메뉴 건너뛰기




Volumn , Issue , 2016, Pages 232-239

The mitochondrial kinase PINK1: functions beyond mitophagy

Author keywords

mitochondria; mitophagy; Parkin; Parkinson's disease; PINK1

Indexed keywords

MEMBRANE PROTEIN; PHOSPHATASE AND TENSIN HOMOLOG INDUCED PUTATIVE KINASE 1; UNCLASSIFIED DRUG;

EID: 85027928492     PISSN: 00223042     EISSN: 14714159     Source Type: Journal    
DOI: 10.1111/jnc.13655     Document Type: Review
Times cited : (78)

References (94)
  • 2
    • 84921925390 scopus 로고    scopus 로고
    • PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402
    • Aerts L., Craessaerts K., De Strooper B. and Morais V. A. (2015a) PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402. J. Biol. Chem. 290, 2798–2811.
    • (2015) J. Biol. Chem. , vol.290 , pp. 2798-2811
    • Aerts, L.1    Craessaerts, K.2    De Strooper, B.3    Morais, V.A.4
  • 3
    • 84935032647 scopus 로고    scopus 로고
    • PINK1 activation-turning on a promiscuous kinase
    • Aerts L., De Strooper B. and Morais V. A. (2015b) PINK1 activation-turning on a promiscuous kinase. Biochem. Soc. Trans. 43, 280–286.
    • (2015) Biochem. Soc. Trans. , vol.43 , pp. 280-286
    • Aerts, L.1    De Strooper, B.2    Morais, V.A.3
  • 4
    • 78349309594 scopus 로고    scopus 로고
    • Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects
    • Amo T., Sato S., Saiki S., Wolf A. M., Toyomizu M., Gautier C. A., Shen J., Ohta S. and Hattori N. (2011) Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiol. Dis. 41, 111–118.
    • (2011) Neurobiol. Dis. , vol.41 , pp. 111-118
    • Amo, T.1    Sato, S.2    Saiki, S.3    Wolf, A.M.4    Toyomizu, M.5    Gautier, C.A.6    Shen, J.7    Ohta, S.8    Hattori, N.9
  • 5
    • 84880303306 scopus 로고    scopus 로고
    • PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage
    • Arena G., Gelmetti V., Torosantucci L., Vignone D., Lamorte G., De Rosa P., Cilia E., Jonas E. A. and Valente E. M. (2013) PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ. 20, 920–930.
    • (2013) Cell Death Differ. , vol.20 , pp. 920-930
    • Arena, G.1    Gelmetti, V.2    Torosantucci, L.3    Vignone, D.4    Lamorte, G.5    De Rosa, P.6    Cilia, E.7    Jonas, E.A.8    Valente, E.M.9
  • 6
    • 84876531457 scopus 로고    scopus 로고
    • PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
    • Chen Y. and Dorn G. W., 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475.
    • (2013) Science , vol.340 , pp. 471-475
    • Chen, Y.1    Dorn, G.W.2
  • 7
    • 33745589773 scopus 로고    scopus 로고
    • Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin
    • Clark I. E., Dodson M. W., Jiang C., Cao J. H., Huh J. R., Seol J. H., Yoo S. J., Hay B. A. and Guo M. (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166.
    • (2006) Nature , vol.441 , pp. 1162-1166
    • Clark, I.E.1    Dodson, M.W.2    Jiang, C.3    Cao, J.H.4    Huh, J.R.5    Seol, J.H.6    Yoo, S.J.7    Hay, B.A.8    Guo, M.9
  • 8
    • 84878533362 scopus 로고    scopus 로고
    • Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease
    • Costa A. C., Loh S. H. and Martins L. M. (2013) Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease. Cell Death Dis. 4, e467.
    • (2013) Cell Death Dis. , vol.4
    • Costa, A.C.1    Loh, S.H.2    Martins, L.M.3
  • 9
    • 77951235489 scopus 로고    scopus 로고
    • Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1
    • Cui M., Tang X., Christian W. V., Yoon Y. and Tieu K. (2010) Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J. Biol. Chem. 285, 11740–11752.
    • (2010) J. Biol. Chem. , vol.285 , pp. 11740-11752
    • Cui, M.1    Tang, X.2    Christian, W.V.3    Yoon, Y.4    Tieu, K.5
  • 10
    • 67649399288 scopus 로고    scopus 로고
    • Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission
    • Dagda R. K., Cherra S. J., 3rd, Kulich S. M., Tandon A., Park D. and Chu C. T. (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284, 13843–13855.
    • (2009) J. Biol. Chem. , vol.284 , pp. 13843-13855
    • Dagda, R.K.1    Cherra, S.J.2    Kulich, S.M.3    Tandon, A.4    Park, D.5    Chu, C.T.6
  • 11
    • 79551574736 scopus 로고    scopus 로고
    • PINK1 cleavage at position A103 by the mitochondrial protease PARL
    • Deas E., Plun-Favreau H., Gandhi S., et al. (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20, 867–879.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 867-879
    • Deas, E.1    Plun-Favreau, H.2    Gandhi, S.3
  • 12
    • 55749090654 scopus 로고    scopus 로고
    • The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila
    • Deng H., Dodson M. W., Huang H. and Guo M. (2008) The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl Acad. Sci. USA 105, 14503–14508.
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 14503-14508
    • Deng, H.1    Dodson, M.W.2    Huang, H.3    Guo, M.4
  • 13
    • 84929582993 scopus 로고    scopus 로고
    • The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications
    • Durcan T. M. and Fon E. A. (2015) The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29, 989–999.
    • (2015) Genes Dev. , vol.29 , pp. 989-999
    • Durcan, T.M.1    Fon, E.A.2
  • 14
    • 36049038504 scopus 로고    scopus 로고
    • Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin
    • Exner N., Treske B., Paquet D., et al. (2007) Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27, 12413–12418.
    • (2007) J. Neurosci. , vol.27 , pp. 12413-12418
    • Exner, N.1    Treske, B.2    Paquet, D.3
  • 15
    • 84864150600 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences
    • Exner N., Lutz A. K., Haass C. and Winklhofer K. F. (2012) Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062.
    • (2012) EMBO J. , vol.31 , pp. 3038-3062
    • Exner, N.1    Lutz, A.K.2    Haass, C.3    Winklhofer, K.F.4
  • 16
    • 84943598690 scopus 로고    scopus 로고
    • Differential submitochondrial localization of PINK1 as a molecular switch for mediating distinct mitochondrial signaling pathways
    • Fallaize D., Chin L. S. and Li L. (2015) Differential submitochondrial localization of PINK1 as a molecular switch for mediating distinct mitochondrial signaling pathways. Cell. Signal. 27, 2543–2554.
    • (2015) Cell. Signal. , vol.27 , pp. 2543-2554
    • Fallaize, D.1    Chin, L.S.2    Li, L.3
  • 17
    • 61649088435 scopus 로고    scopus 로고
    • PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death
    • Gandhi S., Wood-Kaczmar A., Yao Z., et al. (2009) PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 33, 627–638.
    • (2009) Mol. Cell , vol.33 , pp. 627-638
    • Gandhi, S.1    Wood-Kaczmar, A.2    Yao, Z.3
  • 18
    • 13344277993 scopus 로고    scopus 로고
    • Functional recovery in parkinsonian monkeys treated with GDNF
    • Gash D. M., Zhang Z., Ovadia A., et al. (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380, 252–255.
    • (1996) Nature , vol.380 , pp. 252-255
    • Gash, D.M.1    Zhang, Z.2    Ovadia, A.3
  • 19
    • 49649097747 scopus 로고    scopus 로고
    • Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress
    • Gautier C. A., Kitada T. and Shen J. (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl Acad. Sci. USA 105, 11364–11369.
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 11364-11369
    • Gautier, C.A.1    Kitada, T.2    Shen, J.3
  • 21
    • 62749113469 scopus 로고    scopus 로고
    • Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells
    • Gegg M. E., Cooper J. M., Schapira A. H. and Taanman J. W. (2009) Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS ONE 4, e4756.
    • (2009) PLoS ONE , vol.4
    • Gegg, M.E.1    Cooper, J.M.2    Schapira, A.H.3    Taanman, J.W.4
  • 22
    • 84920575121 scopus 로고    scopus 로고
    • PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane
    • Gehrke S., Wu Z., Klinkenberg M., Sun Y., Auburger G., Guo S. and Lu B. (2015) PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab. 21, 95–108.
    • (2015) Cell Metab. , vol.21 , pp. 95-108
    • Gehrke, S.1    Wu, Z.2    Klinkenberg, M.3    Sun, Y.4    Auburger, G.5    Guo, S.6    Lu, B.7
  • 24
    • 66749163493 scopus 로고    scopus 로고
    • Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration
    • Gispert S., Ricciardi F., Kurz A., et al. (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4, e5777.
    • (2009) PLoS ONE , vol.4
    • Gispert, S.1    Ricciardi, F.2    Kurz, A.3
  • 27
    • 68549136513 scopus 로고    scopus 로고
    • Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology
    • Grunewald A., Gegg M. E., Taanman J. W., King R. H., Kock N., Klein C. and Schapira A. H. (2009) Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp. Neurol. 219, 266–273.
    • (2009) Exp. Neurol. , vol.219 , pp. 266-273
    • Grunewald, A.1    Gegg, M.E.2    Taanman, J.W.3    King, R.H.4    Kock, N.5    Klein, C.6    Schapira, A.H.7
  • 28
    • 39449098267 scopus 로고    scopus 로고
    • Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP
    • Haque M. E., Thomas K. J., D'Souza C., et al. (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc. Natl Acad. Sci. USA 105, 1716–1721.
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 1716-1721
    • Haque, M.E.1    Thomas, K.J.2    D'Souza, C.3
  • 29
    • 84863305249 scopus 로고    scopus 로고
    • Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1
    • Haque M. E., Mount M. P., Safarpour F., et al. (2012) Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1. J. Biol. Chem. 287, 23162–23170.
    • (2012) J. Biol. Chem. , vol.287 , pp. 23162-23170
    • Haque, M.E.1    Mount, M.P.2    Safarpour, F.3
  • 30
    • 84890429468 scopus 로고    scopus 로고
    • High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
    • Hasson S. A., Kane L. A., Yamano K., et al. (2013) High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295.
    • (2013) Nature , vol.504 , pp. 291-295
    • Hasson, S.A.1    Kane, L.A.2    Yamano, K.3
  • 31
    • 79953156438 scopus 로고    scopus 로고
    • Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance
    • Heeman B., Van den Haute C., Aelvoet S. A., et al. (2011) Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J. Cell Sci. 124, 1115–1125.
    • (2011) J. Cell Sci. , vol.124 , pp. 1115-1125
    • Heeman, B.1    Van den Haute, C.2    Aelvoet, S.A.3
  • 32
    • 84951930787 scopus 로고    scopus 로고
    • The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy
    • Heo J. M., Ordureau A., Paulo J. A., Rinehart J. and Harper J. W. (2015) The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol. Cell 60, 7–20.
    • (2015) Mol. Cell , vol.60 , pp. 7-20
    • Heo, J.M.1    Ordureau, A.2    Paulo, J.A.3    Rinehart, J.4    Harper, J.W.5
  • 33
    • 84882754147 scopus 로고    scopus 로고
    • A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase PINK1
    • Hertz N. T., Berthet A., Sos M. L., Thorn K. S., Burlingame A. L., Nakamura K. and Shokat K. M. (2013) A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase PINK1. Cell 154, 737–747.
    • (2013) Cell , vol.154 , pp. 737-747
    • Hertz, N.T.1    Berthet, A.2    Sos, M.L.3    Thorn, K.S.4    Burlingame, A.L.5    Nakamura, K.6    Shokat, K.M.7
  • 34
    • 33846288002 scopus 로고    scopus 로고
    • Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6
    • Hoepken H. H., Gispert S., Morales B., et al. (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis. 25, 401–411.
    • (2007) Neurobiol. Dis. , vol.25 , pp. 401-411
    • Hoepken, H.H.1    Gispert, S.2    Morales, B.3
  • 35
    • 84881260124 scopus 로고    scopus 로고
    • Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation
    • Iguchi M., Kujuro Y., Okatsu K., et al. (2013) Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 288, 22019–22032.
    • (2013) J. Biol. Chem. , vol.288 , pp. 22019-22032
    • Iguchi, M.1    Kujuro, Y.2    Okatsu, K.3
  • 36
    • 78649685455 scopus 로고    scopus 로고
    • Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL
    • Jin S. M., Lazarou M., Wang C., Kane L. A., Narendra D. P. and Youle R. J. (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942.
    • (2010) J. Cell Biol. , vol.191 , pp. 933-942
    • Jin, S.M.1    Lazarou, M.2    Wang, C.3    Kane, L.A.4    Narendra, D.P.5    Youle, R.J.6
  • 38
    • 84899421556 scopus 로고    scopus 로고
    • Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
    • Kazlauskaite A., Kondapalli C., Gourlay R., et al. (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127–139.
    • (2014) Biochem. J. , vol.460 , pp. 127-139
    • Kazlauskaite, A.1    Kondapalli, C.2    Gourlay, R.3
  • 39
    • 84938742614 scopus 로고    scopus 로고
    • Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation
    • Kazlauskaite A., Martinez-Torres R. J., Wilkie S., et al. (2015) Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 16, 939–954.
    • (2015) EMBO Rep. , vol.16 , pp. 939-954
    • Kazlauskaite, A.1    Martinez-Torres, R.J.2    Wilkie, S.3
  • 40
    • 0028874203 scopus 로고
    • GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo
    • Kearns C. M. and Gash D. M. (1995) GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res. 672, 104–111.
    • (1995) Brain Res. , vol.672 , pp. 104-111
    • Kearns, C.M.1    Gash, D.M.2
  • 43
    • 84864267876 scopus 로고    scopus 로고
    • PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
    • Kondapalli C., Kazlauskaite A., Zhang N., et al. (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2, 120080.
    • (2012) Open Biol. , vol.2 , pp. 120080
    • Kondapalli, C.1    Kazlauskaite, A.2    Zhang, N.3
  • 44
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by PINK1 to activate parkin
    • Koyano F., Okatsu K., Kosako H., et al. (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166.
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1    Okatsu, K.2    Kosako, H.3
  • 45
    • 84944441665 scopus 로고    scopus 로고
    • Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis
    • Kumar A., Aguirre J. D., Condos T. E., et al. (2015) Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. 34, 2506–2521.
    • (2015) EMBO J. , vol.34 , pp. 2506-2521
    • Kumar, A.1    Aguirre, J.D.2    Condos, T.E.3
  • 46
    • 0020680904 scopus 로고
    • Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis
    • Langston J. W., Ballard P., Tetrud J. W. and Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980.
    • (1983) Science , vol.219 , pp. 979-980
    • Langston, J.W.1    Ballard, P.2    Tetrud, J.W.3    Irwin, I.4
  • 47
    • 84857032953 scopus 로고    scopus 로고
    • Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin
    • Lazarou M., Jin S. M., Kane L. A. and Youle R. J. (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22, 320–333.
    • (2012) Dev. Cell , vol.22 , pp. 320-333
    • Lazarou, M.1    Jin, S.M.2    Kane, L.A.3    Youle, R.J.4
  • 49
    • 79961233786 scopus 로고    scopus 로고
    • Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission
    • Liu W., Acin-Perez R., Geghman K. D., Manfredi G., Lu B. and Li C. (2011) Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc. Natl Acad. Sci. USA 108, 12920–12924.
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 12920-12924
    • Liu, W.1    Acin-Perez, R.2    Geghman, K.D.3    Manfredi, G.4    Lu, B.5    Li, C.6
  • 50
    • 69249096578 scopus 로고    scopus 로고
    • Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation
    • Lutz A. K., Exner N., Fett M. E., et al. (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 284, 22938–22951.
    • (2009) J. Biol. Chem. , vol.284 , pp. 22938-22951
    • Lutz, A.K.1    Exner, N.2    Fett, M.E.3
  • 51
    • 84897863239 scopus 로고    scopus 로고
    • Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
    • McLelland G. L., Soubannier V., Chen C. X., McBride H. M. and Fon E. A. (2014) Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295.
    • (2014) EMBO J. , vol.33 , pp. 282-295
    • McLelland, G.L.1    Soubannier, V.2    Chen, C.X.3    McBride, H.M.4    Fon, E.A.5
  • 52
    • 79955667485 scopus 로고    scopus 로고
    • The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking
    • Meissner C., Lorenz H., Weihofen A., Selkoe D. J. and Lemberg M. K. (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 117, 856–867.
    • (2011) J. Neurochem. , vol.117 , pp. 856-867
    • Meissner, C.1    Lorenz, H.2    Weihofen, A.3    Selkoe, D.J.4    Lemberg, M.K.5
  • 53
    • 84929018009 scopus 로고    scopus 로고
    • Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration
    • Meka D. P., Muller-Rischart A. K., Nidadavolu P., et al. (2015) Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration. J. Clin. Invest. 125, 1873–1885.
    • (2015) J. Clin. Invest. , vol.125 , pp. 1873-1885
    • Meka, D.P.1    Muller-Rischart, A.K.2    Nidadavolu, P.3
  • 54
    • 41149114560 scopus 로고    scopus 로고
    • Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1)
    • Mills R. D., Sim C. H., Mok S. S., Mulhern T. D., Culvenor J. G. and Cheng H. C. (2008) Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J. Neurochem. 105, 18–33.
    • (2008) J. Neurochem. , vol.105 , pp. 18-33
    • Mills, R.D.1    Sim, C.H.2    Mok, S.S.3    Mulhern, T.D.4    Culvenor, J.G.5    Cheng, H.C.6
  • 55
    • 77953666757 scopus 로고    scopus 로고
    • Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function
    • Morais V. A., Verstreken P., Roethig A., et al. (2009) Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. 1, 99–111.
    • (2009) EMBO Mol. Med. , vol.1 , pp. 99-111
    • Morais, V.A.1    Verstreken, P.2    Roethig, A.3
  • 56
    • 84898023373 scopus 로고    scopus 로고
    • PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling
    • Morais V. A., Haddad D., Craessaerts K., et al. (2014) PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 344, 203–207.
    • (2014) Science , vol.344 , pp. 203-207
    • Morais, V.A.1    Haddad, D.2    Craessaerts, K.3
  • 57
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra D., Tanaka A., Suen D. F. and Youle R. J. (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803.
    • (2008) J. Cell Biol. , vol.183 , pp. 795-803
    • Narendra, D.1    Tanaka, A.2    Suen, D.F.3    Youle, R.J.4
  • 59
    • 0021810979 scopus 로고
    • Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine
    • Nicklas W. J., Vyas I. and Heikkila R. E. (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 36, 2503–2508.
    • (1985) Life Sci. , vol.36 , pp. 2503-2508
    • Nicklas, W.J.1    Vyas, I.2    Heikkila, R.E.3
  • 60
    • 84866072587 scopus 로고    scopus 로고
    • PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria
    • Okatsu K., Oka T., Iguchi M., et al. (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3, 1016.
    • (2012) Nat. Commun. , vol.3 , pp. 1016
    • Okatsu, K.1    Oka, T.2    Iguchi, M.3
  • 61
    • 84890957474 scopus 로고    scopus 로고
    • A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment
    • Okatsu K., Uno M., Koyano F., Go E., Kimura M., Oka T., Tanaka K. and Matsuda N. (2013) A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J. Biol. Chem. 288, 36372–36384.
    • (2013) J. Biol. Chem. , vol.288 , pp. 36372-36384
    • Okatsu, K.1    Uno, M.2    Koyano, F.3    Go, E.4    Kimura, M.5    Oka, T.6    Tanaka, K.7    Matsuda, N.8
  • 62
    • 84922820920 scopus 로고    scopus 로고
    • Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment
    • Okatsu K., Kimura M., Oka T., Tanaka K. and Matsuda N. (2015) Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment. J. Cell Sci. 128, 964–978.
    • (2015) J. Cell Sci. , vol.128 , pp. 964-978
    • Okatsu, K.1    Kimura, M.2    Oka, T.3    Tanaka, K.4    Matsuda, N.5
  • 63
    • 33745602748 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin
    • Park J., Lee S. B., Lee S., et al. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161.
    • (2006) Nature , vol.441 , pp. 1157-1161
    • Park, J.1    Lee, S.B.2    Lee, S.3
  • 64
    • 26644440926 scopus 로고    scopus 로고
    • Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations
    • Petit A., Kawarai T., Paitel E., et al. (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J. Biol. Chem. 280, 34025–34032.
    • (2005) J. Biol. Chem. , vol.280 , pp. 34025-34032
    • Petit, A.1    Kawarai, T.2    Paitel, E.3
  • 65
    • 56349137588 scopus 로고    scopus 로고
    • Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation
    • Piccoli C., Sardanelli A., Scrima R., et al. (2008) Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem. Res. 33, 2565–2574.
    • (2008) Neurochem. Res. , vol.33 , pp. 2565-2574
    • Piccoli, C.1    Sardanelli, A.2    Scrima, R.3
  • 66
    • 84921369563 scopus 로고    scopus 로고
    • The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease
    • Pickrell A. M. and Youle R. J. (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257–273.
    • (2015) Neuron , vol.85 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 67
    • 35748935851 scopus 로고    scopus 로고
    • The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1
    • Plun-Favreau H., Klupsch K., Moisoi N., et al. (2007) The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat. Cell Biol. 9, 1243–1252.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1243-1252
    • Plun-Favreau, H.1    Klupsch, K.2    Moisoi, N.3
  • 68
    • 84912124648 scopus 로고    scopus 로고
    • The complex I subunit NDUFA10 selectively rescues Drosophila pink1 mutants through a mechanism independent of mitophagy
    • Pogson J. H., Ivatt R. M., Sanchez-Martinez A., Tufi R., Wilson E., Mortiboys H. and Whitworth A. J. (2014) The complex I subunit NDUFA10 selectively rescues Drosophila pink1 mutants through a mechanism independent of mitophagy. PLoS Genet. 10, e1004815.
    • (2014) PLoS Genet. , vol.10
    • Pogson, J.H.1    Ivatt, R.M.2    Sanchez-Martinez, A.3    Tufi, R.4    Wilson, E.5    Mortiboys, H.6    Whitworth, A.J.7
  • 70
    • 34547127902 scopus 로고    scopus 로고
    • PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1
    • Pridgeon J. W., Olzmann J. A., Chin L. S. and Li L. (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5, e172.
    • (2007) PLoS Biol. , vol.5
    • Pridgeon, J.W.1    Olzmann, J.A.2    Chin, L.S.3    Li, L.4
  • 72
    • 66349123690 scopus 로고    scopus 로고
    • Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1
    • Sandebring A., Thomas K. J., Beilina A., et al. (2009) Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE 4, e5701.
    • (2009) PLoS ONE , vol.4
    • Sandebring, A.1    Thomas, K.J.2    Beilina, A.3
  • 73
    • 0029047329 scopus 로고
    • Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion
    • Sauer H., Rosenblad C. and Bjorklund A. (1995) Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc. Natl Acad. Sci. USA 92, 8935–8939.
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 8935-8939
    • Sauer, H.1    Rosenblad, C.2    Bjorklund, A.3
  • 74
    • 84944441112 scopus 로고    scopus 로고
    • A Ubl/ubiquitin switch in the activation of Parkin
    • Sauve V., Lilov A., Seirafi M., et al. (2015) A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34, 2492–2505.
    • (2015) EMBO J. , vol.34 , pp. 2492-2505
    • Sauve, V.1    Lilov, A.2    Seirafi, M.3
  • 76
    • 79955410000 scopus 로고    scopus 로고
    • Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease
    • Shi G., Lee J. R., Grimes D. A., et al. (2011) Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum. Mol. Genet. 20, 1966–1974.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 1966-1974
    • Shi, G.1    Lee, J.R.2    Grimes, D.A.3
  • 77
    • 84871891737 scopus 로고    scopus 로고
    • PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
    • Shiba-Fukushima K., Imai Y., Yoshida S., Ishihama Y., Kanao T., Sato S. and Hattori N. (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep. 2, 1002.
    • (2012) Sci. Rep. , vol.2 , pp. 1002
    • Shiba-Fukushima, K.1    Imai, Y.2    Yoshida, S.3    Ishihama, Y.4    Kanao, T.5    Sato, S.6    Hattori, N.7
  • 78
    • 84873453232 scopus 로고    scopus 로고
    • The genetics of Parkinson's disease: progress and therapeutic implications
    • Singleton A. B., Farrer M. J. and Bonifati V. (2013) The genetics of Parkinson's disease: progress and therapeutic implications. Mov. Disord. 28, 14–23.
    • (2013) Mov. Disord. , vol.28 , pp. 14-23
    • Singleton, A.B.1    Farrer, M.J.2    Bonifati, V.3
  • 79
    • 0028834063 scopus 로고
    • Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo
    • Tomac A., Lindqvist E., Lin L. F., Ogren S. O., Young D., Hoffer B. J. and Olson L. (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373, 335–339.
    • (1995) Nature , vol.373 , pp. 335-339
    • Tomac, A.1    Lindqvist, E.2    Lin, L.F.3    Ogren, S.O.4    Young, D.5    Hoffer, B.J.6    Olson, L.7
  • 80
    • 84895904175 scopus 로고    scopus 로고
    • Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson's disease
    • Tufi R., Gandhi S., de Castro I. P., et al. (2014) Enhancing nucleotide metabolism protects against mitochondrial dysfunction and neurodegeneration in a PINK1 model of Parkinson's disease. Nat. Cell Biol. 16, 157–166.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 157-166
    • Tufi, R.1    Gandhi, S.2    de Castro, I.P.3
  • 81
    • 2442668926 scopus 로고    scopus 로고
    • Hereditary early-onset Parkinson's disease caused by mutations in PINK1
    • Valente E. M., Abou-Sleiman P. M., Caputo V., et al. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160.
    • (2004) Science , vol.304 , pp. 1158-1160
    • Valente, E.M.1    Abou-Sleiman, P.M.2    Caputo, V.3
  • 82
    • 84857462488 scopus 로고    scopus 로고
    • The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants
    • Vilain S., Esposito G., Haddad D., et al. (2012) The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants. PLoS Genet. 8, e1002456.
    • (2012) PLoS Genet. , vol.8
    • Vilain, S.1    Esposito, G.2    Haddad, D.3
  • 83
    • 84861983560 scopus 로고    scopus 로고
    • Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency
    • Vos M., Esposito G., Edirisinghe J. N., et al. (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336, 1306–1310.
    • (2012) Science , vol.336 , pp. 1306-1310
    • Vos, M.1    Esposito, G.2    Edirisinghe, J.N.3
  • 84
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • Wang X., Winter D., Ashrafi G., et al. (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906.
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1    Winter, D.2    Ashrafi, G.3
  • 85
    • 84939795423 scopus 로고    scopus 로고
    • Mechanism of phospho-ubiquitin-induced PARKIN activation
    • Wauer T., Simicek M., Schubert A. and Komander D. (2015) Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370–374.
    • (2015) Nature , vol.524 , pp. 370-374
    • Wauer, T.1    Simicek, M.2    Schubert, A.3    Komander, D.4
  • 86
    • 64549112144 scopus 로고    scopus 로고
    • Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking
    • Weihofen A., Thomas K. J., Ostaszewski B. L., Cookson M. R. and Selkoe D. J. (2009) Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48, 2045–2052.
    • (2009) Biochemistry , vol.48 , pp. 2045-2052
    • Weihofen, A.1    Thomas, K.J.2    Ostaszewski, B.L.3    Cookson, M.R.4    Selkoe, D.J.5
  • 87
    • 58149397651 scopus 로고    scopus 로고
    • Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin
    • discussion 173
    • Whitworth A. J., Lee J. R., Ho V. M., Flick R., Chowdhury R. and McQuibban G. A. (2008) Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin. Dis. Model Mech., 1, 168–174; discussion 173.
    • (2008) Dis. Model Mech. , vol.1 , pp. 168-174
    • Whitworth, A.J.1    Lee, J.R.2    Ho, V.M.3    Flick, R.4    Chowdhury, R.5    McQuibban, G.A.6
  • 88
    • 84901471156 scopus 로고    scopus 로고
    • Parkin and mitochondrial quality control: toward assembling the puzzle
    • Winklhofer K. F. (2014) Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 24, 332–341.
    • (2014) Trends Cell Biol. , vol.24 , pp. 332-341
    • Winklhofer, K.F.1
  • 89
    • 33750370804 scopus 로고    scopus 로고
    • Understanding the molecular causes of Parkinson's disease
    • Wood-Kaczmar A., Gandhi S. and Wood N. W. (2006) Understanding the molecular causes of Parkinson's disease. Trends Mol. Med. 12, 521–528.
    • (2006) Trends Mol. Med. , vol.12 , pp. 521-528
    • Wood-Kaczmar, A.1    Gandhi, S.2    Wood, N.W.3
  • 90
    • 84887453820 scopus 로고    scopus 로고
    • PINK1 is degraded through the N-end rule pathway
    • Yamano K. and Youle R. J. (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769.
    • (2013) Autophagy , vol.9 , pp. 1758-1769
    • Yamano, K.1    Youle, R.J.2
  • 91
    • 84959577088 scopus 로고    scopus 로고
    • Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation
    • Yamano K., Queliconi B. B., Koyano F., Saeki Y., Hirokawa T., Tanaka K. and Matsuda N. (2015) Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. J. Biol. Chem. 290, 25199–25211.
    • (2015) J. Biol. Chem. , vol.290 , pp. 25199-25211
    • Yamano, K.1    Queliconi, B.B.2    Koyano, F.3    Saeki, Y.4    Hirokawa, T.5    Tanaka, K.6    Matsuda, N.7
  • 92
    • 33746080412 scopus 로고    scopus 로고
    • Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin
    • Yang Y., Gehrke S., Imai Y., et al. (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 10793–10798.
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 10793-10798
    • Yang, Y.1    Gehrke, S.2    Imai, Y.3
  • 93
    • 44349195101 scopus 로고    scopus 로고
    • Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery
    • Yang Y., Ouyang Y., Yang L., Beal M. F., McQuibban A., Vogel H. and Lu B. (2008) Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl Acad. Sci. USA 105, 7070–7075.
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 7070-7075
    • Yang, Y.1    Ouyang, Y.2    Yang, L.3    Beal, M.F.4    McQuibban, A.5    Vogel, H.6    Lu, B.7
  • 94
    • 84878529485 scopus 로고    scopus 로고
    • TRAP1 rescues PINK1 loss-of-function phenotypes
    • Zhang L., Karsten P., Hamm S., et al. (2013) TRAP1 rescues PINK1 loss-of-function phenotypes. Hum. Mol. Genet. 22, 2829–2841.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 2829-2841
    • Zhang, L.1    Karsten, P.2    Hamm, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.