메뉴 건너뛰기




Volumn 86, Issue , 2017, Pages 225-244

Mechanisms of autophagy initiation

Author keywords

Atg1; COPII; Membrane fusion; Membrane remodeling; Nanoscale biology; Phosphatidylinositol 3 kinase; Tethering complex; ULK1; Vesicle; Vps34

Indexed keywords

COAT PROTEIN COMPLEX II; MEMBRANE PROTEIN ATG9; PHOSPHATIDYLINOSITOL 3 KINASE; REGULATOR PROTEIN; SERINE THREONINE PROTEIN KINASE ULK1; UNCLASSIFIED DRUG; PROTEIN BINDING; SIGNAL PEPTIDE; ULK1 PROTEIN, HUMAN;

EID: 85021689430     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-061516-044820     Document Type: Article
Times cited : (511)

References (151)
  • 1
    • 84959930214 scopus 로고    scopus 로고
    • An overview of macroautophagy in yeast
    • Wen X, Klionsky DJ. (2016). An overview of macroautophagy in yeast. J. Mol. Biol. 428: 1681-99
    • (2016) J. Mol. Biol , vol.428 , pp. 1681-1699
    • Wen, X.1    Klionsky, D.J.2
  • 4
    • 84959045499 scopus 로고    scopus 로고
    • Mechanisms of selective autophagy
    • Zaffagnini G, Martens S. (2016). Mechanisms of selective autophagy. J. Mol. Biol. 428: 1714-24
    • (2016) J. Mol. Biol , vol.428 , pp. 1714-1724
    • Zaffagnini, G.1    Martens, S.2
  • 7
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima N, Komatsu M. (2011). Autophagy: renovation of cells and tissues. Cell 147: 728-41
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 8
    • 84899131967 scopus 로고    scopus 로고
    • Autophagy in antimicrobial immunity
    • Gomes LC, Dikic I. (2014). Autophagy in antimicrobial immunity. Mol. Cell 54: 224-33
    • (2014) Mol. Cell , vol.54 , pp. 224-233
    • Gomes, L.C.1    Dikic, I.2
  • 9
    • 0035503594 scopus 로고    scopus 로고
    • The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
    • Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20: 5971-81
    • (2001) EMBO J. , vol.20 , pp. 5971-5981
    • Suzuki, K.1    Kirisako, T.2    Kamada, Y.3    Mizushima, N.4    Noda, T.5    Ohsumi, Y.6
  • 10
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, et al. (2008). Autophagosome formation from compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182: 685-701
    • (2008) J. Cell Biol , vol.182 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3    Chandra, P.4    Roderick, H.L.5
  • 11
  • 12
    • 84899848892 scopus 로고    scopus 로고
    • Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy
    • Sawa-Makarska J, Abert C, Romanov J, Zens B, Ibiricu I, Martens S. (2014). Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy. Nat. Cell Biol. 16: 425-33
    • (2014) Nat. Cell Biol , vol.16 , pp. 425-433
    • Sawa-Makarska, J.1    Abert, C.2    Romanov, J.3    Zens, B.4    Ibiricu, I.5    Martens, S.6
  • 13
    • 84949992730 scopus 로고    scopus 로고
    • Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy
    • Wurzer B, Zaffagnini G, Fracchiolla D, Turco E, Abert C, et al. (2015). Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. eLife 4: e08941
    • (2015) ELife , vol.4 , pp. e08941
    • Wurzer, B.1    Zaffagnini, G.2    Fracchiolla, D.3    Turco, E.4    Abert, C.5
  • 14
    • 84940538301 scopus 로고    scopus 로고
    • CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane
    • Mi N, Chen Y, Wang S, Chen MR, Zhao MK, et al. (2015). CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 17: 1112-23
    • (2015) Nat. Cell Biol , vol.17 , pp. 1112-1123
    • Mi, N.1    Chen, Y.2    Wang, S.3    Chen, M.R.4    Zhao, M.K.5
  • 16
    • 84898639632 scopus 로고    scopus 로고
    • Atomistic autophagy: The structures of cellular self-digestion
    • Hurley JH, Schulman BA. (2014). Atomistic autophagy: the structures of cellular self-digestion. Cell 157: 300-11
    • (2014) Cell , vol.157 , pp. 300-311
    • Hurley, J.H.1    Schulman, B.A.2
  • 18
    • 84969135882 scopus 로고    scopus 로고
    • The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis
    • Joo JH, Wang B, Frankel E, Ge L, Xu L, et al. (2016). The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis. Mol. Cell 62: 491-506
    • (2016) Mol. Cell , vol.62 , pp. 491-506
    • Joo, J.H.1    Wang, B.2    Frankel, E.3    Ge, L.4    Xu, L.5
  • 19
    • 79960798816 scopus 로고    scopus 로고
    • SNARE proteins are required for macroautophagy
    • Nair U, Jotwani A, Geng JF, Gammoh N, Richerson D, et al. (2011). SNARE proteins are required for macroautophagy. Cell 146: 290-302
    • (2011) Cell , vol.146 , pp. 290-302
    • Nair, U.1    Jotwani, A.2    Geng, J.F.3    Gammoh, N.4    Richerson, D.5
  • 20
    • 79960774898 scopus 로고    scopus 로고
    • Autophagosome precursor maturation requires homotypic fusion
    • Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. (2011). Autophagosome precursor maturation requires homotypic fusion. Cell 146: 303-17
    • (2011) Cell , vol.146 , pp. 303-317
    • Moreau, K.1    Ravikumar, B.2    Renna, M.3    Puri, C.4    Rubinsztein, D.C.5
  • 22
    • 84962538737 scopus 로고    scopus 로고
    • Mechanisms of selective autophagy in normal physiology and cancer
    • Mancias JC, Kimmelman AC. (2016). Mechanisms of selective autophagy in normal physiology and cancer. J. Mol. Biol. 428: 1659-80
    • (2016) J. Mol. Biol , vol.428 , pp. 1659-1680
    • Mancias, J.C.1    Kimmelman, A.C.2
  • 23
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg1/ULK1 complex in autophagy regulation
    • Mizushima N. (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22: 132-39
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 132-139
    • Mizushima, N.1
  • 24
    • 84958958214 scopus 로고    scopus 로고
    • Structure and function of the ULK1 complex in autophagy
    • Lin MG, Hurley JH. (2016). Structure and function of the ULK1 complex in autophagy. Curr. Opin. Cell Biol. 39: 61-68
    • (2016) Curr. Opin. Cell Biol , vol.39 , pp. 61-68
    • Lin, M.G.1    Hurley, J.H.2
  • 25
    • 84962802365 scopus 로고    scopus 로고
    • Regulation of autophagy by signalling through the Atg1/ULK1 complex
    • Papinski D, Kraft C. (2016). Regulation of autophagy by signalling through the Atg1/ULK1 complex. J. Mol. Biol. 428: 1725-41
    • (2016) J. Mol. Biol , vol.428 , pp. 1725-1741
    • Papinski, D.1    Kraft, C.2
  • 26
    • 66449083078 scopus 로고    scopus 로고
    • ULK1•ATG13•FIP200 complexmediates mTOR signaling and is essential for autophagy
    • Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. (2009). ULK1•ATG13•FIP200 complexmediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284: 12297-305
    • (2009) J. Biol. Chem , vol.284 , pp. 12297-12305
    • Ganley, I.G.1    Lam, D.H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 27
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, et al. (2009). Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20: 1981-91
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3    Kishi, C.4    Takamura, A.5
  • 28
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, et al. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20: 1992-2003
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3    Kim, Y.M.4    Otto, N.M.5
  • 29
    • 43149090064 scopus 로고    scopus 로고
    • FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
    • Hara T, Takamura A, Kishi C, Iemura SI, Natsume T, et al. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181: 497-510
    • (2008) J. Cell Biol , vol.181 , pp. 497-510
    • Hara, T.1    Takamura, A.2    Kishi, C.3    Iemura, S.I.4    Natsume, T.5
  • 30
    • 84875834380 scopus 로고    scopus 로고
    • A horma domain in atg13 mediates pi 3-kinase recruitment in autophagy
    • Jao CC, Ragusa MJ, Stanley RE, Hurley JH. (2013). A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. PNAS 110: 5486-91
    • (2013) PNAS , vol.110 , pp. 5486-5491
    • Jao, C.C.1    Ragusa, M.J.2    Stanley, R.E.3    Hurley, J.H.4
  • 31
    • 84936846861 scopus 로고    scopus 로고
    • Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation
    • Suzuki H, Kaizuka T, Mizushima N, Noda NN. (2015). Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat. Struct. Mol. Biol. 22: 572-80
    • (2015) Nat. Struct. Mol. Biol , vol.22 , pp. 572-580
    • Suzuki, H.1    Kaizuka, T.2    Mizushima, N.3    Noda, N.N.4
  • 33
    • 84943659880 scopus 로고    scopus 로고
    • Structure of the human Atg13-Atg101 HORMA heterodimer: An interaction hub within the ULK1 complex
    • Qi SQ, Kim DJ, Stjepanovic G, Hurley JH. (2015). Structure of the human Atg13-Atg101 HORMA heterodimer: an interaction hub within the ULK1 complex. Structure 23: 1848-57
    • (2015) Structure , vol.23 , pp. 1848-1857
    • Qi, S.Q.1    Kim, D.J.2    Stjepanovic, G.3    Hurley, J.H.4
  • 35
    • 16344365254 scopus 로고    scopus 로고
    • Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway
    • Yorimitsu T, Klionsky DJ. (2005). Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol. Biol. Cell 16: 1593-605
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1593-1605
    • Yorimitsu, T.1    Klionsky, D.J.2
  • 38
    • 70349739560 scopus 로고    scopus 로고
    • Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae
    • Kabeya Y, Noda NN, Fujioka Y, Suzuki K, Inagaki F, Ohsumi Y. (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 389: 612-15
    • (2009) Biochem. Biophys. Res. Commun , vol.389 , pp. 612-615
    • Kabeya, Y.1    Noda, N.N.2    Fujioka, Y.3    Suzuki, K.4    Inagaki, F.5    Ohsumi, Y.6
  • 39
    • 84871581862 scopus 로고    scopus 로고
    • Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis
    • Ragusa MJ, Stanley RE, Hurley JH. (2012). Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151: 1501-12
    • (2012) Cell , vol.151 , pp. 1501-1512
    • Ragusa, M.J.1    Stanley, R.E.2    Hurley, J.H.3
  • 40
    • 81155123729 scopus 로고    scopus 로고
    • The serine/threonine kinase ULK1 is a target of multiple phosphorylation events
    • Bach M, Larance M, James DE, Ramm G. (2011). The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem. J. 440: 283-91
    • (2011) Biochem. J. , vol.440 , pp. 283-291
    • Bach, M.1    Larance, M.2    James, D.E.3    Ramm, G.4
  • 41
    • 84921417671 scopus 로고    scopus 로고
    • Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors
    • Lazarus MB, Novotny CJ, Shokat KM. (2015). Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem. Biol. 10: 257-61
    • (2015) ACS Chem. Biol , vol.10 , pp. 257-261
    • Lazarus, M.B.1    Novotny, C.J.2    Shokat, K.M.3
  • 42
    • 78349245944 scopus 로고    scopus 로고
    • Autophosphorylationwithin the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae
    • Yeh YY, Wrasman K, Herman PK. (2010). Autophosphorylationwithin the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 185: 871-82
    • (2010) Genetics , vol.185 , pp. 871-882
    • Yeh, Y.Y.1    Wrasman, K.2    Herman, P.K.3
  • 43
    • 78649299852 scopus 로고    scopus 로고
    • Activation of Atg1 kinase in autophagy by regulated phosphorylation
    • Kijanska M, Dohnal I, Reiter W, Kaspar S, Stoffel I, et al. (2010). Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy 6: 1168-78
    • (2010) Autophagy , vol.6 , pp. 1168-1178
    • Kijanska, M.1    Dohnal, I.2    Reiter, W.3    Kaspar, S.4    Stoffel, I.5
  • 44
    • 84938744997 scopus 로고    scopus 로고
    • Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase
    • Kamber RA, Shoemaker CJ, Denic V. (2015). Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol. Cell 59: 372-81
    • (2015) Mol. Cell , vol.59 , pp. 372-381
    • Kamber, R.A.1    Shoemaker, C.J.2    Denic, V.3
  • 45
    • 84979663344 scopus 로고    scopus 로고
    • The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes
    • Yamamoto H, Fujioka Y, Suzuki SW, Noshiro D, Suzuki H, et al. (2016). The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev. Cell 38: 86-99
    • (2016) Dev. Cell , vol.38 , pp. 86-99
    • Yamamoto, H.1    Fujioka, Y.2    Suzuki, S.W.3    Noshiro, D.4    Suzuki, H.5
  • 46
    • 84953637768 scopus 로고    scopus 로고
    • Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination
    • Liu CC, Lin YC, Chen YH, Chen CM, Pang LY, et al. (2016). Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol. Cell 61: 84-97
    • (2016) Mol. Cell , vol.61 , pp. 84-97
    • Liu, C.C.1    Lin, Y.C.2    Chen, Y.H.3    Chen, C.M.4    Pang, L.Y.5
  • 48
    • 84954406884 scopus 로고    scopus 로고
    • The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy
    • Rao Y, Perna MG, Hofmann B, Beier V, Wollert T. (2016). The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy. Nat. Commun. 7: 10338
    • (2016) Nat. Commun , vol.7 , pp. 10338
    • Rao, Y.1    Perna, M.G.2    Hofmann, B.3    Beier, V.4    Wollert, T.5
  • 50
    • 84903158167 scopus 로고    scopus 로고
    • Regulation of mTORC1 by amino acids
    • Bar-Peled L, Sabatini DM. (2014). Regulation of mTORC1 by amino acids. Trends Cell Biol. 24: 400-6
    • (2014) Trends Cell Biol , vol.24 , pp. 400-406
    • Bar-Peled, L.1    Sabatini, D.M.2
  • 51
    • 75749090429 scopus 로고    scopus 로고
    • Tor directly controls the Atg1 kinase complex to regulate autophagy
    • Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, et al. (2010). Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol. Cell. Biol. 30: 1049-58
    • (2010) Mol. Cell. Biol , vol.30 , pp. 1049-1058
    • Kamada, Y.1    Yoshino, K.2    Kondo, C.3    Kawamata, T.4    Oshiro, N.5
  • 52
    • 84866426794 scopus 로고    scopus 로고
    • Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy
    • Kraft C, Kijanska M, Kalie E, Siergiejuk E, Lee SS, et al. (2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31: 3691-703
    • (2012) EMBO J. , vol.31 , pp. 3691-3703
    • Kraft, C.1    Kijanska, M.2    Kalie, E.3    Siergiejuk, E.4    Lee, S.S.5
  • 53
    • 84947590219 scopus 로고    scopus 로고
    • Expression of a ULK1/2 bindingdeficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells
    • Hieke N, Loffler AS, Kaizuka T, Berleth N, Bohler P, et al. (2015). Expression of a ULK1/2 bindingdeficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells. Autophagy 11: 1471-83
    • (2015) Autophagy , vol.11 , pp. 1471-1483
    • Hieke, N.1    Loffler, A.S.2    Kaizuka, T.3    Berleth, N.4    Bohler, P.5
  • 54
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova MM, Shaw RJ. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13: 1016-23
    • (2011) Nat. Cell Biol , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 55
    • 80053476420 scopus 로고    scopus 로고
    • The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
    • Egan DF, Kim J, Shaw RJ, Guan KL. (2011). The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7: 645-46
    • (2011) Autophagy , vol.7 , pp. 645-646
    • Egan, D.F.1    Kim, J.2    Shaw, R.J.3    Guan, K.L.4
  • 56
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, et al. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-61
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1    Shackelford, D.B.2    Mihaylova, M.M.3    Gelino, S.4    Kohnz, R.A.5
  • 57
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13: 132-41
    • (2011) Nat. Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 58
    • 79953211917 scopus 로고    scopus 로고
    • Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
    • Shang LB, Chen S, Du FH, Li S, Zhao LP, Wang XD. (2011). Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. PNAS 108: 4788-93
    • (2011) PNAS , vol.108 , pp. 4788-4793
    • Shang, L.B.1    Chen, S.2    Du, F.H.3    Li, S.4    Zhao, L.P.5    Wang, X.D.6
  • 59
    • 84866061320 scopus 로고    scopus 로고
    • AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
    • Mack HID, Zheng B, Asara JM, Thomas SM. (2012). AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8: 1197-214
    • (2012) Autophagy , vol.8 , pp. 1197-1214
    • Mack, H.I.D.1    Zheng, B.2    Asara, J.M.3    Thomas, S.M.4
  • 60
    • 84923789937 scopus 로고    scopus 로고
    • Huntingtin functions as a scaffold for selective macroautophagy
    • Rui Y-N, Xu Z, Patel B, Chen Z, Chen D, et al. (2015). Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 17: 262-75
    • (2015) Nat. Cell Biol , vol.17 , pp. 262-275
    • Rui, Y.-N.1    Xu, Z.2    Patel, B.3    Chen, Z.4    Chen, D.5
  • 61
    • 33846514235 scopus 로고    scopus 로고
    • Hierarchy of Atg proteins in pre-autophagosomal structure organization
    • Suzuki K, Kubota Y, Sekito T, Ohsumi Y. (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12: 209-18
    • (2007) Genes Cells , vol.12 , pp. 209-218
    • Suzuki, K.1    Kubota, Y.2    Sekito, T.3    Ohsumi, Y.4
  • 62
    • 58149473473 scopus 로고    scopus 로고
    • Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independentmechanism
    • Chan EY, Longatti A, McKnight NC, Tooze SA. (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independentmechanism. Mol. Cell. Biol. 29: 157-71
    • (2009) Mol. Cell. Biol , vol.29 , pp. 157-171
    • Chan, E.Y.1    Longatti, A.2    McKnight, N.C.3    Tooze, S.A.4
  • 63
    • 84869222326 scopus 로고    scopus 로고
    • ATG8 family proteins act as scaffolds for assembly of the ULK complex: Sequence requirements for LC3-interacting region (LIR) motifs
    • Alemu EA, Lamark T, Torgersen KM, Birgisdottir AB, Larsen KB, et al. (2012). ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287: 39275-90
    • (2012) J. Biol. Chem , vol.287 , pp. 39275-39290
    • Alemu, E.A.1    Lamark, T.2    Torgersen, K.M.3    Birgisdottir, A.B.4    Larsen, K.B.5
  • 64
    • 84925307913 scopus 로고    scopus 로고
    • Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation
    • Suzuki SW, Yamamoto H, Oikawa Y, Kondo-Kakuta C, Kimura Y, et al. (2015). Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. PNAS 112: 3350-55
    • (2015) PNAS , vol.112 , pp. 3350-3355
    • Suzuki, S.W.1    Yamamoto, H.2    Oikawa, Y.3    Kondo-Kakuta, C.4    Kimura, Y.5
  • 65
    • 65449186232 scopus 로고    scopus 로고
    • Atg17 recruits Atg9 to organize the pre-autophagosomal structure
    • Sekito T, Kawamata T, Ichikawa R, Suzuki K, Ohsumi Y. (2009). Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells 14: 525-38
    • (2009) Genes Cells , vol.14 , pp. 525-538
    • Sekito, T.1    Kawamata, T.2    Ichikawa, R.3    Suzuki, K.4    Ohsumi, Y.5
  • 66
    • 84878983074 scopus 로고    scopus 로고
    • Ypt1 recruits the Atg1 kinase to the preautophagosomal structure
    • Wang J, Menon S, Yamasaki A, Chou H-T, Walz T, et al. (2013). Ypt1 recruits the Atg1 kinase to the preautophagosomal structure. PNAS 110: 9800-5
    • (2013) PNAS , vol.110 , pp. 9800-9805
    • Wang, J.1    Menon, S.2    Yamasaki, A.3    Chou, H.-T.4    Walz, T.5
  • 67
    • 84871811752 scopus 로고    scopus 로고
    • Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site
    • Kakuta S, Yamamoto H, Negishi L, Kondo-Kakuta C, Hayashi N, Ohsumi Y. (2012). Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J. Biol. Chem. 287: 44261-69
    • (2012) J. Biol. Chem , vol.287 , pp. 44261-44269
    • Kakuta, S.1    Yamamoto, H.2    Negishi, L.3    Kondo-Kakuta, C.4    Hayashi, N.5    Ohsumi, Y.6
  • 68
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends C, Sowa ME, Gygi SP, Harper JW. (2010). Network organization of the human autophagy system. Nature 466: 68-76
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1    Sowa, M.E.2    Gygi, S.P.3    Harper, J.W.4
  • 69
    • 84957440559 scopus 로고    scopus 로고
    • TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic
    • Lamb CA, Nuhlen S, Judith D, Frith D, Snijders AP, et al. (2016). TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J. 35: 281-301
    • (2016) EMBO J. , vol.35 , pp. 281-301
    • Lamb, C.A.1    Nuhlen, S.2    Judith, D.3    Frith, D.4    Snijders, A.P.5
  • 70
    • 84980410069 scopus 로고    scopus 로고
    • TheC9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy
    • Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, et al. (2016). TheC9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 35: 1656-76
    • (2016) EMBO J. , vol.35 , pp. 1656-1676
    • Webster, C.P.1    Smith, E.F.2    Bauer, C.S.3    Moller, A.4    Hautbergue, G.M.5
  • 71
    • 84893742616 scopus 로고    scopus 로고
    • Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase
    • Papinski D, Schuschnig M, Reiter W, Wilhelm L, Barnes CA, et al. (2014). Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell 53: 471-83
    • (2014) Mol. Cell , vol.53 , pp. 471-483
    • Papinski, D.1    Schuschnig, M.2    Reiter, W.3    Wilhelm, L.4    Barnes, C.A.5
  • 72
    • 84937523899 scopus 로고    scopus 로고
    • Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates
    • Egan DF, Chun MG, Vamos M, Zou H, Rong J, et al. (2015). Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59: 285-97
    • (2015) Mol. Cell , vol.59 , pp. 285-297
    • Egan, D.F.1    Chun, M.G.2    Vamos, M.3    Zou, H.4    Rong, J.5
  • 73
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
    • Russell RC, Tian Y, Yuan HX, Park HW, Chang YY, et al. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15: 741-50
    • (2013) Nat. Cell Biol , vol.15 , pp. 741-750
    • Russell, R.C.1    Tian, Y.2    Yuan, H.X.3    Park, H.W.4    Chang, Y.Y.5
  • 74
    • 77957728513 scopus 로고    scopus 로고
    • The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
    • Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, et al. (2010). The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 191: 155-68
    • (2010) J. Cell Biol , vol.191 , pp. 155-168
    • Di Bartolomeo, S.1    Corazzari, M.2    Nazio, F.3    Oliverio, S.4    Lisi, G.5
  • 75
    • 84924415434 scopus 로고    scopus 로고
    • Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates
    • Lim J, Lachenmayer ML, Wu S, Liu WC, Kundu M, et al. (2015). Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLOS Genet. 11: e1004987
    • (2015) Plos Genet , vol.11 , pp. e1004987
    • Lim, J.1    Lachenmayer, M.L.2    Wu, S.3    Liu, W.C.4    Kundu, M.5
  • 76
    • 84899789746 scopus 로고    scopus 로고
    • ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
    • Wu WX, Tian WL, Hu Z, Chen G, Huang L, et al. (2014). ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15: 566-75
    • (2014) EMBO Rep , vol.15 , pp. 566-575
    • Wu, W.X.1    Tian, W.L.2    Hu, Z.3    Chen, G.4    Huang, L.5
  • 77
    • 0037329201 scopus 로고    scopus 로고
    • Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy
    • Abeliovich H, Zhang C, Dunn WA Jr., Shokat KM, Klionsky DJ. (2003). Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol. Biol. Cell 14: 477-90
    • (2003) Mol. Biol. Cell , vol.14 , pp. 477-490
    • Abeliovich, H.1    Zhang, C.2    Dunn, W.A.3    Shokat, K.M.4    Klionsky, D.J.5
  • 78
    • 39449108917 scopus 로고    scopus 로고
    • The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae
    • Cheong H, Nair U, Geng JF, Klionsky DJ. (2008). The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 19: 668-81
    • (2008) Mol. Biol. Cell , vol.19 , pp. 668-681
    • Cheong, H.1    Nair, U.2    Geng, J.F.3    Klionsky, D.J.4
  • 79
    • 84890887051 scopus 로고    scopus 로고
    • The beginning of the end: How scaffolds nucleate autophagosome biogenesis
    • Stanley RE, Ragusa MJ, Hurley JH. (2014). The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol. 24: 73-81
    • (2014) Trends Cell Biol , vol.24 , pp. 73-81
    • Stanley, R.E.1    Ragusa, M.J.2    Hurley, J.H.3
  • 80
    • 84930188743 scopus 로고    scopus 로고
    • Solution structure of the Atg1 complex: Implications for the architecture of the phagophore assembly site
    • Köfinger J, Ragusa MJ, Lee IH, Hummer G, Hurley JH. (2015). Solution structure of the Atg1 complex: implications for the architecture of the phagophore assembly site. Structure 23: 809-18
    • (2015) Structure , vol.23 , pp. 809-818
    • Köfinger, J.1    Ragusa, M.J.2    Lee, I.H.3    Hummer, G.4    Hurley, J.H.5
  • 81
    • 82855170846 scopus 로고    scopus 로고
    • Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction
    • Alers S, Loffler AS, Paasch F, Dieterle AM, Keppeler H, et al. (2011). Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction. Autophagy 7: 1424-33
    • (2011) Autophagy , vol.7 , pp. 1424-1433
    • Alers, S.1    Loffler, A.S.2    Paasch, F.3    Dieterle, A.M.4    Keppeler, H.5
  • 82
    • 85009423797 scopus 로고    scopus 로고
    • The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34
    • Backer JM. (2016). The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem. J. 473: 2251-71
    • (2016) Biochem. J. , vol.473 , pp. 2251-2271
    • Backer, J.M.1
  • 83
    • 0035809160 scopus 로고    scopus 로고
    • Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in Saccharomyces cerevisiae
    • Kihara A, Noda T, Ishihara N, Ohsumi Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152: 519-30
    • (2001) J. Cell Biol , vol.152 , pp. 519-530
    • Kihara, A.1    Noda, T.2    Ishihara, N.3    Ohsumi, Y.4
  • 84
    • 59249089394 scopus 로고    scopus 로고
    • Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
    • Itakura E, Kishi C, Inoue K, Mizushima N. (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19: 5360-72
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5360-5372
    • Itakura, E.1    Kishi, C.2    Inoue, K.3    Mizushima, N.4
  • 85
    • 0032575551 scopus 로고    scopus 로고
    • Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae
    • Kametaka S, Okano T, Ohsumi M, Ohsumi Y. (1998). Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 273: 22284-91
    • (1998) J. Biol. Chem , vol.273 , pp. 22284-22291
    • Kametaka, S.1    Okano, T.2    Ohsumi, M.3    Ohsumi, Y.4
  • 86
    • 33745086418 scopus 로고    scopus 로고
    • Assortment of phosphatidylinositol 3-kinase complexes-Atg14p directs association of complex i to the pre-autophagosomal structure in Saccharomyces cerevisiae
    • Obara K, Sekito T, Ohsumi Y. (2006). Assortment of phosphatidylinositol 3-kinase complexes-Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol. Biol. Cell 17: 1527-39
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1527-1539
    • Obara, K.1    Sekito, T.2    Ohsumi, Y.3
  • 87
    • 58049192897 scopus 로고    scopus 로고
    • Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase
    • Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q. (2008). Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. PNAS 105: 19211-16
    • (2008) PNAS , vol.105 , pp. 19211-19216
    • Sun, Q.1    Fan, W.2    Chen, K.3    Ding, X.4    Chen, S.5    Zhong, Q.6
  • 88
    • 64049086758 scopus 로고    scopus 로고
    • Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
    • Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11: 385-96
    • (2009) Nat. Cell Biol , vol.11 , pp. 385-396
    • Matsunaga, K.1    Saitoh, T.2    Tabata, K.3    Omori, H.4    Satoh, T.5
  • 89
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong Y, Wang QJ, Li XT, Yan Y, Backer JM, et al. (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11: 468-76
    • (2009) Nat. Cell Biol , vol.11 , pp. 468-476
    • Zhong, Y.1    Wang, Q.J.2    Li, X.T.3    Yan, Y.4    Backer, J.M.5
  • 90
    • 77950212231 scopus 로고    scopus 로고
    • Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34
    • Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, et al. (2010). Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327: 1638-42
    • (2010) Science , vol.327 , pp. 1638-1642
    • Miller, S.1    Tavshanjian, B.2    Oleksy, A.3    Perisic, O.4    Houseman, B.T.5
  • 91
    • 84862023791 scopus 로고    scopus 로고
    • Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG
    • Li XH, He LQ, Che KH, Funderburk SF, Pan LF, et al. (2012). Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat. Commun. 3: 662
    • (2012) Nat. Commun , vol.3 , pp. 662
    • Li, X.H.1    He, L.Q.2    Che, K.H.3    Funderburk, S.F.4    Pan, L.F.5
  • 92
    • 84860875222 scopus 로고    scopus 로고
    • Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy
    • Noda NN, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki F. (2012). Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J. Biol. Chem. 287: 16256-66
    • (2012) J. Biol. Chem , vol.287 , pp. 16256-16266
    • Noda, N.N.1    Kobayashi, T.2    Adachi, W.3    Fujioka, Y.4    Ohsumi, Y.5    Inagaki, F.6
  • 93
    • 84862777560 scopus 로고    scopus 로고
    • Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein
    • Huang W, Choi W, Hu W, Mi N, Guo Q, et al. (2012). Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res. 22: 473-89
    • (2012) Cell Res , vol.22 , pp. 473-489
    • Huang, W.1    Choi, W.2    Hu, W.3    Mi, N.4    Guo, Q.5
  • 95
    • 84943665694 scopus 로고    scopus 로고
    • Architecture and dynamics of the autophagic phosphatidylinostol 3-kinase complex
    • Baskaran S, Carlson LA, Stjepanovic G, Young LN, Kim DJ, et al. (2014). Architecture and dynamics of the autophagic phosphatidylinostol 3-kinase complex. eLife 3: e05115
    • (2014) ELife , vol.3 , pp. e05115
    • Baskaran, S.1    Carlson, L.A.2    Stjepanovic, G.3    Young, L.N.4    Kim, D.J.5
  • 96
    • 84943521176 scopus 로고    scopus 로고
    • Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes
    • aac7365
    • Rostislavleva K, Soler N, Ohashi Y, Zhang LF, Pardon E, et al. (2015). Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350: aac7365
    • (2015) Science , vol.350
    • Rostislavleva, K.1    Soler, N.2    Ohashi, Y.3    Zhang, L.F.4    Pardon, E.5
  • 97
    • 79956358522 scopus 로고    scopus 로고
    • Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L
    • Fan W, Nassiri A, Zhong Q. (2011). Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). PNAS 108: 7769-74
    • (2011) PNAS , vol.108 , pp. 7769-7774
    • Fan, W.1    Nassiri, A.2    Zhong, Q.3
  • 99
    • 84873375687 scopus 로고    scopus 로고
    • Amphipathic lipid packing sensor motifs: Probing bilayer defects with hydrophobic residues
    • Vanni S, Vamparys L, Gautier R, Drin G, Etchebest C, et al. (2013). Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. Biophys. J. 104: 575-84
    • (2013) Biophys. J. , vol.104 , pp. 575-584
    • Vanni, S.1    Vamparys, L.2    Gautier, R.3    Drin, G.4    Etchebest, C.5
  • 100
    • 0028964232 scopus 로고
    • Vesicle-mediated protein transport: Regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast
    • Stack JH, DeWald DB, Takegawa K, Emr SD. (1995). Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J. Cell Biol. 129: 321-34
    • (1995) J. Cell Biol , vol.129 , pp. 321-334
    • Stack, J.H.1    DeWald, D.B.2    Takegawa, K.3    Emr, S.D.4
  • 102
    • 84901304111 scopus 로고    scopus 로고
    • NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity
    • Lu J, He L, Behrends C, Araki M, Araki K, et al. (2014). NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity. Nat. Commun. 5: 3920
    • (2014) Nat. Commun , vol.5 , pp. 3920
    • Lu, J.1    He, L.2    Behrends, C.3    Araki, M.4    Araki, K.5
  • 103
    • 84907215529 scopus 로고    scopus 로고
    • Nrfb2 suppresses autophagy by modulating Atg14L-containing Beclin 1-Vps34 protein complex architecture and reducting intracellular phosphatidylinositol-3 phosphate levels
    • Zhong Y, Morris DH, Jin L, Patel MS, Karunakaran SK, et al. (2014). Nrfb2 suppresses autophagy by modulating Atg14L-containing Beclin 1-Vps34 protein complex architecture and reducting intracellular phosphatidylinositol-3 phosphate levels. J. Biol. Chem. 289: 26021-37
    • (2014) J. Biol. Chem , vol.289 , pp. 26021-26037
    • Zhong, Y.1    Morris, D.H.2    Jin, L.3    Patel, M.S.4    Karunakaran, S.K.5
  • 104
    • 84887543464 scopus 로고    scopus 로고
    • Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity
    • Araki Y, Ku WC, Akioka M, May AI, Hayashi Y, et al. (2013). Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J. Cell Biol. 203: 299-313
    • (2013) J. Cell Biol , vol.203 , pp. 299-313
    • Araki, Y.1    Ku, W.C.2    Akioka, M.3    May, A.I.4    Hayashi, Y.5
  • 105
    • 84990179083 scopus 로고    scopus 로고
    • Characterization of Atg38 and NRBF2, a fifth subunit of the autophagic Vps34/PIKC3C complex
    • Ohashi Y, Soler N, Ortegon MG, Zhang L, Kirsten ML, et al. (2016). Characterization of Atg38 and NRBF2, a fifth subunit of the autophagic Vps34/PIKC3C complex. Autophagy 12: 2129-44
    • (2016) Autophagy , vol.12 , pp. 2129-2144
    • Ohashi, Y.1    Soler, N.2    Ortegon, M.G.3    Zhang, L.4    Kirsten, M.L.5
  • 106
    • 84978886102 scopus 로고    scopus 로고
    • Dynamics and architecture of the NRBF2-containing phosphatidylinositol 3-kinase complex i of autophagy
    • Young LN, Cho K, Lawrence R, Zoncu R, Hurley JH. (2016). Dynamics and architecture of the NRBF2-containing phosphatidylinositol 3-kinase complex I of autophagy. PNAS 113: 8224-29
    • (2016) PNAS , vol.113 , pp. 8224-8229
    • Young, L.N.1    Cho, K.2    Lawrence, R.3    Zoncu, R.4    Hurley, J.H.5
  • 107
    • 34249037565 scopus 로고    scopus 로고
    • Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein
    • Oberstein A, Jeffrey PD, Shi YG. (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J. Biol. Chem. 282: 13123-32
    • (2007) J. Biol. Chem , vol.282 , pp. 13123-13132
    • Oberstein, A.1    Jeffrey, P.D.2    Shi, Y.G.3
  • 108
    • 25144457455 scopus 로고    scopus 로고
    • Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
    • Pattingre S, Tassa A, Qu XP, Garuti R, Liang XH, et al. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927-39
    • (2005) Cell , vol.122 , pp. 927-939
    • Pattingre, S.1    Tassa, A.2    Qu, X.P.3    Garuti, R.4    Liang, X.H.5
  • 109
    • 34347344990 scopus 로고    scopus 로고
    • Ambra1 regulates autophagy and development of the nervous system
    • Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, et al. (2007). Ambra1 regulates autophagy and development of the nervous system. Nature 447: 1121-25
    • (2007) Nature , vol.447 , pp. 1121-1125
    • Fimia, G.M.1    Stoykova, A.2    Romagnoli, A.3    Giunta, L.4    Di Bartolomeo, S.5
  • 110
    • 84959372404 scopus 로고    scopus 로고
    • PAQR3controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity
    • Xu DQ, Wang Z, Wang CY, Zhang DY, Wan HD, et al. 2016.PAQR3controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity. EMBO J. 35: 496-514
    • (2016) EMBO J. , vol.35 , pp. 496-514
    • Xu, D.Q.1    Wang, Z.2    Wang, C.Y.3    Zhang, D.Y.4    Wan, H.D.5
  • 111
    • 85003048223 scopus 로고    scopus 로고
    • The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation
    • Wei YJ, An ZY, Zou ZJ, Sumpter R, Su MF, et al. (2015). The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. eLife 4: 05289
    • (2015) ELife , vol.4 , pp. 05289
    • Wei, Y.J.1    An, Z.Y.2    Zou, Z.J.3    Sumpter, R.4    Su, M.F.5
  • 112
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • Kim J, Kim YC, Fang C, Russell RC, Kim JH, et al. (2013). Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152: 290-303
    • (2013) Cell , vol.152 , pp. 290-303
    • Kim, J.1    Kim, Y.C.2    Fang, C.3    Russell, R.C.4    Kim, J.H.5
  • 113
    • 84969135490 scopus 로고    scopus 로고
    • Regulation of Beclin 1 protein phosphorylation and autophagy by protein phosphatase 2A (PP2A) and death-associated protein kinase 3 (DAPK3
    • Fujiwara N, Usui T, Ohama T, Sato K. (2016). Regulation of Beclin 1 protein phosphorylation and autophagy by protein phosphatase 2A (PP2A) and death-associated protein kinase 3 (DAPK3). J. Biol. Chem. 291: 10858-66
    • (2016) J. Biol. Chem , vol.291 , pp. 10858-10866
    • Fujiwara, N.1    Usui, T.2    Ohama, T.3    Sato, K.4
  • 114
    • 84940550513 scopus 로고    scopus 로고
    • Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A
    • Wong PM, Feng Y, Wang JR, Shi R, Jiang XJ. (2015). Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat. Commun. 6: 8048
    • (2015) Nat. Commun , vol.6 , pp. 8048
    • Wong, P.M.1    Feng, Y.2    Wang, J.R.3    Shi, R.4    Jiang, X.J.5
  • 115
    • 61849102389 scopus 로고    scopus 로고
    • DAP-kinase-mediated phosphorylation on the BH3 domain of Beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy
    • Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, et al. (2009). DAP-kinase-mediated phosphorylation on the BH3 domain of Beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10: 285-92
    • (2009) EMBO Rep , vol.10 , pp. 285-292
    • Zalckvar, E.1    Berissi, H.2    Mizrachy, L.3    Idelchuk, Y.4    Koren, I.5
  • 116
    • 84884262668 scopus 로고    scopus 로고
    • EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
    • Wei YJ, Zou ZJ, Becker N, Anderson M, Sumpter R, et al. (2013). EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154: 1269-84
    • (2013) Cell , vol.154 , pp. 1269-1284
    • Wei, Y.J.1    Zou, Z.J.2    Becker, N.3    Anderson, M.4    Sumpter, R.5
  • 117
    • 84890848742 scopus 로고    scopus 로고
    • Regulation of PIK3C3/VPS34 complexes byMTOR in nutrient stress-induced autophagy
    • Yuan HX, Russell RC, Guan KL. (2013). Regulation of PIK3C3/VPS34 complexes byMTOR in nutrient stress-induced autophagy. Autophagy 9: 1983-95
    • (2013) Autophagy , vol.9 , pp. 1983-1995
    • Yuan, H.X.1    Russell, R.C.2    Guan, K.L.3
  • 118
    • 84869147050 scopus 로고    scopus 로고
    • Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
    • Wang RC, Wei YJ, An ZY, Zou ZJ, Xiao GH, et al. (2012). Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338: 956-59
    • (2012) Science , vol.338 , pp. 956-959
    • Wang, R.C.1    Wei, Y.J.2    An, Z.Y.3    Zou, Z.J.4    Xiao, G.H.5
  • 119
    • 77957198526 scopus 로고    scopus 로고
    • An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis
    • Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. (2010). An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol. 190: 1005-22
    • (2010) J. Cell Biol , vol.190 , pp. 1005-1022
    • Mari, M.1    Griffith, J.2    Rieter, E.3    Krishnappa, L.4    Klionsky, D.J.5    Reggiori, F.6
  • 120
    • 84864991509 scopus 로고    scopus 로고
    • Atg9 vesicles are an important membrane source during early steps of autophagosome formation
    • Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, et al. (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198: 219-33
    • (2012) J. Cell Biol , vol.198 , pp. 219-233
    • Yamamoto, H.1    Kakuta, S.2    Watanabe, T.M.3    Kitamura, A.4    Sekito, T.5
  • 121
    • 84884487128 scopus 로고    scopus 로고
    • ER exit sites are physical and functional core autophagosome biogenesis components
    • Graef M, Friedman JR, Graham C, Babu M, Nunnari J. (2013). ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 24: 2918-31
    • (2013) Mol. Biol. Cell , vol.24 , pp. 2918-2931
    • Graef, M.1    Friedman, J.R.2    Graham, C.3    Babu, M.4    Nunnari, J.5
  • 123
    • 84878253184 scopus 로고    scopus 로고
    • Organization of the ER-Golgi interface for membrane traffic control
    • Brandizzi F, Barlowe C. (2013). Organization of the ER-Golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 14: 382-92
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 382-392
    • Brandizzi, F.1    Barlowe, C.2
  • 125
    • 71649112895 scopus 로고    scopus 로고
    • 3D tomography reveals connections between the phagophore and endoplasmic reticulum
    • Yla-Anttila P, Vihinen H, Jokita E, Eskelinen E-L. (2009). 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5: 1180-85
    • (2009) Autophagy , vol.5 , pp. 1180-1185
    • Yla-Anttila, P.1    Vihinen, H.2    Jokita, E.3    Eskelinen, E.-L.4
  • 126
  • 128
    • 0034614934 scopus 로고    scopus 로고
    • Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways
    • Noda T, Kim J, Huang WP, Baba M, Tokunaga C, et al. (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol. 148: 465-79
    • (2000) J. Cell Biol , vol.148 , pp. 465-479
    • Noda, T.1    Kim, J.2    Huang, W.P.3    Baba, M.4    Tokunaga, C.5
  • 129
    • 59449097721 scopus 로고    scopus 로고
    • Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy
    • He CC, Baba M, Cao Y, Klionsky DJ. (2008). Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol. Biol. Cell 19: 5506-16
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5506-5516
    • He, C.C.1    Baba, M.2    Cao, Y.3    Klionsky, D.J.4
  • 130
    • 84884220705 scopus 로고    scopus 로고
    • Diverse autophagosome membrane sources coalesce in recycling endosomes
    • Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154: 1285-99
    • (2013) Cell , vol.154 , pp. 1285-1299
    • Puri, C.1    Renna, M.2    Bento, C.F.3    Moreau, K.4    Rubinsztein, D.C.5
  • 131
    • 0346503885 scopus 로고    scopus 로고
    • The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure
    • Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ. (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell 6: 79-90
    • (2004) Dev. Cell , vol.6 , pp. 79-90
    • Reggiori, F.1    Tucker, K.A.2    Stromhaug, P.E.3    Klionsky, D.J.4
  • 132
    • 33750366092 scopus 로고    scopus 로고
    • Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
    • Young ARJ, Chan EYW, Hu XW, Koch R, Crawshaw SG, et al. (2006). Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119: 3888-900
    • (2006) J. Cell Sci , vol.119 , pp. 3888-3900
    • Young, A.R.J.1    Chan, E.Y.W.2    Hu, X.W.3    Koch, R.4    Crawshaw, S.G.5
  • 133
    • 77954184503 scopus 로고    scopus 로고
    • Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae
    • Geng JF, Nair U, Yasumura-Yorimitsu K, Klionsky DJ. (2010). Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 21: 2257-69
    • (2010) Mol. Biol. Cell , vol.21 , pp. 2257-2269
    • Geng, J.F.1    Nair, U.2    Yasumura-Yorimitsu, K.3    Klionsky, D.J.4
  • 134
    • 84887581571 scopus 로고    scopus 로고
    • TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy
    • Shirahama-Noda K, Kira S, Yoshimori T, Noda T. (2013). TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy. J. Cell Sci. 126: 4963-73
    • (2013) J. Cell Sci , vol.126 , pp. 4963-4973
    • Shirahama-Noda, K.1    Kira, S.2    Yoshimori, T.3    Noda, T.4
  • 135
    • 84857850213 scopus 로고    scopus 로고
    • Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
    • Itakura E, Kishi-Itakura C, Koyama-Honda I, Mizushima N. (2012). Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125: 1488-99
    • (2012) J. Cell Sci , vol.125 , pp. 1488-1499
    • Itakura, E.1    Kishi-Itakura, C.2    Koyama-Honda, I.3    Mizushima, N.4
  • 136
    • 0035839551 scopus 로고    scopus 로고
    • Apg2p functions in autophagosome formation on the perivacuolar structure
    • Shintani T, Suzuki K, Kamada Y, Noda T, Ohsumi Y. (2001). Apg2p functions in autophagosome formation on the perivacuolar structure. J. Biol. Chem. 276: 30452-60
    • (2001) J. Biol. Chem , vol.276 , pp. 30452-30460
    • Shintani, T.1    Suzuki, K.2    Kamada, Y.3    Noda, T.4    Ohsumi, Y.5
  • 137
    • 0035839430 scopus 로고    scopus 로고
    • Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways
    • Wang CW, Kim J, Huang WP, Abeliovich H, Stromhaug PE, et al. (2001). Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J. Biol. Chem. 276: 30442-51
    • (2001) J. Biol. Chem , vol.276 , pp. 30442-30451
    • Wang, C.W.1    Kim, J.2    Huang, W.P.3    Abeliovich, H.4    Stromhaug, P.E.5
  • 138
    • 84902652820 scopus 로고    scopus 로고
    • Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation
    • Jin MY, He D, Backues SK, Freeberg MA, Liu X, et al. (2014). Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation. Curr. Biol. 24: 1314-22
    • (2014) Curr. Biol , vol.24 , pp. 1314-1322
    • Jin, M.Y.1    He, D.2    Backues, S.K.3    Freeberg, M.A.4    Liu, X.5
  • 139
    • 84964470500 scopus 로고    scopus 로고
    • Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation
    • Feng YC, Backues SK, Baba M, Heo JM, Harper JW, Klionsky DJ. (2016). Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate of autophagosome formation. Autophagy 12: 648-58
    • (2016) Autophagy , vol.12 , pp. 648-658
    • Feng, Y.C.1    Backues, S.K.2    Baba, M.3    Heo, J.M.4    Harper, J.W.5    Klionsky, D.J.6
  • 140
    • 84861158462 scopus 로고    scopus 로고
    • Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
    • Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, et al. (2012). Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23: 1860-73
    • (2012) Mol. Biol. Cell , vol.23 , pp. 1860-1873
    • Orsi, A.1    Razi, M.2    Dooley, H.C.3    Robinson, D.4    Weston, A.E.5
  • 141
    • 84878127508 scopus 로고    scopus 로고
    • Vesicle coats: Structure, function, and general principles of assembly
    • Faini M, Beck R, Wieland FT, Briggs JAG. (2013). Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol. 23: 279-88
    • (2013) Trends Cell Biol , vol.23 , pp. 279-288
    • Faini, M.1    Beck, R.2    Wieland, F.T.3    Briggs, J.A.G.4
  • 142
    • 0035192612 scopus 로고    scopus 로고
    • Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
    • Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, et al. (2001). Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell 12: 3690-702
    • (2001) Mol. Biol. Cell , vol.12 , pp. 3690-3702
    • Ishihara, N.1    Hamasaki, M.2    Yokota, S.3    Suzuki, K.4    Kamada, Y.5
  • 143
    • 84957649648 scopus 로고    scopus 로고
    • Ypt1/Rab1 regulates Hrr25/CK1δ kinase activity in ER-Golgi traffic and macroautophagy
    • Wang J, Davis S, Menon S, Zhang JZ, Ding JZ, et al. (2015). Ypt1/Rab1 regulates Hrr25/CK1δ kinase activity in ER-Golgi traffic and macroautophagy. J. Cell Biol. 210: 273-85
    • (2015) J. Cell Biol , vol.210 , pp. 273-285
    • Wang, J.1    Davis, S.2    Menon, S.3    Zhang, J.Z.4    Ding, J.Z.5
  • 144
    • 84959114147 scopus 로고    scopus 로고
    • An ER-localized SNARE protein is exported in specific COPII vesicles for autophagosome biogenesis
    • Lemus L, Ribas JL, Sikorska N, Goder V. (2016). An ER-localized SNARE protein is exported in specific COPII vesicles for autophagosome biogenesis. Cell Rep. 14: 1710-22
    • (2016) Cell Rep , vol.14 , pp. 1710-1722
    • Lemus, L.1    Ribas, J.L.2    Sikorska, N.3    Goder, V.4
  • 145
    • 77952329475 scopus 로고    scopus 로고
    • Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy
    • Lynch-Day MA, Bhandari D, Menon S, Huang J, Cai HQ, et al. (2010). Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. PNAS 107: 7811-16
    • (2010) PNAS , vol.107 , pp. 7811-7816
    • Lynch-Day, M.A.1    Bhandari, D.2    Menon, S.3    Huang, J.4    Cai, H.Q.5
  • 146
    • 84888350190 scopus 로고    scopus 로고
    • The em structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway
    • Tan D, Cai Y, Wang J, Zhang J, Menon S, et al. (2013). The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. PNAS 110: 19432-37
    • (2013) PNAS , vol.110 , pp. 19432-19437
    • Tan, D.1    Cai, Y.2    Wang, J.3    Zhang, J.4    Menon, S.5
  • 147
    • 84881506338 scopus 로고    scopus 로고
    • The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
    • Ge L, Melville D, Zhang M, Schekman R. (2013). The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife 2: e00947
    • (2013) ELife , vol.2 , pp. e00947
    • Ge, L.1    Melville, D.2    Zhang, M.3    Schekman, R.4
  • 148
    • 84927720203 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment
    • Ge L, Zhang M, Schekman R. (2014). Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. eLife 3: 04135
    • (2014) ELife , vol.3 , pp. 04135
    • Ge, L.1    Zhang, M.2    Schekman, R.3
  • 150
    • 84982187966 scopus 로고    scopus 로고
    • Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles
    • Karanasios E, Walker SA, Okkenhaug H, Manifava M, Hummel E, et al. (2016). Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat. Commun. 7: 12420
    • (2016) Nat. Commun , vol.7 , pp. 12420
    • Karanasios, E.1    Walker, S.A.2    Okkenhaug, H.3    Manifava, M.4    Hummel, E.5
  • 151
    • 84985990670 scopus 로고    scopus 로고
    • Next-generation electron microscopy in autophagy research
    • Hurley JH, Nogales E. (2016). Next-generation electron microscopy in autophagy research. Curr. Opin. Struct. Biol. 41: 211-16
    • (2016) Curr. Opin. Struct. Biol , vol.41 , pp. 211-216
    • Hurley, J.H.1    Nogales, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.