메뉴 건너뛰기




Volumn 27, Issue 11, 2017, Pages 863-875

Metabolic Interactions in the Tumor Microenvironment

Author keywords

cancer associated fibroblasts; crosstalk; hypoxia; immune; stroma

Indexed keywords

AMINO ACID; FATTY ACID; GLUCOSE; LACTIC ACID;

EID: 85024500637     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2017.06.003     Document Type: Review
Times cited : (602)

References (118)
  • 1
    • 77955928161 scopus 로고    scopus 로고
    • Tumors as organs: complex tissues that interface with the entire organism
    • Egeblad, M., et al. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18 (2010), 884–901.
    • (2010) Dev. Cell , vol.18 , pp. 884-901
    • Egeblad, M.1
  • 2
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation. Cell 144 (2011), 646–674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 3
    • 84979255704 scopus 로고    scopus 로고
    • Pancreatic cancer biology and genetics from an evolutionary perspective
    • Makohon-Moore, A., Iacobuzio-Donahue, C.A., Pancreatic cancer biology and genetics from an evolutionary perspective. Nat. Rev. Cancer 16 (2016), 553–565.
    • (2016) Nat. Rev. Cancer , vol.16 , pp. 553-565
    • Makohon-Moore, A.1    Iacobuzio-Donahue, C.A.2
  • 4
    • 84958138936 scopus 로고    scopus 로고
    • Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer
    • Davidson, S.M., et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23 (2016), 517–528.
    • (2016) Cell Metab. , vol.23 , pp. 517-528
    • Davidson, S.M.1
  • 5
    • 84987719019 scopus 로고    scopus 로고
    • Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers
    • Mayers, J.R., et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353 (2016), 1161–1165.
    • (2016) Science , vol.353 , pp. 1161-1165
    • Mayers, J.R.1
  • 6
    • 84863011452 scopus 로고    scopus 로고
    • The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type
    • Yuneva, M.O., et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15 (2012), 157–170.
    • (2012) Cell Metab. , vol.15 , pp. 157-170
    • Yuneva, M.O.1
  • 7
    • 85015446714 scopus 로고    scopus 로고
    • Metabolic origins of spatial organization in the tumor microenvironment
    • Carmona-Fontaine, C., et al. Metabolic origins of spatial organization in the tumor microenvironment. Proc. Natl. Acad. Sci. U. S. A. 114 (2017), 2934–2939.
    • (2017) Proc. Natl. Acad. Sci. U. S. A. , vol.114 , pp. 2934-2939
    • Carmona-Fontaine, C.1
  • 8
    • 84992195909 scopus 로고    scopus 로고
    • Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis
    • Christen, S., et al. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep. 17 (2016), 837–848.
    • (2016) Cell Rep. , vol.17 , pp. 837-848
    • Christen, S.1
  • 9
    • 84958120328 scopus 로고    scopus 로고
    • Metabolic heterogeneity in human lung tumors
    • Hensley, C.T., et al. Metabolic heterogeneity in human lung tumors. Cell 164 (2016), 681–694.
    • (2016) Cell , vol.164 , pp. 681-694
    • Hensley, C.T.1
  • 10
    • 84961287801 scopus 로고    scopus 로고
    • Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation
    • Sellers, K., et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125 (2015), 687–698.
    • (2015) J. Clin. Invest. , vol.125 , pp. 687-698
    • Sellers, K.1
  • 11
    • 84992363256 scopus 로고    scopus 로고
    • p62 in cancer: signaling adaptor beyond autophagy
    • Moscat, J., et al. p62 in cancer: signaling adaptor beyond autophagy. Cell 167 (2016), 606–609.
    • (2016) Cell , vol.167 , pp. 606-609
    • Moscat, J.1
  • 12
    • 84906906535 scopus 로고    scopus 로고
    • Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis
    • Valencia, T., et al. Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 26 (2014), 121–135.
    • (2014) Cancer Cell , vol.26 , pp. 121-135
    • Valencia, T.1
  • 13
    • 84984694266 scopus 로고    scopus 로고
    • The biology and function of fibroblasts in cancer
    • Kalluri, R., The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16 (2016), 582–598.
    • (2016) Nat. Rev. Cancer , vol.16 , pp. 582-598
    • Kalluri, R.1
  • 14
    • 84966394797 scopus 로고    scopus 로고
    • Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase
    • DuFort, C.C., et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase. Biophys. J. 110 (2016), 2106–2119.
    • (2016) Biophys. J. , vol.110 , pp. 2106-2119
    • DuFort, C.C.1
  • 15
    • 84904323068 scopus 로고    scopus 로고
    • The role of mechanical forces in tumor growth and therapy
    • Jain, R.K., et al. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16 (2014), 321–346.
    • (2014) Annu. Rev. Biomed. Eng. , vol.16 , pp. 321-346
    • Jain, R.K.1
  • 16
    • 84975882005 scopus 로고    scopus 로고
    • Mounting pressure in the microenvironment: fluids, solids, and cells in pancreatic ductal adenocarcinoma
    • DuFort, C.C., et al. Mounting pressure in the microenvironment: fluids, solids, and cells in pancreatic ductal adenocarcinoma. Gastroenterology 150 (2016), 1545–1557.e2.
    • (2016) Gastroenterology , vol.150 , pp. 1545-1557.e2
    • DuFort, C.C.1
  • 17
    • 11844254414 scopus 로고    scopus 로고
    • Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy
    • Jain, R.K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307 (2005), 58–62.
    • (2005) Science , vol.307 , pp. 58-62
    • Jain, R.K.1
  • 18
    • 79956328903 scopus 로고    scopus 로고
    • Molecular mechanisms and clinical applications of angiogenesis
    • Carmeliet, P., Jain, R.K., Molecular mechanisms and clinical applications of angiogenesis. Nature 473 (2011), 298–307.
    • (2011) Nature , vol.473 , pp. 298-307
    • Carmeliet, P.1    Jain, R.K.2
  • 19
    • 84880120014 scopus 로고    scopus 로고
    • Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite?
    • Choi, S.Y., et al. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite?. J. Pathol. 230 (2013), 350–355.
    • (2013) J. Pathol. , vol.230 , pp. 350-355
    • Choi, S.Y.1
  • 20
    • 84994592466 scopus 로고    scopus 로고
    • LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells
    • Brand, A., et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24 (2016), 657–671.
    • (2016) Cell Metab. , vol.24 , pp. 657-671
    • Brand, A.1
  • 21
    • 84907223092 scopus 로고    scopus 로고
    • Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
    • Colegio, O.R., et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513 (2014), 559–563.
    • (2014) Nature , vol.513 , pp. 559-563
    • Colegio, O.R.1
  • 22
    • 84886698315 scopus 로고    scopus 로고
    • Innate and adaptive immune cells in the tumor microenvironment
    • Gajewski, T.F., et al. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14 (2013), 1014–1022.
    • (2013) Nat. Immunol. , vol.14 , pp. 1014-1022
    • Gajewski, T.F.1
  • 23
    • 84877052290 scopus 로고    scopus 로고
    • Inflammatory networks and immune surveillance of pancreatic carcinoma
    • Vonderheide, R.H., Bayne, L.J., Inflammatory networks and immune surveillance of pancreatic carcinoma. Curr. Opin. Immunol. 25 (2013), 200–205.
    • (2013) Curr. Opin. Immunol. , vol.25 , pp. 200-205
    • Vonderheide, R.H.1    Bayne, L.J.2
  • 24
    • 84858785703 scopus 로고    scopus 로고
    • Coordinated regulation of myeloid cells by tumours
    • Gabrilovich, D.I., et al. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12 (2012), 253–268.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 253-268
    • Gabrilovich, D.I.1
  • 25
    • 85000836766 scopus 로고    scopus 로고
    • Nutrients and the microenvironment to feed a T cell army
    • Johnson, M.O., et al. Nutrients and the microenvironment to feed a T cell army. Semin. Immunol. 28 (2016), 505–513.
    • (2016) Semin. Immunol. , vol.28 , pp. 505-513
    • Johnson, M.O.1
  • 26
    • 85012110611 scopus 로고    scopus 로고
    • Metabolism supports macrophage activation
    • Langston, P.K., et al. Metabolism supports macrophage activation. Front. Immunol., 8, 2017, 61.
    • (2017) Front. Immunol. , vol.8 , pp. 61
    • Langston, P.K.1
  • 27
    • 85016030399 scopus 로고    scopus 로고
    • Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity
    • Geeraerts, X., et al. Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front. Immunol., 8, 2017, 289.
    • (2017) Front. Immunol. , vol.8 , pp. 289
    • Geeraerts, X.1
  • 28
    • 79551591722 scopus 로고    scopus 로고
    • Astrocyte-neuron metabolic relationships: for better and for worse
    • Allaman, I., et al. Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 34 (2011), 76–87.
    • (2011) Trends Neurosci. , vol.34 , pp. 76-87
    • Allaman, I.1
  • 29
    • 33645730887 scopus 로고    scopus 로고
    • Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature
    • Yamanishi, S., et al. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am. J. Physiol. Heart. Circ. Physiol. 290 (2006), H925–H934.
    • (2006) Am. J. Physiol. Heart. Circ. Physiol. , vol.290 , pp. H925-H934
    • Yamanishi, S.1
  • 30
    • 84862603083 scopus 로고    scopus 로고
    • Kynurenines in the mammalian brain: when physiology meets pathology
    • Schwarcz, R., et al. Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 13 (2012), 465–477.
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 465-477
    • Schwarcz, R.1
  • 31
    • 0015578098 scopus 로고
    • The glucose-alanine cycle
    • Felig, P., The glucose-alanine cycle. Metabolism. 22 (1973), 179–207.
    • (1973) Metabolism. , vol.22 , pp. 179-207
    • Felig, P.1
  • 32
    • 85007246612 scopus 로고    scopus 로고
    • Tumour microenvironment factors shaping the cancer metabolism landscape
    • Anastasiou, D., Tumour microenvironment factors shaping the cancer metabolism landscape. Br. J. Cancer 116 (2017), 277–286.
    • (2017) Br. J. Cancer , vol.116 , pp. 277-286
    • Anastasiou, D.1
  • 33
    • 84955126560 scopus 로고    scopus 로고
    • Amino acid auxotrophy as a system of immunological control nodes
    • Murray, P.J., Amino acid auxotrophy as a system of immunological control nodes. Nat. Immunol. 17 (2016), 132–139.
    • (2016) Nat. Immunol. , vol.17 , pp. 132-139
    • Murray, P.J.1
  • 34
    • 84897537717 scopus 로고    scopus 로고
    • Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
    • Birsoy, K., et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508 (2014), 108–112.
    • (2014) Nature , vol.508 , pp. 108-112
    • Birsoy, K.1
  • 35
    • 84920616812 scopus 로고    scopus 로고
    • PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis
    • 1–15
    • LeBleu, V.S., et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16 (2014), 992–1003 1–15.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 992-1003
    • LeBleu, V.S.1
  • 36
    • 84943451038 scopus 로고    scopus 로고
    • MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells
    • Sancho, P., et al. MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 22 (2015), 590–605.
    • (2015) Cell Metab. , vol.22 , pp. 590-605
    • Sancho, P.1
  • 37
    • 84911861458 scopus 로고    scopus 로고
    • Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
    • Viale, A., et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514 (2014), 628–632.
    • (2014) Nature , vol.514 , pp. 628-632
    • Viale, A.1
  • 38
    • 84980413785 scopus 로고    scopus 로고
    • Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition
    • Boudreau, A., et al. Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat. Chem. Biol. 12 (2016), 779–786.
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 779-786
    • Boudreau, A.1
  • 39
    • 84884192379 scopus 로고    scopus 로고
    • Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer
    • Kennedy, K.M., et al. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. PLoS One, 8, 2013, e75154.
    • (2013) PLoS One , vol.8 , pp. e75154
    • Kennedy, K.M.1
  • 40
    • 84855434874 scopus 로고    scopus 로고
    • Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms
    • Sotgia, F., et al. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu. Rev. Pathol. 7 (2012), 423–467.
    • (2012) Annu. Rev. Pathol. , vol.7 , pp. 423-467
    • Sotgia, F.1
  • 41
    • 81455128226 scopus 로고    scopus 로고
    • Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments
    • Draoui, N., Feron, O., Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Dis. Model. Mech. 4 (2011), 727–732.
    • (2011) Dis. Model. Mech. , vol.4 , pp. 727-732
    • Draoui, N.1    Feron, O.2
  • 42
    • 84883514161 scopus 로고    scopus 로고
    • Targeting lactate metabolism for cancer therapeutics
    • Doherty, J.R., Cleveland, J.L., Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 123 (2013), 3685–3692.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3685-3692
    • Doherty, J.R.1    Cleveland, J.L.2
  • 43
    • 57449097020 scopus 로고    scopus 로고
    • Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
    • Sonveaux, P., et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118 (2008), 3930–3942.
    • (2008) J. Clin. Invest. , vol.118 , pp. 3930-3942
    • Sonveaux, P.1
  • 44
    • 84874614138 scopus 로고    scopus 로고
    • Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma
    • Guillaumond, F., et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 3919–3924.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 3919-3924
    • Guillaumond, F.1
  • 45
    • 84965100853 scopus 로고    scopus 로고
    • Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling
    • Allen, E., et al. Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling. Cell Rep. 15 (2016), 1144–1160.
    • (2016) Cell Rep. , vol.15 , pp. 1144-1160
    • Allen, E.1
  • 46
    • 84964682256 scopus 로고    scopus 로고
    • Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy
    • Pisarsky, L., et al. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep. 15 (2016), 1161–1174.
    • (2016) Cell Rep. , vol.15 , pp. 1161-1174
    • Pisarsky, L.1
  • 47
    • 84863464112 scopus 로고    scopus 로고
    • Brain lactate metabolism: the discoveries and the controversies
    • Dienel, G.A., Brain lactate metabolism: the discoveries and the controversies. J. Cereb. Blood Flow Metab. 32 (2012), 1107–1138.
    • (2012) J. Cereb. Blood Flow Metab. , vol.32 , pp. 1107-1138
    • Dienel, G.A.1
  • 48
    • 84955329369 scopus 로고    scopus 로고
    • Are astrocytes the pressure-reservoirs of lactate in the brain?
    • Kasparov, S., Are astrocytes the pressure-reservoirs of lactate in the brain?. Cell Metab. 23 (2016), 1–2.
    • (2016) Cell Metab. , vol.23 , pp. 1-2
    • Kasparov, S.1
  • 49
    • 84867660436 scopus 로고    scopus 로고
    • Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells
    • De Saedeleer, C.J., et al. Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS One, 7, 2012, e46571.
    • (2012) PLoS One , vol.7 , pp. e46571
    • De Saedeleer, C.J.1
  • 50
    • 84929080660 scopus 로고    scopus 로고
    • A lactate-induced response to hypoxia
    • Lee, D.C., et al. A lactate-induced response to hypoxia. Cell 161 (2015), 595–609.
    • (2015) Cell , vol.161 , pp. 595-609
    • Lee, D.C.1
  • 51
    • 84880525862 scopus 로고    scopus 로고
    • Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis
    • Ruan, G.X., Kazlauskas, A., Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J. Biol. Chem. 288 (2013), 21161–21172.
    • (2013) J. Biol. Chem. , vol.288 , pp. 21161-21172
    • Ruan, G.X.1    Kazlauskas, A.2
  • 52
    • 79953329777 scopus 로고    scopus 로고
    • Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis
    • Vegran, F., et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 71 (2011), 2550–2560.
    • (2011) Cancer Res. , vol.71 , pp. 2550-2560
    • Vegran, F.1
  • 53
    • 84867112200 scopus 로고    scopus 로고
    • Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay
    • Fiaschi, T., et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 72 (2012), 5130–5140.
    • (2012) Cancer Res. , vol.72 , pp. 5130-5140
    • Fiaschi, T.1
  • 54
    • 84924576198 scopus 로고    scopus 로고
    • Metabolic reprogramming of cancer-associated fibroblasts by IDH3alpha downregulation
    • Zhang, D., et al. Metabolic reprogramming of cancer-associated fibroblasts by IDH3alpha downregulation. Cell Rep. 10 (2015), 1335–1348.
    • (2015) Cell Rep. , vol.10 , pp. 1335-1348
    • Zhang, D.1
  • 55
    • 74849087878 scopus 로고    scopus 로고
    • The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma
    • Pavlides, S., et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. ABBV Cell Cycle 8 (2009), 3984–4001.
    • (2009) ABBV Cell Cycle , vol.8 , pp. 3984-4001
    • Pavlides, S.1
  • 56
    • 84856103868 scopus 로고    scopus 로고
    • Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment
    • Rattigan, Y.I., et al. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp. Cell Res. 318 (2012), 326–335.
    • (2012) Exp. Cell Res. , vol.318 , pp. 326-335
    • Rattigan, Y.I.1
  • 57
    • 31544445490 scopus 로고    scopus 로고
    • Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma
    • Koukourakis, M.I., et al. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 66 (2006), 632–637.
    • (2006) Cancer Res. , vol.66 , pp. 632-637
    • Koukourakis, M.I.1
  • 58
    • 84984704073 scopus 로고    scopus 로고
    • Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion
    • Sousa, C.M., et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536 (2016), 479–483.
    • (2016) Nature , vol.536 , pp. 479-483
    • Sousa, C.M.1
  • 59
    • 84994680371 scopus 로고    scopus 로고
    • Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth
    • Yang, L., et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24 (2016), 685–700.
    • (2016) Cell Metab. , vol.24 , pp. 685-700
    • Yang, L.1
  • 60
    • 84941344937 scopus 로고    scopus 로고
    • Metabolic competition in the tumor microenvironment is a driver of cancer progression
    • Chang, C.H., et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162 (2015), 1229–1241.
    • (2015) Cell , vol.162 , pp. 1229-1241
    • Chang, C.H.1
  • 61
    • 84941366350 scopus 로고    scopus 로고
    • Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses
    • Ho, P.C., et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162 (2015), 1217–1228.
    • (2015) Cell , vol.162 , pp. 1217-1228
    • Ho, P.C.1
  • 62
    • 84961288972 scopus 로고    scopus 로고
    • Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein
    • Kamphorst, J.J., et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75 (2015), 544–553.
    • (2015) Cancer Res. , vol.75 , pp. 544-553
    • Kamphorst, J.J.1
  • 63
    • 84920972493 scopus 로고    scopus 로고
    • Nitric oxide mediates metabolic coupling of omentum-derived adipose stroma to ovarian and endometrial cancer cells
    • Salimian Rizi, B., et al. Nitric oxide mediates metabolic coupling of omentum-derived adipose stroma to ovarian and endometrial cancer cells. Cancer Res. 75 (2015), 456–471.
    • (2015) Cancer Res. , vol.75 , pp. 456-471
    • Salimian Rizi, B.1
  • 64
    • 84866118062 scopus 로고    scopus 로고
    • Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice
    • Grippo, P.J., et al. Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Gut 61 (2012), 1454–1464.
    • (2012) Gut , vol.61 , pp. 1454-1464
    • Grippo, P.J.1
  • 65
    • 67650561470 scopus 로고    scopus 로고
    • Obesity potentiates the growth and dissemination of pancreatic cancer
    • Zyromski, N.J., et al. Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery 146 (2009), 258–263.
    • (2009) Surgery , vol.146 , pp. 258-263
    • Zyromski, N.J.1
  • 66
    • 84942899732 scopus 로고    scopus 로고
    • Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN)
    • Rebours, V., et al. Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN). Clin. Cancer Res. 21 (2015), 3522–3528.
    • (2015) Clin. Cancer Res. , vol.21 , pp. 3522-3528
    • Rebours, V.1
  • 67
    • 84879766148 scopus 로고    scopus 로고
    • Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance
    • Lyssiotis, C.A., et al. Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 12 (2013), 1987–1988.
    • (2013) Cell Cycle , vol.12 , pp. 1987-1988
    • Lyssiotis, C.A.1
  • 68
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
    • Son, J., et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496 (2013), 101–105.
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1
  • 69
    • 84974575041 scopus 로고    scopus 로고
    • Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer
    • Meyer, K.A., et al. Adipocytes promote pancreatic cancer cell proliferation via glutamine transfer. Biochem. Biophys. Rep. 7 (2016), 144–149.
    • (2016) Biochem. Biophys. Rep. , vol.7 , pp. 144-149
    • Meyer, K.A.1
  • 70
    • 84982872436 scopus 로고    scopus 로고
    • Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy
    • Incio, J., et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. 6 (2016), 852–869.
    • (2016) Cancer Discov. , vol.6 , pp. 852-869
    • Incio, J.1
  • 71
    • 84888267890 scopus 로고    scopus 로고
    • A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice
    • Philip, B., et al. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology 145 (2013), 1449–1458.
    • (2013) Gastroenterology , vol.145 , pp. 1449-1458
    • Philip, B.1
  • 72
    • 84994642950 scopus 로고    scopus 로고
    • The quid pro quo of the tumor/stromal interaction
    • Tajan, M., Vousden, K.H., The quid pro quo of the tumor/stromal interaction. Cell Metab. 24 (2016), 645–646.
    • (2016) Cell Metab. , vol.24 , pp. 645-646
    • Tajan, M.1    Vousden, K.H.2
  • 73
    • 84948701108 scopus 로고    scopus 로고
    • Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma
    • Tardito, S., et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17 (2015), 1556–1568.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1556-1568
    • Tardito, S.1
  • 74
    • 85060496113 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species and cancer
    • Sullivan, L.B., Chandel, N.S., Mitochondrial reactive oxygen species and cancer. Cancer Metab., 2, 2014, 17.
    • (2014) Cancer Metab. , vol.2 , pp. 17
    • Sullivan, L.B.1    Chandel, N.S.2
  • 75
    • 84862777168 scopus 로고    scopus 로고
    • Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia
    • Zhang, W., et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14 (2012), 276–286.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 276-286
    • Zhang, W.1
  • 76
    • 84964637801 scopus 로고    scopus 로고
    • Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer
    • Wang, W., et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165 (2016), 1092–1105.
    • (2016) Cell , vol.165 , pp. 1092-1105
    • Wang, W.1
  • 77
    • 37549061827 scopus 로고    scopus 로고
    • Creating immune privilege: active local suppression that benefits friends, but protects foes
    • Mellor, A.L., Munn, D.H., Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat. Rev. Immunol. 8 (2008), 74–80.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 74-80
    • Mellor, A.L.1    Munn, D.H.2
  • 78
    • 0032555614 scopus 로고    scopus 로고
    • Prevention of allogeneic fetal rejection by tryptophan catabolism
    • Munn, D.H., et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281 (1998), 1191–1193.
    • (1998) Science , vol.281 , pp. 1191-1193
    • Munn, D.H.1
  • 79
    • 0033519278 scopus 로고    scopus 로고
    • Inhibition of T cell proliferation by macrophage tryptophan catabolism
    • Munn, D.H., et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189 (1999), 1363–1372.
    • (1999) J. Exp. Med. , vol.189 , pp. 1363-1372
    • Munn, D.H.1
  • 80
    • 19344377474 scopus 로고    scopus 로고
    • GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase
    • Munn, D.H., et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22 (2005), 633–642.
    • (2005) Immunity , vol.22 , pp. 633-642
    • Munn, D.H.1
  • 81
    • 80054041992 scopus 로고    scopus 로고
    • An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor
    • Opitz, C.A., et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478 (2011), 197–203.
    • (2011) Nature , vol.478 , pp. 197-203
    • Opitz, C.A.1
  • 82
    • 78649880396 scopus 로고    scopus 로고
    • An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells
    • Mezrich, J.D., et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185 (2010), 3190–3198.
    • (2010) J. Immunol. , vol.185 , pp. 3190-3198
    • Mezrich, J.D.1
  • 83
    • 78650560167 scopus 로고    scopus 로고
    • Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism
    • Nguyen, N.T., et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 19961–19966.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 19961-19966
    • Nguyen, N.T.1
  • 84
    • 84868220730 scopus 로고    scopus 로고
    • Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion
    • Platten, M., et al. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 72 (2012), 5435–5440.
    • (2012) Cancer Res. , vol.72 , pp. 5435-5440
    • Platten, M.1
  • 85
    • 84920939262 scopus 로고    scopus 로고
    • l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells
    • Fletcher, M., et al. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75 (2015), 275–283.
    • (2015) Cancer Res. , vol.75 , pp. 275-283
    • Fletcher, M.1
  • 86
    • 33846933459 scopus 로고    scopus 로고
    • L-Arginine availability regulates T-lymphocyte cell-cycle progression
    • Rodriguez, P.C., et al. L-Arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109 (2007), 1568–1573.
    • (2007) Blood , vol.109 , pp. 1568-1573
    • Rodriguez, P.C.1
  • 87
    • 0041845173 scopus 로고    scopus 로고
    • L-Arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes
    • Rodriguez, P.C., et al. L-Arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol. 171 (2003), 1232–1239.
    • (2003) J. Immunol. , vol.171 , pp. 1232-1239
    • Rodriguez, P.C.1
  • 88
    • 84992478733 scopus 로고    scopus 로고
    • L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity
    • Geiger, R., et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167 (2016), 829–842.e13.
    • (2016) Cell , vol.167 , pp. 829-842.e13
    • Geiger, R.1
  • 89
    • 51949087021 scopus 로고    scopus 로고
    • Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase
    • Bowles, T.L., et al. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int. J. Cancer 123 (2008), 1950–1955.
    • (2008) Int. J. Cancer , vol.123 , pp. 1950-1955
    • Bowles, T.L.1
  • 90
    • 58349098150 scopus 로고    scopus 로고
    • Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis
    • Kim, R.H., et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 69 (2009), 700–708.
    • (2009) Cancer Res. , vol.69 , pp. 700-708
    • Kim, R.H.1
  • 91
    • 81255157465 scopus 로고    scopus 로고
    • Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
    • Nieman, K.M., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17 (2011), 1498–1503.
    • (2011) Nat. Med. , vol.17 , pp. 1498-1503
    • Nieman, K.M.1
  • 92
    • 85018029467 scopus 로고    scopus 로고
    • Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration
    • Balaban, S., et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab., 5, 2017, 1.
    • (2017) Cancer Metab. , vol.5 , pp. 1
    • Balaban, S.1
  • 93
    • 84879323485 scopus 로고    scopus 로고
    • Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor
    • Chaudhri, V.K., et al. Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol. Cancer Res. 11 (2013), 579–592.
    • (2013) Mol. Cancer Res. , vol.11 , pp. 579-592
    • Chaudhri, V.K.1
  • 94
    • 84964445423 scopus 로고    scopus 로고
    • Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism
    • Zhao, H., et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife, 5, 2016, e10250.
    • (2016) Elife , vol.5 , pp. e10250
    • Zhao, H.1
  • 95
    • 85010858485 scopus 로고    scopus 로고
    • Exo-MFA – A 13C metabolic flux analysis to dissect tumor microenvironment-secreted exosome contributions towards cancer cell metabolism
    • Published online January 11 2017.
    • Achreja, A., et al. Exo-MFA – A 13C metabolic flux analysis to dissect tumor microenvironment-secreted exosome contributions towards cancer cell metabolism. Metab. Eng., 2017, 10.1016/j.ymben.2017.01.001 Published online January 11, 2017.
    • (2017) Metab. Eng.
    • Achreja, A.1
  • 97
    • 31944452442 scopus 로고    scopus 로고
    • Mitochondrial transfer between cells can rescue aerobic respiration
    • Spees, J.L., et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 1283–1288.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 1283-1288
    • Spees, J.L.1
  • 98
    • 84920560830 scopus 로고    scopus 로고
    • Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA
    • Tan, A.S., et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21 (2015), 81–94.
    • (2015) Cell Metab. , vol.21 , pp. 81-94
    • Tan, A.S.1
  • 99
    • 85016250962 scopus 로고    scopus 로고
    • Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy
    • Moschoi, R., et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128 (2016), 253–264.
    • (2016) Blood , vol.128 , pp. 253-264
    • Moschoi, R.1
  • 100
    • 84938555849 scopus 로고    scopus 로고
    • Metabolic control of signalling pathways and metabolic auto-regulation
    • Lorendeau, D., et al. Metabolic control of signalling pathways and metabolic auto-regulation. Biol. Cell 107 (2015), 251–272.
    • (2015) Biol. Cell , vol.107 , pp. 251-272
    • Lorendeau, D.1
  • 101
    • 84880648196 scopus 로고    scopus 로고
    • Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells
    • Husain, Z., et al. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J. Immunol. 191 (2013), 1486–1495.
    • (2013) J. Immunol. , vol.191 , pp. 1486-1495
    • Husain, Z.1
  • 102
    • 84861861104 scopus 로고    scopus 로고
    • Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes
    • Calcinotto, A., et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 72 (2012), 2746–2756.
    • (2012) Cancer Res. , vol.72 , pp. 2746-2756
    • Calcinotto, A.1
  • 103
    • 84978516901 scopus 로고    scopus 로고
    • Immunologic and metabolic features of pancreatic ductal adenocarcinoma define prognostic subtypes of disease
    • Hutcheson, J., et al. Immunologic and metabolic features of pancreatic ductal adenocarcinoma define prognostic subtypes of disease. Clin. Cancer Res. 22 (2016), 3606–3617.
    • (2016) Clin. Cancer Res. , vol.22 , pp. 3606-3617
    • Hutcheson, J.1
  • 104
    • 85009819036 scopus 로고    scopus 로고
    • Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis
    • Chen, P., et al. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc. Natl. Acad. Sci. U. S. A. 114 (2017), 580–585.
    • (2017) Proc. Natl. Acad. Sci. U. S. A. , vol.114 , pp. 580-585
    • Chen, P.1
  • 105
    • 84888385324 scopus 로고    scopus 로고
    • Immunity, inflammation and cancer: a leading role for adenosine
    • Antonioli, L., et al. Immunity, inflammation and cancer: a leading role for adenosine. Nat. Rev. Cancer 13 (2013), 842–857.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 842-857
    • Antonioli, L.1
  • 106
    • 84900530332 scopus 로고    scopus 로고
    • Nucleotide signalling during inflammation
    • Idzko, M., et al. Nucleotide signalling during inflammation. Nature 509 (2014), 310–317.
    • (2014) Nature , vol.509 , pp. 310-317
    • Idzko, M.1
  • 107
    • 33644607461 scopus 로고    scopus 로고
    • Pathophysiology and therapeutic potential of purinergic signaling
    • Burnstock, G., Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol. Rev. 58 (2006), 58–86.
    • (2006) Pharmacol. Rev. , vol.58 , pp. 58-86
    • Burnstock, G.1
  • 108
    • 84975221172 scopus 로고    scopus 로고
    • Extracellular purines, purinergic receptors and tumor growth
    • Di Virgilio, F., Adinolfi, E., Extracellular purines, purinergic receptors and tumor growth. Oncogene 36 (2017), 293–303.
    • (2017) Oncogene , vol.36 , pp. 293-303
    • Di Virgilio, F.1    Adinolfi, E.2
  • 109
    • 51049101334 scopus 로고    scopus 로고
    • Adenosine receptors: therapeutic aspects for inflammatory and immune diseases
    • Hasko, G., et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 7 (2008), 759–770.
    • (2008) Nat. Rev. Drug Discov. , vol.7 , pp. 759-770
    • Hasko, G.1
  • 110
    • 0035924320 scopus 로고    scopus 로고
    • Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage
    • Ohta, A., Sitkovsky, M., Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414 (2001), 916–920.
    • (2001) Nature , vol.414 , pp. 916-920
    • Ohta, A.1    Sitkovsky, M.2
  • 111
    • 34250351459 scopus 로고    scopus 로고
    • Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression
    • Deaglio, S., et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204 (2007), 1257–1265.
    • (2007) J. Exp. Med. , vol.204 , pp. 1257-1265
    • Deaglio, S.1
  • 112
    • 0030785819 scopus 로고    scopus 로고
    • The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine
    • Blay, J., et al. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 57 (1997), 2602–2605.
    • (1997) Cancer Res. , vol.57 , pp. 2602-2605
    • Blay, J.1
  • 113
    • 84955326448 scopus 로고    scopus 로고
    • The emerging hallmarks of cancer metabolism
    • Pavlova, N.N., Thompson, C.B., The emerging hallmarks of cancer metabolism. Cell Metab. 23 (2016), 27–47.
    • (2016) Cell Metab. , vol.23 , pp. 27-47
    • Pavlova, N.N.1    Thompson, C.B.2
  • 114
    • 85011295507 scopus 로고    scopus 로고
    • Stromal cues regulate the pancreatic cancer epigenome and metabolome
    • Sherman, M.H., et al. Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc. Natl. Acad. Sci. U. S. A. 114 (2017), 1129–1134.
    • (2017) Proc. Natl. Acad. Sci. U. S. A. , vol.114 , pp. 1129-1134
    • Sherman, M.H.1
  • 115
    • 84860321700 scopus 로고    scopus 로고
    • Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
    • Ying, H., et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149 (2012), 656–670.
    • (2012) Cell , vol.149 , pp. 656-670
    • Ying, H.1
  • 116
    • 79551584971 scopus 로고    scopus 로고
    • Regulation of intermediary metabolism by protein acetylation
    • Guan, K.L., Xiong, Y., Regulation of intermediary metabolism by protein acetylation. Trends Biochem. Sci. 36 (2011), 108–116.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 108-116
    • Guan, K.L.1    Xiong, Y.2
  • 117
    • 84893092415 scopus 로고    scopus 로고
    • Monocarboxylic acid transport
    • Halestrap, A.P., Monocarboxylic acid transport. Compr. Physiol. 3 (2013), 1611–1643.
    • (2013) Compr. Physiol. , vol.3 , pp. 1611-1643
    • Halestrap, A.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.