-
1
-
-
80054765940
-
Bioenergetic consequences of PINK1 mutations in Parkinson disease
-
Abramov A. Y., Gegg M., Grunewald A., Wood N. W., Klein C. and Schapira A. H. (2011) Bioenergetic consequences of PINK1 mutations in Parkinson disease. PLoS ONE 6, e25622.
-
(2011)
PLoS ONE
, vol.6
-
-
Abramov, A.Y.1
Gegg, M.2
Grunewald, A.3
Wood, N.W.4
Klein, C.5
Schapira, A.H.6
-
2
-
-
84921925390
-
PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402
-
Aerts L., Craessaerts K., De Strooper B. and Morais V. A. (2015a) PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402. J. Biol. Chem. 290, 2798–2811.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 2798-2811
-
-
Aerts, L.1
Craessaerts, K.2
De Strooper, B.3
Morais, V.A.4
-
4
-
-
78349309594
-
Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects
-
Amo T., Sato S., Saiki S., Wolf A. M., Toyomizu M., Gautier C. A., Shen J., Ohta S. and Hattori N. (2011) Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiol. Dis. 41, 111–118.
-
(2011)
Neurobiol. Dis.
, vol.41
, pp. 111-118
-
-
Amo, T.1
Sato, S.2
Saiki, S.3
Wolf, A.M.4
Toyomizu, M.5
Gautier, C.A.6
Shen, J.7
Ohta, S.8
Hattori, N.9
-
5
-
-
84880303306
-
PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage
-
Arena G., Gelmetti V., Torosantucci L., Vignone D., Lamorte G., De Rosa P., Cilia E., Jonas E. A. and Valente E. M. (2013) PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ. 20, 920–930.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 920-930
-
-
Arena, G.1
Gelmetti, V.2
Torosantucci, L.3
Vignone, D.4
Lamorte, G.5
De Rosa, P.6
Cilia, E.7
Jonas, E.A.8
Valente, E.M.9
-
6
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen Y. and Dorn G. W., 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
7
-
-
33745589773
-
Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
-
Clark I. E., Dodson M. W., Jiang C., Cao J. H., Huh J. R., Seol J. H., Yoo S. J., Hay B. A. and Guo M. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166.
-
(2006)
Nature
, vol.441
, pp. 1162-1166
-
-
Clark, I.E.1
Dodson, M.W.2
Jiang, C.3
Cao, J.H.4
Huh, J.R.5
Seol, J.H.6
Yoo, S.J.7
Hay, B.A.8
Guo, M.9
-
8
-
-
84878533362
-
Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease
-
Costa A. C., Loh S. H. and Martins L. M. (2013) Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease. Cell Death Dis. 4, e467.
-
(2013)
Cell Death Dis.
, vol.4
-
-
Costa, A.C.1
Loh, S.H.2
Martins, L.M.3
-
9
-
-
77951235489
-
Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1
-
Cui M., Tang X., Christian W. V., Yoon Y. and Tieu K. (2010) Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J. Biol. Chem. 285, 11740–11752.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 11740-11752
-
-
Cui, M.1
Tang, X.2
Christian, W.V.3
Yoon, Y.4
Tieu, K.5
-
10
-
-
67649399288
-
Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission
-
Dagda R. K., Cherra S. J., 3rd, Kulich S. M., Tandon A., Park D. and Chu C. T. (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284, 13843–13855.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 13843-13855
-
-
Dagda, R.K.1
Cherra, S.J.2
Kulich, S.M.3
Tandon, A.4
Park, D.5
Chu, C.T.6
-
11
-
-
79551574736
-
PINK1 cleavage at position A103 by the mitochondrial protease PARL
-
Deas E., Plun-Favreau H., Gandhi S., et al. (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20, 867–879.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 867-879
-
-
Deas, E.1
Plun-Favreau, H.2
Gandhi, S.3
-
12
-
-
55749090654
-
The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila
-
Deng H., Dodson M. W., Huang H. and Guo M. (2008) The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl Acad. Sci. USA 105, 14503–14508.
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 14503-14508
-
-
Deng, H.1
Dodson, M.W.2
Huang, H.3
Guo, M.4
-
13
-
-
84929582993
-
The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications
-
Durcan T. M. and Fon E. A. (2015) The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29, 989–999.
-
(2015)
Genes Dev.
, vol.29
, pp. 989-999
-
-
Durcan, T.M.1
Fon, E.A.2
-
14
-
-
36049038504
-
Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin
-
Exner N., Treske B., Paquet D., et al. (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27, 12413–12418.
-
(2007)
J. Neurosci.
, vol.27
, pp. 12413-12418
-
-
Exner, N.1
Treske, B.2
Paquet, D.3
-
15
-
-
84864150600
-
Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences
-
Exner N., Lutz A. K., Haass C. and Winklhofer K. F. (2012) Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062.
-
(2012)
EMBO J.
, vol.31
, pp. 3038-3062
-
-
Exner, N.1
Lutz, A.K.2
Haass, C.3
Winklhofer, K.F.4
-
16
-
-
84943598690
-
Differential submitochondrial localization of PINK1 as a molecular switch for mediating distinct mitochondrial signaling pathways
-
Fallaize D., Chin L. S. and Li L. (2015) Differential submitochondrial localization of PINK1 as a molecular switch for mediating distinct mitochondrial signaling pathways. Cell. Signal. 27, 2543–2554.
-
(2015)
Cell. Signal.
, vol.27
, pp. 2543-2554
-
-
Fallaize, D.1
Chin, L.S.2
Li, L.3
-
17
-
-
61649088435
-
PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death
-
Gandhi S., Wood-Kaczmar A., Yao Z., et al. (2009) PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 33, 627–638.
-
(2009)
Mol. Cell
, vol.33
, pp. 627-638
-
-
Gandhi, S.1
Wood-Kaczmar, A.2
Yao, Z.3
-
18
-
-
13344277993
-
Functional recovery in parkinsonian monkeys treated with GDNF
-
Gash D. M., Zhang Z., Ovadia A., et al. (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380, 252–255.
-
(1996)
Nature
, vol.380
, pp. 252-255
-
-
Gash, D.M.1
Zhang, Z.2
Ovadia, A.3
-
19
-
-
49649097747
-
Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress
-
Gautier C. A., Kitada T. and Shen J. (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl Acad. Sci. USA 105, 11364–11369.
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 11364-11369
-
-
Gautier, C.A.1
Kitada, T.2
Shen, J.3
-
20
-
-
84861381591
-
Regulation of mitochondrial permeability transition pore by PINK1
-
Gautier C. A., Giaime E., Caballero E., Nunez L., Song Z., Chan D., Villalobos C. and Shen J. (2012) Regulation of mitochondrial permeability transition pore by PINK1. Mol. Neurodegener. 7, 22.
-
(2012)
Mol. Neurodegener.
, vol.7
, pp. 22
-
-
Gautier, C.A.1
Giaime, E.2
Caballero, E.3
Nunez, L.4
Song, Z.5
Chan, D.6
Villalobos, C.7
Shen, J.8
-
21
-
-
62749113469
-
Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells
-
Gegg M. E., Cooper J. M., Schapira A. H. and Taanman J. W. (2009) Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS ONE 4, e4756.
-
(2009)
PLoS ONE
, vol.4
-
-
Gegg, M.E.1
Cooper, J.M.2
Schapira, A.H.3
Taanman, J.W.4
-
22
-
-
84920575121
-
PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane
-
Gehrke S., Wu Z., Klinkenberg M., Sun Y., Auburger G., Guo S. and Lu B. (2015) PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab. 21, 95–108.
-
(2015)
Cell Metab.
, vol.21
, pp. 95-108
-
-
Gehrke, S.1
Wu, Z.2
Klinkenberg, M.3
Sun, Y.4
Auburger, G.5
Guo, S.6
Lu, B.7
-
23
-
-
75949130828
-
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
-
Geisler S., Holmstrom K. M., Skujat D., Fiesel F. C., Rothfuss O. C., Kahle P. J. and Springer W. (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 119-131
-
-
Geisler, S.1
Holmstrom, K.M.2
Skujat, D.3
Fiesel, F.C.4
Rothfuss, O.C.5
Kahle, P.J.6
Springer, W.7
-
24
-
-
66749163493
-
Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration
-
Gispert S., Ricciardi F., Kurz A., et al. (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4, e5777.
-
(2009)
PLoS ONE
, vol.4
-
-
Gispert, S.1
Ricciardi, F.2
Kurz, A.3
-
25
-
-
0037386532
-
Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants
-
Greene J. C., Whitworth A. J., Kuo I., Andrews L. A., Feany M. B. and Pallanck L. J. (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083.
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 4078-4083
-
-
Greene, J.C.1
Whitworth, A.J.2
Kuo, I.3
Andrews, L.A.4
Feany, M.B.5
Pallanck, L.J.6
-
26
-
-
84859428688
-
Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment
-
Greene A. W., Grenier K., Aguileta M. A., Muise S., Farazifard R., Haque M. E., McBride H. M., Park D. S. and Fon E. A. (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13, 378–385.
-
(2012)
EMBO Rep.
, vol.13
, pp. 378-385
-
-
Greene, A.W.1
Grenier, K.2
Aguileta, M.A.3
Muise, S.4
Farazifard, R.5
Haque, M.E.6
McBride, H.M.7
Park, D.S.8
Fon, E.A.9
-
27
-
-
68549136513
-
Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology
-
Grunewald A., Gegg M. E., Taanman J. W., King R. H., Kock N., Klein C. and Schapira A. H. (2009) Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp. Neurol. 219, 266–273.
-
(2009)
Exp. Neurol.
, vol.219
, pp. 266-273
-
-
Grunewald, A.1
Gegg, M.E.2
Taanman, J.W.3
King, R.H.4
Kock, N.5
Klein, C.6
Schapira, A.H.7
-
28
-
-
39449098267
-
Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP
-
Haque M. E., Thomas K. J., D'Souza C., et al. (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc. Natl Acad. Sci. USA 105, 1716–1721.
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 1716-1721
-
-
Haque, M.E.1
Thomas, K.J.2
D'Souza, C.3
-
29
-
-
84863305249
-
Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1
-
Haque M. E., Mount M. P., Safarpour F., et al. (2012) Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1. J. Biol. Chem. 287, 23162–23170.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 23162-23170
-
-
Haque, M.E.1
Mount, M.P.2
Safarpour, F.3
-
30
-
-
84890429468
-
High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
-
Hasson S. A., Kane L. A., Yamano K., et al. (2013) High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295.
-
(2013)
Nature
, vol.504
, pp. 291-295
-
-
Hasson, S.A.1
Kane, L.A.2
Yamano, K.3
-
31
-
-
79953156438
-
Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance
-
Heeman B., Van den Haute C., Aelvoet S. A., et al. (2011) Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J. Cell Sci. 124, 1115–1125.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 1115-1125
-
-
Heeman, B.1
Van den Haute, C.2
Aelvoet, S.A.3
-
32
-
-
84951930787
-
The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy
-
Heo J. M., Ordureau A., Paulo J. A., Rinehart J. and Harper J. W. (2015) The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol. Cell 60, 7–20.
-
(2015)
Mol. Cell
, vol.60
, pp. 7-20
-
-
Heo, J.M.1
Ordureau, A.2
Paulo, J.A.3
Rinehart, J.4
Harper, J.W.5
-
33
-
-
84882754147
-
A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase PINK1
-
Hertz N. T., Berthet A., Sos M. L., Thorn K. S., Burlingame A. L., Nakamura K. and Shokat K. M. (2013) A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase PINK1. Cell 154, 737–747.
-
(2013)
Cell
, vol.154
, pp. 737-747
-
-
Hertz, N.T.1
Berthet, A.2
Sos, M.L.3
Thorn, K.S.4
Burlingame, A.L.5
Nakamura, K.6
Shokat, K.M.7
-
34
-
-
33846288002
-
Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6
-
Hoepken H. H., Gispert S., Morales B., et al. (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis. 25, 401–411.
-
(2007)
Neurobiol. Dis.
, vol.25
, pp. 401-411
-
-
Hoepken, H.H.1
Gispert, S.2
Morales, B.3
-
35
-
-
84881260124
-
Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
-
Iguchi M., Kujuro Y., Okatsu K., et al. (2013) Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 288, 22019–22032.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 22019-22032
-
-
Iguchi, M.1
Kujuro, Y.2
Okatsu, K.3
-
36
-
-
78649685455
-
Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
-
Jin S. M., Lazarou M., Wang C., Kane L. A., Narendra D. P. and Youle R. J. (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 933-942
-
-
Jin, S.M.1
Lazarou, M.2
Wang, C.3
Kane, L.A.4
Narendra, D.P.5
Youle, R.J.6
-
37
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane L. A., Lazarou M., Fogel A. I., Li Y., Yamano K., Sarraf S. A., Banerjee S. and Youle R. J. (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153.
-
(2014)
J. Cell Biol.
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
Sarraf, S.A.6
Banerjee, S.7
Youle, R.J.8
-
38
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite A., Kondapalli C., Gourlay R., et al. (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127–139.
-
(2014)
Biochem. J.
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
-
39
-
-
84938742614
-
Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation
-
Kazlauskaite A., Martinez-Torres R. J., Wilkie S., et al. (2015) Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 16, 939–954.
-
(2015)
EMBO Rep.
, vol.16
, pp. 939-954
-
-
Kazlauskaite, A.1
Martinez-Torres, R.J.2
Wilkie, S.3
-
40
-
-
0028874203
-
GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo
-
Kearns C. M. and Gash D. M. (1995) GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res. 672, 104–111.
-
(1995)
Brain Res.
, vol.672
, pp. 104-111
-
-
Kearns, C.M.1
Gash, D.M.2
-
41
-
-
84897895717
-
Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants
-
Klein P., Muller-Rischart A. K., Motori E., Schonbauer C., Schnorrer F., Winklhofer K. F. and Klein R. (2014) Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO J. 33, 341–355.
-
(2014)
EMBO J.
, vol.33
, pp. 341-355
-
-
Klein, P.1
Muller-Rischart, A.K.2
Motori, E.3
Schonbauer, C.4
Schnorrer, F.5
Winklhofer, K.F.6
Klein, R.7
-
42
-
-
77951925834
-
Enhanced vulnerability of PARK6 patient skin fibroblasts to apoptosis induced by proteasomal stress
-
Klinkenberg M., Thurow N., Gispert S., Ricciardi F., Eich F., Prehn J. H., Auburger G. and Kogel D. (2010) Enhanced vulnerability of PARK6 patient skin fibroblasts to apoptosis induced by proteasomal stress. Neuroscience 166, 422–434.
-
(2010)
Neuroscience
, vol.166
, pp. 422-434
-
-
Klinkenberg, M.1
Thurow, N.2
Gispert, S.3
Ricciardi, F.4
Eich, F.5
Prehn, J.H.6
Auburger, G.7
Kogel, D.8
-
43
-
-
84864267876
-
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
-
Kondapalli C., Kazlauskaite A., Zhang N., et al. (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2, 120080.
-
(2012)
Open Biol.
, vol.2
, pp. 120080
-
-
Kondapalli, C.1
Kazlauskaite, A.2
Zhang, N.3
-
44
-
-
84901751574
-
Ubiquitin is phosphorylated by PINK1 to activate parkin
-
Koyano F., Okatsu K., Kosako H., et al. (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166.
-
(2014)
Nature
, vol.510
, pp. 162-166
-
-
Koyano, F.1
Okatsu, K.2
Kosako, H.3
-
45
-
-
84944441665
-
Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis
-
Kumar A., Aguirre J. D., Condos T. E., et al. (2015) Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. 34, 2506–2521.
-
(2015)
EMBO J.
, vol.34
, pp. 2506-2521
-
-
Kumar, A.1
Aguirre, J.D.2
Condos, T.E.3
-
46
-
-
0020680904
-
Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis
-
Langston J. W., Ballard P., Tetrud J. W. and Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980.
-
(1983)
Science
, vol.219
, pp. 979-980
-
-
Langston, J.W.1
Ballard, P.2
Tetrud, J.W.3
Irwin, I.4
-
47
-
-
84857032953
-
Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
-
Lazarou M., Jin S. M., Kane L. A. and Youle R. J. (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22, 320–333.
-
(2012)
Dev. Cell
, vol.22
, pp. 320-333
-
-
Lazarou, M.1
Jin, S.M.2
Kane, L.A.3
Youle, R.J.4
-
48
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou M., Sliter D. A., Kane L. A., Sarraf S. A., Wang C., Burman J. L., Sideris D. P., Fogel A. I. and Youle R. J. (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314.
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
Burman, J.L.6
Sideris, D.P.7
Fogel, A.I.8
Youle, R.J.9
-
49
-
-
79961233786
-
Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission
-
Liu W., Acin-Perez R., Geghman K. D., Manfredi G., Lu B. and Li C. (2011) Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc. Natl Acad. Sci. USA 108, 12920–12924.
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 12920-12924
-
-
Liu, W.1
Acin-Perez, R.2
Geghman, K.D.3
Manfredi, G.4
Lu, B.5
Li, C.6
-
50
-
-
69249096578
-
Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation
-
Lutz A. K., Exner N., Fett M. E., et al. (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 284, 22938–22951.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 22938-22951
-
-
Lutz, A.K.1
Exner, N.2
Fett, M.E.3
-
51
-
-
84897863239
-
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
-
McLelland G. L., Soubannier V., Chen C. X., McBride H. M. and Fon E. A. (2014) Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295.
-
(2014)
EMBO J.
, vol.33
, pp. 282-295
-
-
McLelland, G.L.1
Soubannier, V.2
Chen, C.X.3
McBride, H.M.4
Fon, E.A.5
-
52
-
-
79955667485
-
The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
-
Meissner C., Lorenz H., Weihofen A., Selkoe D. J. and Lemberg M. K. (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 117, 856–867.
-
(2011)
J. Neurochem.
, vol.117
, pp. 856-867
-
-
Meissner, C.1
Lorenz, H.2
Weihofen, A.3
Selkoe, D.J.4
Lemberg, M.K.5
-
53
-
-
84929018009
-
Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration
-
Meka D. P., Muller-Rischart A. K., Nidadavolu P., et al. (2015) Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration. J. Clin. Invest. 125, 1873–1885.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 1873-1885
-
-
Meka, D.P.1
Muller-Rischart, A.K.2
Nidadavolu, P.3
-
54
-
-
41149114560
-
Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1)
-
Mills R. D., Sim C. H., Mok S. S., Mulhern T. D., Culvenor J. G. and Cheng H. C. (2008) Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J. Neurochem. 105, 18–33.
-
(2008)
J. Neurochem.
, vol.105
, pp. 18-33
-
-
Mills, R.D.1
Sim, C.H.2
Mok, S.S.3
Mulhern, T.D.4
Culvenor, J.G.5
Cheng, H.C.6
-
55
-
-
77953666757
-
Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
-
Morais V. A., Verstreken P., Roethig A., et al. (2009) Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. 1, 99–111.
-
(2009)
EMBO Mol. Med.
, vol.1
, pp. 99-111
-
-
Morais, V.A.1
Verstreken, P.2
Roethig, A.3
-
56
-
-
84898023373
-
PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling
-
Morais V. A., Haddad D., Craessaerts K., et al. (2014) PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344, 203–207.
-
(2014)
Science
, vol.344
, pp. 203-207
-
-
Morais, V.A.1
Haddad, D.2
Craessaerts, K.3
-
57
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D., Tanaka A., Suen D. F. and Youle R. J. (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
58
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
-
Narendra D. P., Jin S. M., Tanaka A., Suen D. F., Gautier C. A., Shen J., Cookson M. R. and Youle R. J. (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298.
-
(2010)
PLoS Biol.
, vol.8
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
Suen, D.F.4
Gautier, C.A.5
Shen, J.6
Cookson, M.R.7
Youle, R.J.8
-
59
-
-
0021810979
-
Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine
-
Nicklas W. J., Vyas I. and Heikkila R. E. (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 36, 2503–2508.
-
(1985)
Life Sci.
, vol.36
, pp. 2503-2508
-
-
Nicklas, W.J.1
Vyas, I.2
Heikkila, R.E.3
-
60
-
-
84866072587
-
PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
-
Okatsu K., Oka T., Iguchi M., et al. (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3, 1016.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1016
-
-
Okatsu, K.1
Oka, T.2
Iguchi, M.3
-
61
-
-
84890957474
-
A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment
-
Okatsu K., Uno M., Koyano F., Go E., Kimura M., Oka T., Tanaka K. and Matsuda N. (2013) A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J. Biol. Chem. 288, 36372–36384.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 36372-36384
-
-
Okatsu, K.1
Uno, M.2
Koyano, F.3
Go, E.4
Kimura, M.5
Oka, T.6
Tanaka, K.7
Matsuda, N.8
-
62
-
-
84922820920
-
Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment
-
Okatsu K., Kimura M., Oka T., Tanaka K. and Matsuda N. (2015) Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment. J. Cell Sci. 128, 964–978.
-
(2015)
J. Cell Sci.
, vol.128
, pp. 964-978
-
-
Okatsu, K.1
Kimura, M.2
Oka, T.3
Tanaka, K.4
Matsuda, N.5
-
63
-
-
33745602748
-
Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
-
Park J., Lee S. B., Lee S., et al. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161.
-
(2006)
Nature
, vol.441
, pp. 1157-1161
-
-
Park, J.1
Lee, S.B.2
Lee, S.3
-
64
-
-
26644440926
-
Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations
-
Petit A., Kawarai T., Paitel E., et al. (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J. Biol. Chem. 280, 34025–34032.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 34025-34032
-
-
Petit, A.1
Kawarai, T.2
Paitel, E.3
-
65
-
-
56349137588
-
Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation
-
Piccoli C., Sardanelli A., Scrima R., et al. (2008) Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem. Res. 33, 2565–2574.
-
(2008)
Neurochem. Res.
, vol.33
, pp. 2565-2574
-
-
Piccoli, C.1
Sardanelli, A.2
Scrima, R.3
-
66
-
-
84921369563
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
-
Pickrell A. M. and Youle R. J. (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257–273.
-
(2015)
Neuron
, vol.85
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
67
-
-
35748935851
-
The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1
-
Plun-Favreau H., Klupsch K., Moisoi N., et al. (2007) The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat. Cell Biol. 9, 1243–1252.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1243-1252
-
-
Plun-Favreau, H.1
Klupsch, K.2
Moisoi, N.3
-
68
-
-
84912124648
-
The complex I subunit NDUFA10 selectively rescues Drosophila pink1 mutants through a mechanism independent of mitophagy
-
Pogson J. H., Ivatt R. M., Sanchez-Martinez A., Tufi R., Wilson E., Mortiboys H. and Whitworth A. J. (2014) The complex I subunit NDUFA10 selectively rescues Drosophila pink1 mutants through a mechanism independent of mitophagy. PLoS Genet. 10, e1004815.
-
(2014)
PLoS Genet.
, vol.10
-
-
Pogson, J.H.1
Ivatt, R.M.2
Sanchez-Martinez, A.3
Tufi, R.4
Wilson, E.5
Mortiboys, H.6
Whitworth, A.J.7
-
69
-
-
39449088321
-
The PINK1/Parkin pathway regulates mitochondrial morphology
-
Poole A. C., Thomas R. E., Andrews L. A., McBride H. M., Whitworth A. J. and Pallanck L. J. (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl Acad. Sci. USA 105, 1638–1643.
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 1638-1643
-
-
Poole, A.C.1
Thomas, R.E.2
Andrews, L.A.3
McBride, H.M.4
Whitworth, A.J.5
Pallanck, L.J.6
-
70
-
-
34547127902
-
PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1
-
Pridgeon J. W., Olzmann J. A., Chin L. S. and Li L. (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5, e172.
-
(2007)
PLoS Biol.
, vol.5
-
-
Pridgeon, J.W.1
Olzmann, J.A.2
Chin, L.S.3
Li, L.4
-
71
-
-
84923355252
-
Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo
-
Rappold P. M., Cui M., Grima J. C., Fan R. Z., de Mesy-Bentley K. L., Chen L., Zhuang X., Bowers W. J. and Tieu K. (2014) Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nat. Commun. 5, 5244.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5244
-
-
Rappold, P.M.1
Cui, M.2
Grima, J.C.3
Fan, R.Z.4
de Mesy-Bentley, K.L.5
Chen, L.6
Zhuang, X.7
Bowers, W.J.8
Tieu, K.9
-
72
-
-
66349123690
-
Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1
-
Sandebring A., Thomas K. J., Beilina A., et al. (2009) Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE 4, e5701.
-
(2009)
PLoS ONE
, vol.4
-
-
Sandebring, A.1
Thomas, K.J.2
Beilina, A.3
-
73
-
-
0029047329
-
Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion
-
Sauer H., Rosenblad C. and Bjorklund A. (1995) Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc. Natl Acad. Sci. USA 92, 8935–8939.
-
(1995)
Proc. Natl Acad. Sci. USA
, vol.92
, pp. 8935-8939
-
-
Sauer, H.1
Rosenblad, C.2
Bjorklund, A.3
-
74
-
-
84944441112
-
A Ubl/ubiquitin switch in the activation of Parkin
-
Sauve V., Lilov A., Seirafi M., et al. (2015) A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34, 2492–2505.
-
(2015)
EMBO J.
, vol.34
, pp. 2492-2505
-
-
Sauve, V.1
Lilov, A.2
Seirafi, M.3
-
75
-
-
0024390719
-
Mitochondrial complex I deficiency in Parkinson's disease
-
Schapira A. H., Cooper J. M., Dexter D., Jenner P., Clark J. B. and Marsden C. D. (1989) Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1, 1269.
-
(1989)
Lancet
, vol.1
, pp. 1269
-
-
Schapira, A.H.1
Cooper, J.M.2
Dexter, D.3
Jenner, P.4
Clark, J.B.5
Marsden, C.D.6
-
76
-
-
79955410000
-
Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease
-
Shi G., Lee J. R., Grimes D. A., et al. (2011) Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum. Mol. Genet. 20, 1966–1974.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 1966-1974
-
-
Shi, G.1
Lee, J.R.2
Grimes, D.A.3
-
77
-
-
84871891737
-
PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
-
Shiba-Fukushima K., Imai Y., Yoshida S., Ishihama Y., Kanao T., Sato S. and Hattori N. (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2, 1002.
-
(2012)
Sci. Rep.
, vol.2
, pp. 1002
-
-
Shiba-Fukushima, K.1
Imai, Y.2
Yoshida, S.3
Ishihama, Y.4
Kanao, T.5
Sato, S.6
Hattori, N.7
-
78
-
-
84873453232
-
The genetics of Parkinson's disease: progress and therapeutic implications
-
Singleton A. B., Farrer M. J. and Bonifati V. (2013) The genetics of Parkinson's disease: progress and therapeutic implications. Mov. Disord. 28, 14–23.
-
(2013)
Mov. Disord.
, vol.28
, pp. 14-23
-
-
Singleton, A.B.1
Farrer, M.J.2
Bonifati, V.3
-
79
-
-
0028834063
-
Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo
-
Tomac A., Lindqvist E., Lin L. F., Ogren S. O., Young D., Hoffer B. J. and Olson L. (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339.
-
(1995)
Nature
, vol.373
, pp. 335-339
-
-
Tomac, A.1
Lindqvist, E.2
Lin, L.F.3
Ogren, S.O.4
Young, D.5
Hoffer, B.J.6
Olson, L.7
-
80
-
-
84895904175
-
Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson's disease
-
Tufi R., Gandhi S., de Castro I. P., et al. (2014) Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson's disease. Nat. Cell Biol. 16, 157–166.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 157-166
-
-
Tufi, R.1
Gandhi, S.2
de Castro, I.P.3
-
81
-
-
2442668926
-
Hereditary early-onset Parkinson's disease caused by mutations in PINK1
-
Valente E. M., Abou-Sleiman P. M., Caputo V., et al. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160.
-
(2004)
Science
, vol.304
, pp. 1158-1160
-
-
Valente, E.M.1
Abou-Sleiman, P.M.2
Caputo, V.3
-
82
-
-
84857462488
-
The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants
-
Vilain S., Esposito G., Haddad D., et al. (2012) The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants. PLoS Genet. 8, e1002456.
-
(2012)
PLoS Genet.
, vol.8
-
-
Vilain, S.1
Esposito, G.2
Haddad, D.3
-
83
-
-
84861983560
-
Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency
-
Vos M., Esposito G., Edirisinghe J. N., et al. (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336, 1306–1310.
-
(2012)
Science
, vol.336
, pp. 1306-1310
-
-
Vos, M.1
Esposito, G.2
Edirisinghe, J.N.3
-
84
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang X., Winter D., Ashrafi G., et al. (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906.
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
-
85
-
-
84939795423
-
Mechanism of phospho-ubiquitin-induced PARKIN activation
-
Wauer T., Simicek M., Schubert A. and Komander D. (2015) Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370–374.
-
(2015)
Nature
, vol.524
, pp. 370-374
-
-
Wauer, T.1
Simicek, M.2
Schubert, A.3
Komander, D.4
-
86
-
-
64549112144
-
Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking
-
Weihofen A., Thomas K. J., Ostaszewski B. L., Cookson M. R. and Selkoe D. J. (2009) Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48, 2045–2052.
-
(2009)
Biochemistry
, vol.48
, pp. 2045-2052
-
-
Weihofen, A.1
Thomas, K.J.2
Ostaszewski, B.L.3
Cookson, M.R.4
Selkoe, D.J.5
-
87
-
-
58149397651
-
Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin
-
discussion 173
-
Whitworth A. J., Lee J. R., Ho V. M., Flick R., Chowdhury R. and McQuibban G. A. (2008) Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin. Dis. Model Mech., 1, 168–174; discussion 173.
-
(2008)
Dis. Model Mech.
, vol.1
, pp. 168-174
-
-
Whitworth, A.J.1
Lee, J.R.2
Ho, V.M.3
Flick, R.4
Chowdhury, R.5
McQuibban, G.A.6
-
88
-
-
84901471156
-
Parkin and mitochondrial quality control: toward assembling the puzzle
-
Winklhofer K. F. (2014) Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 24, 332–341.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 332-341
-
-
Winklhofer, K.F.1
-
89
-
-
33750370804
-
Understanding the molecular causes of Parkinson's disease
-
Wood-Kaczmar A., Gandhi S. and Wood N. W. (2006) Understanding the molecular causes of Parkinson's disease. Trends Mol. Med. 12, 521–528.
-
(2006)
Trends Mol. Med.
, vol.12
, pp. 521-528
-
-
Wood-Kaczmar, A.1
Gandhi, S.2
Wood, N.W.3
-
90
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
Yamano K. and Youle R. J. (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769.
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R.J.2
-
91
-
-
84959577088
-
Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation
-
Yamano K., Queliconi B. B., Koyano F., Saeki Y., Hirokawa T., Tanaka K. and Matsuda N. (2015) Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. J. Biol. Chem. 290, 25199–25211.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 25199-25211
-
-
Yamano, K.1
Queliconi, B.B.2
Koyano, F.3
Saeki, Y.4
Hirokawa, T.5
Tanaka, K.6
Matsuda, N.7
-
92
-
-
33746080412
-
Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
-
Yang Y., Gehrke S., Imai Y., et al. (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 10793–10798.
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 10793-10798
-
-
Yang, Y.1
Gehrke, S.2
Imai, Y.3
-
93
-
-
44349195101
-
Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery
-
Yang Y., Ouyang Y., Yang L., Beal M. F., McQuibban A., Vogel H. and Lu B. (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl Acad. Sci. USA 105, 7070–7075.
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 7070-7075
-
-
Yang, Y.1
Ouyang, Y.2
Yang, L.3
Beal, M.F.4
McQuibban, A.5
Vogel, H.6
Lu, B.7
-
94
-
-
84878529485
-
TRAP1 rescues PINK1 loss-of-function phenotypes
-
Zhang L., Karsten P., Hamm S., et al. (2013) TRAP1 rescues PINK1 loss-of-function phenotypes. Hum. Mol. Genet. 22, 2829–2841.
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 2829-2841
-
-
Zhang, L.1
Karsten, P.2
Hamm, S.3
|