메뉴 건너뛰기




Volumn 8, Issue , 2017, Pages

Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity

Author keywords

Cancer; Immunometabolism; Inflammatory diseases; M1 M2 macrophage polarization; Metabolic reprogramming; Metabolic therapy; Microenvironment; Tumor associated macrophages

Indexed keywords

ARGININE; CITRATE SYNTHASE; GAMMA INTERFERON; GLUCOSE TRANSPORTER 1; GLUTAMATE SYNTHASE (NADH); GLUTAMINE; INTERLEUKIN 4; INTERLEUKIN 6; LIPOPOLYSACCHARIDE; TOLL LIKE RECEPTOR; TUMOR NECROSIS FACTOR;

EID: 85016030399     PISSN: None     EISSN: 16643224     Source Type: Journal    
DOI: 10.3389/fimmu.2017.00289     Document Type: Review
Times cited : (241)

References (105)
  • 1
    • 84885670616 scopus 로고    scopus 로고
    • Fueling immunity: insights into metabolism and lymphocyte function
    • Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science (2013) 342(6155):1242454. doi:10.1126/science.1242454
    • (2013) Science , vol.342 , Issue.6155 , pp. 1242454
    • Pearce, E.L.1    Poffenberger, M.C.2    Chang, C.H.3    Jones, R.G.4
  • 2
    • 84997766074 scopus 로고    scopus 로고
    • Metabolic communication in tumors: a new layer of immunoregulation for immune evasion
    • Ho PC, Liu PS. Metabolic communication in tumors: a new layer of immunoregulation for immune evasion. J Immunother Cancer (2016) 4(1):4. doi:10.1186/s40425-016-0109-1
    • (2016) J Immunother Cancer , vol.4 , Issue.1 , pp. 4
    • Ho, P.C.1    Liu, P.S.2
  • 3
    • 84978148203 scopus 로고    scopus 로고
    • A guide to immunometabolism for immunologists
    • O'Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol (2016) 16(9):553-65. doi:10.1038/ nri.2016.70
    • (2016) Nat Rev Immunol , vol.16 , Issue.9 , pp. 553-565
    • O'Neill, L.A.J.1    Kishton, R.J.2    Rathmell, J.3
  • 4
    • 84960399221 scopus 로고    scopus 로고
    • Immunometabolism governs dendritic cell and macrophage function
    • O'Neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med (2016) 213(1):15-23. doi:10.1084/jem.20151570
    • (2016) J Exp Med , vol.213 , Issue.1 , pp. 15-23
    • O'Neill, L.A.1    Pearce, E.J.2
  • 6
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol (2011) 27:441-64. doi:10.1146/annurev-cellbio-092910-154237
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 7
    • 85006768050 scopus 로고
    • The metabolism of tumors in the body
    • Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol (1927) 8(6):519-30. doi:10.1085/jgp.8.6.519
    • (1927) J Gen Physiol , vol.8 , Issue.6 , pp. 519-530
    • Warburg, O.1    Wind, F.2    Negelein, E.3
  • 8
    • 84904173553 scopus 로고    scopus 로고
    • Metabolism of stromal and immune cells in health and disease
    • Ghesquière B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature (2014) 511(7508):167-76. doi:10.1038/nature13312
    • (2014) Nature , vol.511 , Issue.7508 , pp. 167-176
    • Ghesquière, B.1    Wong, B.W.2    Kuchnio, A.3    Carmeliet, P.4
  • 9
    • 84876424760 scopus 로고    scopus 로고
    • Macrophage regulation of tumor responses to anticancer therapies
    • De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell (2013) 23(3):277-86. doi:10.1016/j. ccr.2013.02.013
    • (2013) Cancer Cell , vol.23 , Issue.3 , pp. 277-286
    • De Palma, M.1    Lewis, C.E.2
  • 10
    • 84951335282 scopus 로고    scopus 로고
    • New insights into the multidimensional concept of macrophage ontogeny, activation and function
    • Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol (2016) 17(1):34-40. doi:10.1038/ni.3324
    • (2016) Nat Immunol , vol.17 , Issue.1 , pp. 34-40
    • Ginhoux, F.1    Schultze, J.L.2    Murray, P.J.3    Ochando, J.4    Biswas, S.K.5
  • 11
    • 84894102230 scopus 로고    scopus 로고
    • Transcriptome-based network analysis reveals a spectrum model of human macrophage activation
    • Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity (2014) 40(2):274-88. doi:10.1016/j. immuni.2014.01.006
    • (2014) Immunity , vol.40 , Issue.2 , pp. 274-288
    • Xue, J.1    Schmidt, S.V.2    Sander, J.3    Draffehn, A.4    Krebs, W.5    Quester, I.6
  • 12
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: nomenclature and experimental guidelines
    • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity (2014) 41(1):14-20. doi:10.1016/j.immuni.2014.06.008
    • (2014) Immunity , vol.41 , Issue.1 , pp. 14-20
    • Murray, P.J.1    Allen, J.E.2    Biswas, S.K.3    Fisher, E.A.4    Gilroy, D.W.5    Goerdt, S.6
  • 13
    • 85008971784 scopus 로고    scopus 로고
    • Macrophage polarization: decisions that affect health
    • Mills CD, Harris RA, Ley K. Macrophage polarization: decisions that affect health. J Clin Cell Immunol (2015) 6(5):364. doi:10.4172/2155-9899.1000364
    • (2015) J Clin Cell Immunol , vol.6 , Issue.5 , pp. 364
    • Mills, C.D.1    Harris, R.A.2    Ley, K.3
  • 14
    • 0034659784 scopus 로고    scopus 로고
    • M-1/M-2 macrophages and the Th1/Th2 paradigm
    • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol (2000) 164(12):6166-73. doi:10.4049/ jimmunol.164.12.6166
    • (2000) J Immunol , vol.164 , Issue.12 , pp. 6166-6173
    • Mills, C.D.1    Kincaid, K.2    Alt, J.M.3    Heilman, M.J.4    Hill, A.M.5
  • 15
    • 7644231561 scopus 로고    scopus 로고
    • The chemokine system in diverse forms of macrophage activation and polarization
    • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol (2004) 25(12):677-86. doi:10.1016/j.it.2004.09.015
    • (2004) Trends Immunol , vol.25 , Issue.12 , pp. 677-686
    • Mantovani, A.1    Sica, A.2    Sozzani, S.3    Allavena, P.4    Vecchi, A.5    Locati, M.6
  • 16
    • 0037265240 scopus 로고    scopus 로고
    • Alternative activation of macrophages
    • Gordon S. Alternative activation of macrophages. Nat Rev Immunol (2003) 3(1):23-35. doi:10.1038/nri978
    • (2003) Nat Rev Immunol , vol.3 , Issue.1 , pp. 23-35
    • Gordon, S.1
  • 17
    • 33747345981 scopus 로고    scopus 로고
    • Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion
    • Van Ginderachter JA, Movahedi K, Ghassabeh GH, Meerschaut S, Beschin A, Raes G, et al. Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology (2006) 211(6-8):487-501. doi:10.1016/j.imbio.2006.06.002
    • (2006) Immunobiology , vol.211 , Issue.6-8 , pp. 487-501
    • Van Ginderachter, J.A.1    Movahedi, K.2    Ghassabeh, G.H.3    Meerschaut, S.4    Beschin, A.5    Raes, G.6
  • 18
    • 84859464555 scopus 로고    scopus 로고
    • Orchestration of metabolism by macrophages
    • Biswas SK, Mantovani A. Orchestration of metabolism by macrophages. Cell Metab (2012) 15(4):432-7. doi:10.1016/j.cmet.2011.11.013
    • (2012) Cell Metab , vol.15 , Issue.4 , pp. 432-437
    • Biswas, S.K.1    Mantovani, A.2
  • 19
    • 84953720358 scopus 로고    scopus 로고
    • Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal
    • Mills EL, O'Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol (2016) 46(1):13-21. doi:10.1002/eji.201445427
    • (2016) Eur J Immunol , vol.46 , Issue.1 , pp. 13-21
    • Mills, E.L.1    O'Neill, L.A.2
  • 20
    • 84924935721 scopus 로고    scopus 로고
    • Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
    • Jha AK, Huang SCC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity (2015) 42(3):419-30. doi:10.1016/j.immuni.2015.02.005
    • (2015) Immunity , vol.42 , Issue.3 , pp. 419-430
    • Jha, A.K.1    Huang, S.C.C.2    Sergushichev, A.3    Lampropoulou, V.4    Ivanova, Y.5    Loginicheva, E.6
  • 21
    • 84964495165 scopus 로고    scopus 로고
    • Pro- inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression
    • Meiser J, Krämer L, Sapcariu SC, Battello N, Ghelfi J, D'Herouel AF, et al. Pro- inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Bio Chem (2016) 291(8):3932-46. doi:10.1074/jbc.M115.676817
    • (2016) J Bio Chem , vol.291 , Issue.8 , pp. 3932-3946
    • Meiser, J.1    Krämer, L.2    Sapcariu, S.C.3    Battello, N.4    Ghelfi, J.5    D'Herouel, A.F.6
  • 22
    • 84877343356 scopus 로고    scopus 로고
    • Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
    • Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A (2013) 110(19):7820-5. doi:10.1073/pnas.1218599110
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.19 , pp. 7820-7825
    • Michelucci, A.1    Cordes, T.2    Ghelfi, J.3    Pailot, A.4    Reiling, N.5    Goldmann, O.6
  • 23
    • 84976869322 scopus 로고    scopus 로고
    • Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
    • Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J Biol Chem (2016) 291(27):14274-84. doi:10.1074/jbc.M115.685792
    • (2016) J Biol Chem , vol.291 , Issue.27 , pp. 14274-14284
    • Cordes, T.1    Wallace, M.2    Michelucci, A.3    Divakaruni, A.S.4    Sapcariu, S.C.5    Sousa, C.6
  • 24
    • 84978468846 scopus 로고    scopus 로고
    • Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
    • Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab (2016) 24(1):158-66. doi:10.1016/j. cmet.2016.06.004 doi:10.1038/nature11986
    • (2016) Cell Metab , vol.24 , Issue.1 , pp. 158-166
    • Lampropoulou, V.1    Sergushichev, A.2    Bambouskova, M.3    Nair, S.4    Vincent, E.E.5    Loginicheva, E.6
  • 26
    • 84938555849 scopus 로고    scopus 로고
    • Metabolic control of signalling pathways and metabolic auto-regulation
    • Lorendeau D, Christen S, Rinaldi G, Fendt SM. Metabolic control of signalling pathways and metabolic auto-regulation. Biol Cell (2015) 107(8):251-72. doi:10.1111/boc.201500015
    • (2015) Biol Cell , vol.107 , Issue.8 , pp. 251-272
    • Lorendeau, D.1    Christen, S.2    Rinaldi, G.3    Fendt, S.M.4
  • 27
    • 84990845578 scopus 로고    scopus 로고
    • Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
    • Mills EL, Kelly B, Logan A, Costa AS, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell (2016) 167(2):457-70. doi:10.1016/j. cell.2016.08.064
    • (2016) Cell , vol.167 , Issue.2 , pp. 457-470
    • Mills, E.L.1    Kelly, B.2    Logan, A.3    Costa, A.S.4    Varma, M.5    Bryant, C.E.6
  • 28
    • 84937513657 scopus 로고    scopus 로고
    • mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation
    • Moon JS, Hisata S, Park MA, DeNicola GM, Ryter SW, Nakahira K, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep (2015) 12:102-15. doi:10.1016/j. celrep.2015.05.046
    • (2015) Cell Rep , vol.12 , pp. 102-115
    • Moon, J.S.1    Hisata, S.2    Park, M.A.3    DeNicola, G.M.4    Ryter, S.W.5    Nakahira, K.6
  • 29
    • 19944428439 scopus 로고    scopus 로고
    • Induction of glucose transporter 1 expression through hypoxia-inducible factor 1a under hypoxic conditions in trophoblast-derived cells
    • Hayashi M, Sakata M, Takeda T, Yamamoto T, Okamoto Y, Sawada K, et al. Induction of glucose transporter 1 expression through hypoxia-inducible factor 1a under hypoxic conditions in trophoblast-derived cells. J Endocrinol (2004) 183(1):145-54. doi:10.1677/joe.1.05599
    • (2004) J Endocrinol , vol.183 , Issue.1 , pp. 145-154
    • Hayashi, M.1    Sakata, M.2    Takeda, T.3    Yamamoto, T.4    Okamoto, Y.5    Sawada, K.6
  • 30
    • 19944399717 scopus 로고    scopus 로고
    • 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia
    • Obach M, Navarro-Sabaté à, Caro J, Kong X, Duran J, Gómez M, et al. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem (2004) 279(51):53562-70. doi:10.1074/jbc.M406096200
    • (2004) J Biol Chem , vol.279 , Issue.51 , pp. 53562-53570
    • Obach, M.1    Navarro-Sabaté, A.2    Caro, J.3    Kong, X.4    Duran, J.5    Gómez, M.6
  • 31
    • 33646917296 scopus 로고    scopus 로고
    • The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1a- dependent mechanism
    • Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1a- dependent mechanism. J Biol Chem (2006) 281(14):9030-7. doi:10.1074/jbc. M511397200
    • (2006) J Biol Chem , vol.281 , Issue.14 , pp. 9030-9037
    • Ullah, M.S.1    Davies, A.J.2    Halestrap, A.P.3
  • 32
    • 1642581653 scopus 로고    scopus 로고
    • Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1a
    • Blouin CC, Pagé EL, Soucy GM, Richard DE. Hypoxic gene activation by lipopolysaccharide in macrophages: implication of hypoxia-inducible factor 1a. Blood (2004) 103(3):1124-30. doi:10.1182/blood-2003-07-2427
    • (2004) Blood , vol.103 , Issue.3 , pp. 1124-1130
    • Blouin, C.C.1    Pagé, E.L.2    Soucy, G.M.3    Richard, D.E.4
  • 33
    • 84896269174 scopus 로고    scopus 로고
    • Metabolic reprogramming of macrophages glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype
    • Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem (2014) 289(11):7884-96. doi:10.1074/jbc.M113.522037
    • (2014) J Biol Chem , vol.289 , Issue.11 , pp. 7884-7896
    • Freemerman, A.J.1    Johnson, A.R.2    Sacks, G.N.3    Milner, J.J.4    Kirk, E.L.5    Troester, M.A.6
  • 34
    • 77956213727 scopus 로고    scopus 로고
    • Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation
    • Rodríguez-Prados JC, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol (2010) 185(1):605-14. doi:10.4049/jimmunol.0901698
    • (2010) J Immunol , vol.185 , Issue.1 , pp. 605-614
    • Rodríguez-Prados, J.C.1    Través, P.G.2    Cuenca, J.3    Rico, D.4    Aragonés, J.5    Martín-Sanz, P.6
  • 35
    • 84938772588 scopus 로고    scopus 로고
    • Metabolic signatures linked to macrophage polarization: from glucose metabolism to oxidative phosphorylation
    • Boscá L, González-Ramos S, Prieto P, Fernández-Velasco M, Mojena M, Martín-Sanz P, et al. Metabolic signatures linked to macrophage polarization: from glucose metabolism to oxidative phosphorylation. Biochem Soc Trans (2015) 43(4):740-4. doi:10.1042/BST20150107
    • (2015) Biochem Soc Trans , vol.43 , Issue.4 , pp. 740-744
    • Boscá, L.1    González-Ramos, S.2    Prieto, P.3    Fernández-Velasco, M.4    Mojena, M.5    Martín-Sanz, P.6
  • 36
    • 84920507166 scopus 로고    scopus 로고
    • The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages
    • Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ, et al. The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem (2015) 290(1):46-55. doi:10.1074/jbc.M114.603589
    • (2015) J Biol Chem , vol.290 , Issue.1 , pp. 46-55
    • Tan, Z.1    Xie, N.2    Banerjee, S.3    Cui, H.4    Fu, M.5    Thannickal, V.J.6
  • 37
    • 84866434542 scopus 로고    scopus 로고
    • Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1
    • Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe (2012) 12(3):313-23. doi:10.1016/j.chom.2012.07.012
    • (2012) Cell Host Microbe , vol.12 , Issue.3 , pp. 313-323
    • Qualls, J.E.1    Subramanian, C.2    Rafi, W.3    Smith, A.M.4    Balouzian, L.5    DeFreitas, A.A.6
  • 38
    • 0032560572 scopus 로고    scopus 로고
    • Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione
    • Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A (1998) 95(13):7631-6. doi:10.1073/pnas.95.13.7631
    • (1998) Proc Natl Acad Sci U S A , vol.95 , Issue.13 , pp. 7631-7636
    • Clementi, E.1    Brown, G.C.2    Feelisch, M.3    Moncada, S.4
  • 39
    • 84942982260 scopus 로고    scopus 로고
    • Metabolic reprogramming in macrophages and dendritic cells in innate immunity
    • Kelly B, O'Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res (2015) 25(7):771-84. doi:10.1038/cr.2015.68
    • (2015) Cell Res , vol.25 , Issue.7 , pp. 771-784
    • Kelly, B.1    O'Neill, L.A.2
  • 41
    • 84965127146 scopus 로고    scopus 로고
    • The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases
    • Tan HY, Wang N, Li S, Hong M, Wang X, Feng Y. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev (2016) 2016:16. doi:10.1155/2016/2795090
    • (2016) Oxid Med Cell Longev , vol.2016 , pp. 16
    • Tan, H.Y.1    Wang, N.2    Li, S.3    Hong, M.4    Wang, X.5    Feng, Y.6
  • 42
    • 79955532516 scopus 로고    scopus 로고
    • TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
    • West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature (2011) 472(7344):476-80. doi:10.1038/ nature09973
    • (2011) Nature , vol.472 , Issue.7344 , pp. 476-480
    • West, A.P.1    Brodsky, I.E.2    Rahner, C.3    Woo, D.K.4    Erdjument-Bromage, H.5    Tempst, P.6
  • 44
    • 84885388000 scopus 로고    scopus 로고
    • ATP-citrate lyase is essential for macrophage inflammatory response
    • Infantino V, Iacobazzi V, Palmieri F, Menga A. ATP-citrate lyase is essential for macrophage inflammatory response. Biochem Biophys Res Commun (2013) 440(1):105-11. doi:10.1016/j.bbrc.2013.09.037
    • (2013) Biochem Biophys Res Commun , vol.440 , Issue.1 , pp. 105-111
    • Infantino, V.1    Iacobazzi, V.2    Palmieri, F.3    Menga, A.4
  • 45
    • 84907684613 scopus 로고    scopus 로고
    • A key role of the mitochondrial citrate carrier (SLC25A1) in TNFa-and IFN-triggered inflammation
    • Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFa-and IFN-triggered inflammation. Biochim Biophys Acta (2014) 1839(11):1217-25. doi:10.1016/j. bbagrm.2014.07.013
    • (2014) Biochim Biophys Acta , vol.1839 , Issue.11 , pp. 1217-1225
    • Infantino, V.1    Iacobazzi, V.2    Menga, A.3    Avantaggiati, M.L.4    Palmieri, F.5
  • 46
    • 84949756669 scopus 로고    scopus 로고
    • Metabolic-epigenetic crosstalk in macrophage activation
    • Baardman J, Licht I, de Winther MP, Van den Bossche J. Metabolic-epigenetic crosstalk in macrophage activation. Epigenomics (2015) 7(7):1155-64. doi:10.2217/epi.15.71
    • (2015) Epigenomics , vol.7 , Issue.7 , pp. 1155-1164
    • Baardman, J.1    Licht, I.2    de Winther, M.P.3    Van den Bossche, J.4
  • 49
    • 77952413531 scopus 로고    scopus 로고
    • Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes
    • Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, Schmitz G. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci U S A (2010) 107(17):7817-22. doi:10.1073/pnas.0912059107
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.17 , pp. 7817-7822
    • Ecker, J.1    Liebisch, G.2    Englmaier, M.3    Grandl, M.4    Robenek, H.5    Schmitz, G.6
  • 50
    • 84919452312 scopus 로고    scopus 로고
    • Metabolic reprograming in macrophage polarization
    • Galván-Peña S, O'Neill LA. Metabolic reprograming in macrophage polarization. Front Immunol (2014) 5:420. doi:10.3389/fimmu.2014.00420
    • (2014) Front Immunol , vol.5 , pp. 420
    • Galván-Peña, S.1    O'Neill, L.A.2
  • 51
    • 33745428666 scopus 로고    scopus 로고
    • Oxidative metabolism and PGC-1ß attenuate macrophage-mediated inflammation
    • Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1ß attenuate macrophage-mediated inflammation. Cell Metab (2006) 4(1):13-24. doi:10.1016/j.cmet.2006.05.011
    • (2006) Cell Metab , vol.4 , Issue.1 , pp. 13-24
    • Vats, D.1    Mukundan, L.2    Odegaard, J.I.3    Zhang, L.4    Smith, K.L.5    Morel, C.R.6
  • 52
    • 84906319549 scopus 로고    scopus 로고
    • Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
    • Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol (2014) 15(9):846-55. doi:10.1038/ni.2956
    • (2014) Nat Immunol , vol.15 , Issue.9 , pp. 846-855
    • Huang, S.C.1    Everts, B.2    Ivanova, Y.3    O'Sullivan, D.4    Nascimento, M.5    Smith, A.M.6
  • 53
    • 84929682990 scopus 로고    scopus 로고
    • Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation
    • Malandrino MI, Fucho R, Weber M, Calderon-Dominguez M, Mir JF, Valcarcel L, et al. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. Am J Physiol Endocrinol Metab (2015) 308(9):756-69. doi:10.1152/ ajpendo.00362.2014
    • (2015) Am J Physiol Endocrinol Metab , vol.308 , Issue.9 , pp. 756-769
    • Malandrino, M.I.1    Fucho, R.2    Weber, M.3    Calderon-Dominguez, M.4    Mir, J.F.5    Valcarcel, L.6
  • 55
    • 77952997178 scopus 로고    scopus 로고
    • Control of macrophage activation and function by PPARs
    • Chawla A. Control of macrophage activation and function by PPARs. Circ Res (2010) 106(10):1559-69. doi:10.1161/CIRCRESAHA.110.216523
    • (2010) Circ Res , vol.106 , Issue.10 , pp. 1559-1569
    • Chawla, A.1
  • 56
    • 34347354309 scopus 로고    scopus 로고
    • Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance
    • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature (2007) 447(7148):1116-20. doi:10.1038/nature05894
    • (2007) Nature , vol.447 , Issue.7148 , pp. 1116-1120
    • Odegaard, J.I.1    Ricardo-Gonzalez, R.R.2    Goforth, M.H.3    Morel, C.R.4    Subramanian, V.5    Mukundan, L.6
  • 57
    • 0141455974 scopus 로고    scopus 로고
    • PPAR promotes mannose receptor gene expression in murine macrophages and contributes to the induction of this receptor by IL-13
    • Coste A, Dubourdeau M, Linas MD, Cassaing S, Lepert JC, Balard P, et al. PPAR promotes mannose receptor gene expression in murine macrophages and contributes to the induction of this receptor by IL-13. Immunity (2003) 19(3):329-39. doi:10.1016/S1074-7613(03)00229-2
    • (2003) Immunity , vol.19 , Issue.3 , pp. 329-339
    • Coste, A.1    Dubourdeau, M.2    Linas, M.D.3    Cassaing, S.4    Lepert, J.C.5    Balard, P.6
  • 58
    • 84918843257 scopus 로고    scopus 로고
    • Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages
    • Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol (2014) 5:532. doi:10.3389/fimmu.2014.00532
    • (2014) Front Immunol , vol.5 , pp. 532
    • Rath, M.1    Müller, I.2    Kropf, P.3    Closs, E.I.4    Munder, M.5
  • 59
    • 0028916297 scopus 로고
    • Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH 1 and TH 2 cytokines
    • Modolell M, Corraliza IM, Link F, Soler G, Eichmann K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH 1 and TH 2 cytokines. Eur J Immunol (1995) 25(4):1101-4. doi:10.1002/eji.1830250436
    • (1995) Eur J Immunol , vol.25 , Issue.4 , pp. 1101-1104
    • Modolell, M.1    Corraliza, I.M.2    Link, F.3    Soler, G.4    Eichmann, K.5
  • 60
    • 2942592246 scopus 로고    scopus 로고
    • Enhancer-mediated control of macrophage-specific arginase I expression
    • Pauleau AL, Rutschman R, Lang R, Pernis A, Watowich SS, Murray PJ. Enhancer-mediated control of macrophage-specific arginase I expression. J Immunol (2004) 172(12):7565-73. doi:10.4049/jimmunol.172.12.7565
    • (2004) J Immunol , vol.172 , Issue.12 , pp. 7565-7573
    • Pauleau, A.L.1    Rutschman, R.2    Lang, R.3    Pernis, A.4    Watowich, S.S.5    Murray, P.J.6
  • 61
    • 44649105230 scopus 로고    scopus 로고
    • Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-/d-mediated effect that links lipid metabolism and immunity
    • Gallardo-Soler A, Gómez-Nieto C, Campo ML, Marathe C, Tontonoz P, Castrillo A, et al. Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-/d-mediated effect that links lipid metabolism and immunity. Mol Endocrinol (2008) 22(6):1394-402. doi:10.1210/me.2007-0525
    • (2008) Mol Endocrinol , vol.22 , Issue.6 , pp. 1394-1402
    • Gallardo-Soler, A.1    Gómez-Nieto, C.2    Campo, M.L.3    Marathe, C.4    Tontonoz, P.5    Castrillo, A.6
  • 62
    • 85011268659 scopus 로고    scopus 로고
    • Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications
    • Hardbower DM, Asim M, Luis PB, Singh K, Barry DP, Yang C, et al. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci U S A (2017) 114(5):E751-60. doi:10.1073/pnas.1614958114
    • (2017) Proc Natl Acad Sci U S A , vol.114 , Issue.5 , pp. E751-E760
    • Hardbower, D.M.1    Asim, M.2    Luis, P.B.3    Singh, K.4    Barry, D.P.5    Yang, C.6
  • 63
    • 84862016400 scopus 로고    scopus 로고
    • The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism
    • Haschemi A, Kosma P, Gille L, Evans CR, Burant CF, Starkl P, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab (2012) 15(6):813-26. doi:10.1016/j. cmet.2012.04.023
    • (2012) Cell Metab , vol.15 , Issue.6 , pp. 813-826
    • Haschemi, A.1    Kosma, P.2    Gille, L.3    Evans, C.R.4    Burant, C.F.5    Starkl, P.6
  • 65
    • 77949967131 scopus 로고    scopus 로고
    • Targeting metabolic transformation for cancer therapy
    • Tennant DA, Durán RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer (2010) 10(4):267-77. doi:10.1038/nrc2817
    • (2010) Nat Rev Cancer , vol.10 , Issue.4 , pp. 267-277
    • Tennant, D.A.1    Durán, R.V.2    Gottlieb, E.3
  • 66
    • 84961589787 scopus 로고    scopus 로고
    • Organ-specific cancer metabolism and its potential for therapy
    • Elia I, Schmieder R, Christen S, Fendt SM. Organ-specific cancer metabolism and its potential for therapy. Handb Exp Pharmacol (2016) 233:321-53. doi:10.1007/164_2015_10
    • (2016) Handb Exp Pharmacol , vol.233 , pp. 321-353
    • Elia, I.1    Schmieder, R.2    Christen, S.3    Fendt, S.M.4
  • 67
    • 84871694284 scopus 로고    scopus 로고
    • Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature
    • Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One (2012) 7(12):e50946. doi:10.1371/journal. pone.0050946
    • (2012) PLoS One , vol.7 , Issue.12
    • Zhang, Q.W.1    Liu, L.2    Gong, C.Y.3    Shi, H.S.4    Zeng, Y.H.5    Wang, X.Z.6
  • 68
    • 77950950894 scopus 로고    scopus 로고
    • Macrophage diversity enhances tumor progression and metastasis
    • Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell (2010) 141(1):39-51. doi:10.1016/j.cell.2010.03.014
    • (2010) Cell , vol.141 , Issue.1 , pp. 39-51
    • Qian, B.Z.1    Pollard, J.W.2
  • 69
    • 77955038532 scopus 로고    scopus 로고
    • Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes
    • Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer Res (2010) 70(14):5728-39. doi:10.1158/0008-5472.CAN-09-4672
    • (2010) Cancer Res , vol.70 , Issue.14 , pp. 5728-5739
    • Movahedi, K.1    Laoui, D.2    Gysemans, C.3    Baeten, M.4    Stangé, G.5    Van den Bossche, J.6
  • 70
    • 84892747845 scopus 로고    scopus 로고
    • Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population
    • Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, et al. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res (2014) 74(1):24-30. doi:10.1158/0008-5472.CAN-13-1196
    • (2014) Cancer Res , vol.74 , Issue.1 , pp. 24-30
    • Laoui, D.1    Van Overmeire, E.2    Di Conza, G.3    Aldeni, C.4    Keirsse, J.5    Morias, Y.6
  • 71
    • 84958953467 scopus 로고    scopus 로고
    • M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment
    • Van Overmeire E, Stijlemans B, Heymann F, Keirsse J, Morias Y, Elkrim Y, et al. M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer Res (2016) 76(1):35-42. doi:10.1158/0008-5472.CAN-15-0869
    • (2016) Cancer Res , vol.76 , Issue.1 , pp. 35-42
    • Van Overmeire, E.1    Stijlemans, B.2    Heymann, F.3    Keirsse, J.4    Morias, Y.5    Elkrim, Y.6
  • 72
    • 42149099408 scopus 로고    scopus 로고
    • Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms
    • Biswas SK, Sica A, Lewis CE. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol (2008) 180(4):2011-7. doi:10.4049/jimmunol.180.4.2011
    • (2008) J Immunol , vol.180 , Issue.4 , pp. 2011-2017
    • Biswas, S.K.1    Sica, A.2    Lewis, C.E.3
  • 73
    • 84928226005 scopus 로고    scopus 로고
    • The interaction of anticancer therapies with tumor-associated macrophages
    • Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med (2015) 212(4):435-45. doi:10.1084/jem.20150295
    • (2015) J Exp Med , vol.212 , Issue.4 , pp. 435-445
    • Mantovani, A.1    Allavena, P.2
  • 74
    • 35148852659 scopus 로고    scopus 로고
    • Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo
    • Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res (2007) 67(19):9417-24. doi:10.1158/0008-5472.CAN-07-1286
    • (2007) Cancer Res , vol.67 , Issue.19 , pp. 9417-9424
    • Loberg, R.D.1    Ying, C.2    Craig, M.3    Day, L.L.4    Sargent, E.5    Neeley, C.6
  • 75
    • 84879850236 scopus 로고    scopus 로고
    • Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis
    • Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, Carpenter D, et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res (2013) 19(13):3404-15. doi:10.1158/1078-0432.CCR-13-0525
    • (2013) Clin Cancer Res , vol.19 , Issue.13 , pp. 3404-3415
    • Sanford, D.E.1    Belt, B.A.2    Panni, R.Z.3    Mayer, A.4    Deshpande, A.D.5    Carpenter, D.6
  • 76
    • 84878849941 scopus 로고    scopus 로고
    • A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors
    • Sandhu SK, Papadopoulos K, Fong PC, Patnaik A, Messiou C, Olmos D, et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol (2013) 71(4):1041-50. doi:10.1007/s00280-013-2099-8
    • (2013) Cancer Chemother Pharmacol , vol.71 , Issue.4 , pp. 1041-1050
    • Sandhu, S.K.1    Papadopoulos, K.2    Fong, P.C.3    Patnaik, A.4    Messiou, C.5    Olmos, D.6
  • 77
    • 84915793974 scopus 로고    scopus 로고
    • Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis
    • Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature (2014) 515(7525):130-3. doi:10.1038/nature13862
    • (2014) Nature , vol.515 , Issue.7525 , pp. 130-133
    • Bonapace, L.1    Coissieux, M.M.2    Wyckoff, J.3    Mertz, K.D.4    Varga, Z.5    Junt, T.6
  • 78
    • 84976272206 scopus 로고    scopus 로고
    • The role of myeloid cells in cancer therapies
    • Engblom C, Pfirschke C, Pittet MJ. The role of myeloid cells in cancer therapies. Nat Rev Cancer (2016) 16(7):447-62. doi:10.1038/nrc.2016.54
    • (2016) Nat Rev Cancer , vol.16 , Issue.7 , pp. 447-462
    • Engblom, C.1    Pfirschke, C.2    Pittet, M.J.3
  • 79
    • 84891930215 scopus 로고    scopus 로고
    • Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity
    • Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell (2013) 24(6):695-709. doi:10.1016/j.ccr.2013.11.007
    • (2013) Cancer Cell , vol.24 , Issue.6 , pp. 695-709
    • Casazza, A.1    Laoui, D.2    Wenes, M.3    Rizzolio, S.4    Bassani, N.5    Mambretti, M.6
  • 80
    • 84887481716 scopus 로고    scopus 로고
    • CSF-1R inhibition alters macrophage polarization and blocks glioma progression
    • Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med (2013) 19(10):1264-72. doi:10.1038/nm.3337
    • (2013) Nat Med , vol.19 , Issue.10 , pp. 1264-1272
    • Pyonteck, S.M.1    Akkari, L.2    Schuhmacher, A.J.3    Bowman, R.L.4    Sevenich, L.5    Quail, D.F.6
  • 81
    • 84907223092 scopus 로고    scopus 로고
    • Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
    • Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature (2014) 513(7519):559-63. doi:10.1038/ nature13490
    • (2014) Nature , vol.513 , Issue.7519 , pp. 559-563
    • Colegio, O.R.1    Chu, N.Q.2    Szabo, A.L.3    Chu, T.4    Rhebergen, A.M.5    Jairam, V.6
  • 82
    • 84981555713 scopus 로고    scopus 로고
    • Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma
    • Penny HL, Sieow JL, Adriani G, Yeap WH, See Chi Ee P, San Luis B, et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology (2016) 5(8):e1191731. doi:10.1080/2162402X. 2016.1191731
    • (2016) Oncoimmunology , vol.5 , Issue.8
    • Penny, H.L.1    Sieow, J.L.2    Adriani, G.3    Yeap, W.H.4    See Chi Ee, P.5    San Luis, B.6
  • 83
    • 84994591173 scopus 로고    scopus 로고
    • Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis
    • Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab (2016) 24(5):701-15. doi:10.1016/j.cmet.2016.09.008
    • (2016) Cell Metab , vol.24 , Issue.5 , pp. 701-715
    • Wenes, M.1    Shang, M.2    Di Matteo, M.3    Goveia, J.4    Martín-Pérez, R.5    Serneels, J.6
  • 85
    • 74949089659 scopus 로고    scopus 로고
    • Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
    • Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest (2010) 120(1):142-56. doi:10.1172/JCI38942
    • (2010) J Clin Invest , vol.120 , Issue.1 , pp. 142-156
    • Samudio, I.1    Harmancey, R.2    Fiegl, M.3    Kantarjian, H.4    Konopleva, M.5    Korchin, B.6
  • 86
    • 79955601028 scopus 로고    scopus 로고
    • Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
    • Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta (2011) 1807(6):726-34. doi:10.1016/j. bbabio.2010.10.022
    • (2011) Biochim Biophys Acta , vol.1807 , Issue.6 , pp. 726-734
    • Pike, L.S.1    Smift, A.L.2    Croteau, N.J.3    Ferrick, D.A.4    Wu, M.5
  • 87
    • 84927563455 scopus 로고    scopus 로고
    • Fatty acid carbon is essential for dNTP synthesis in endothelial cells
    • Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G, Elia I, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature (2015) 520(7546):192-7. doi:10.1038/nature14362
    • (2015) Nature , vol.520 , Issue.7546 , pp. 192-197
    • Schoors, S.1    Bruning, U.2    Missiaen, R.3    Queiroz, K.C.4    Borgers, G.5    Elia, I.6
  • 88
    • 84961736633 scopus 로고    scopus 로고
    • Emerging concepts in immunotherapy-T cell metabolism as a therapeutic target
    • Chang C-H, Pearce EL. Emerging concepts in immunotherapy-T cell metabolism as a therapeutic target. Nat Immunol (2016) 17(4):364-8. doi:10.1038/ni.3415
    • (2016) Nat Immunol , vol.17 , Issue.4 , pp. 364-368
    • Chang, C-H.1    Pearce, E.L.2
  • 89
    • 84925688346 scopus 로고    scopus 로고
    • PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation
    • Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun (2015) 6:6692. doi:10.1038/ ncomms7692
    • (2015) Nat Commun , vol.6 , pp. 6692
    • Patsoukis, N.1    Bardhan, K.2    Chatterjee, P.3    Sari, D.4    Liu, B.5    Bell, L.N.6
  • 90
    • 85069238583 scopus 로고    scopus 로고
    • Endothelial cell metabolism: parallels and divergences with cancer cell metabolism
    • Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab (2014) 2:19. doi:10.1186/2049-3002-2-19
    • (2014) Cancer Metab , vol.2 , pp. 19
    • Verdegem, D.1    Moens, S.2    Stapor, P.3    Carmeliet, P.4
  • 91
    • 84886797808 scopus 로고    scopus 로고
    • Macrophages in atherosclerosis: a dynamic balance
    • Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol (2013) 13(10):709-21. doi:10.1038/nri3520
    • (2013) Nat Rev Immunol , vol.13 , Issue.10 , pp. 709-721
    • Moore, K.J.1    Sheedy, F.J.2    Fisher, E.A.3
  • 92
    • 84919394753 scopus 로고    scopus 로고
    • Dynamic aspects of macrophage polarization during atherosclerosis progression and regression
    • Peled M, Fisher EA. Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front Immunol (2014) 5:579. doi:10.3389/fimmu.2014.00579
    • (2014) Front Immunol , vol.5 , pp. 579
    • Peled, M.1    Fisher, E.A.2
  • 94
    • 84856707159 scopus 로고    scopus 로고
    • NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis
    • Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E, et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res (2012) 110(3):416-27. doi:10.1161/ CIRCRESAHA.111.253377
    • (2012) Circ Res , vol.110 , Issue.3 , pp. 416-427
    • Hanna, R.N.1    Shaked, I.2    Hubbeling, H.G.3    Punt, J.A.4    Wu, R.5    Herrley, E.6
  • 95
    • 84870059127 scopus 로고    scopus 로고
    • Myeloid Krüppel- like factor 4 deficiency augments atherogenesis in ApoE-/- mice-brief report
    • Sharma N, Lu Y, Zhou G, Liao X, Kapil P, Anand P, et al. Myeloid Krüppel- like factor 4 deficiency augments atherogenesis in ApoE-/- mice-brief report. Arterioscler Thromb Vasc Biol (2012) 32(12):2836-8. doi:10.1161/ ATVBAHA.112.300471
    • (2012) Arterioscler Thromb Vasc Biol , vol.32 , Issue.12 , pp. 2836-2838
    • Sharma, N.1    Lu, Y.2    Zhou, G.3    Liao, X.4    Kapil, P.5    Anand, P.6
  • 96
    • 84867043765 scopus 로고    scopus 로고
    • Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype
    • Cardilo-Reis L, Gruber S, Schreier SM, Drechsler M, Papac-Milicevic N, Weber C, et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med (2012) 4(10):1072-86. doi:10.1002/emmm.201201374
    • (2012) EMBO Mol Med , vol.4 , Issue.10 , pp. 1072-1086
    • Cardilo-Reis, L.1    Gruber, S.2    Schreier, S.M.3    Drechsler, M.4    Papac-Milicevic, N.5    Weber, C.6
  • 97
    • 79952736069 scopus 로고    scopus 로고
    • Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques
    • Feig JE, Parathath S, Rong JX, Mick SL, Vengrenyuk Y, Grauer L, et al. Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation (2011) 123(9):989-98. doi:10.1161/CIRCULATIONAHA.110.984146
    • (2011) Circulation , vol.123 , Issue.9 , pp. 989-998
    • Feig, J.E.1    Parathath, S.2    Rong, J.X.3    Mick, S.L.4    Vengrenyuk, Y.5    Grauer, L.6
  • 98
    • 79955552375 scopus 로고    scopus 로고
    • HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells
    • Feig JE, Rong JX, Shamir R, Sanson M, Vengrenyuk Y, Liu J, et al. HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci U S A (2011) 108(17):7166-71. doi:10.1073/pnas.1016086108
    • (2011) Proc Natl Acad Sci U S A , vol.108 , Issue.17 , pp. 7166-7171
    • Feig, J.E.1    Rong, J.X.2    Shamir, R.3    Sanson, M.4    Vengrenyuk, Y.5    Liu, J.6
  • 99
    • 84948799436 scopus 로고    scopus 로고
    • microRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis
    • Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, et al. microRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest (2015) 125(12):4334-48. doi:10.1172/JCI81676
    • (2015) J Clin Invest , vol.125 , Issue.12 , pp. 4334-4348
    • Ouimet, M.1    Ediriweera, H.N.2    Gundra, U.M.3    Sheedy, F.J.4    Ramkhelawon, B.5    Hutchison, S.B.6
  • 101
    • 33846026712 scopus 로고    scopus 로고
    • Obesity induces a phenotypic switch in adipose tissue macrophage polarization
    • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest (2007) 117(1):175-84. doi:10.1172/JCI29881
    • (2007) J Clin Invest , vol.117 , Issue.1 , pp. 175-184
    • Lumeng, C.N.1    Bodzin, J.L.2    Saltiel, A.R.3
  • 102
    • 77957838795 scopus 로고    scopus 로고
    • Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue
    • Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest (2010) 120(10):3466-79. doi:10.1172/JCI42845
    • (2010) J Clin Invest , vol.120 , Issue.10 , pp. 3466-3479
    • Kosteli, A.1    Sugaru, E.2    Haemmerle, G.3    Martin, J.F.4    Lei, J.5    Zechner, R.6
  • 103
    • 0030756346 scopus 로고    scopus 로고
    • Protection from obesity-induced insulin resistance in mice lacking TNF-a function
    • Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-a function. Nature (1997) 389(6651):610-4. doi:10.1038/39335
    • (1997) Nature , vol.389 , Issue.6651 , pp. 610-614
    • Uysal, K.T.1    Wiesbrock, S.M.2    Marino, M.W.3    Hotamisligil, G.S.4
  • 104
    • 84889663497 scopus 로고    scopus 로고
    • Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation
    • Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AW Jr. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab (2013) 18(6):816-30. doi:10.1016/j.cmet.2013.11.001
    • (2013) Cell Metab , vol.18 , Issue.6 , pp. 816-830
    • Xu, X.1    Grijalva, A.2    Skowronski, A.3    van Eijk, M.4    Serlie, M.J.5    Ferrante A.W, Jr.6
  • 105
    • 84907991703 scopus 로고    scopus 로고
    • Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages
    • Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab (2014) 20(4):614-25. doi:10.1016/j. cmet.2014.08.010
    • (2014) Cell Metab , vol.20 , Issue.4 , pp. 614-625
    • Kratz, M.1    Coats, B.R.2    Hisert, K.B.3    Hagman, D.4    Mutskov, V.5    Peris, E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.