMa through MS/MS spectral dataset-driven parameter optimization. Metabolomics 12, 1-16. doi: 10.1007/s11306-016-1036-3
    • (2016) Metabolomics , vol.12 , pp. 1-16
    • Verdegem, D.1    Lambrechts, D.2    Carmeliet, P.3    Ghesquière, B.4
  • 55
    • 84896701551 scopus 로고    scopus 로고
    • Fast reconstruction of compact context-specific metabolic network models
    • Vlassis, N., Pacheco, M. P., and Sauter, T. (2014). Fast reconstruction of compact context-specific metabolic network models. PLoS Comput. Biol. 10:e1003424. doi: 10.1371/journal.pcbi.1003424
    • (2014) PLoS Comput. Biol. , vol.10
    • Vlassis, N.1    Pacheco, M.P.2    Sauter, T.3
  • 57
    • 84930377006 scopus 로고    scopus 로고
    • Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer
    • Yizhak, K., Gaude, E., Le Devedec, S., Waldman, Y. Y., Stein, G. Y., van de Water, B., et al. (2014). Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. Elife 3:e03641. doi: 10.7554/eLife.03641
    • (2014) Elife , vol.3
    • Yizhak, K.1    Gaude, E.2    Le Devedec, S.3    Waldman, Y.Y.4    Stein, G.Y.5    van de Water, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.