-
1
-
-
68849092533
-
Cul3 overexpression depletes Nrf2 in breast cancer and is associated with sensitivity to carcinogens, to oxidative stress, and to chemotherapy
-
[1] Loignon, M., et al. Cul3 overexpression depletes Nrf2 in breast cancer and is associated with sensitivity to carcinogens, to oxidative stress, and to chemotherapy. Mol. Cancer Ther. 8:8 (2009), 2432–2440.
-
(2009)
Mol. Cancer Ther.
, vol.8
, Issue.8
, pp. 2432-2440
-
-
Loignon, M.1
-
2
-
-
0033801337
-
Immunodetection of NAD (P) H: quinone oxidoreductase 1 (NQO1) in human tissues
-
[2] Siegel, D., Ross, D., Immunodetection of NAD (P) H: quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic. Biol. Med. 29:3 (2000), 246–253.
-
(2000)
Free Radic. Biol. Med.
, vol.29
, Issue.3
, pp. 246-253
-
-
Siegel, D.1
Ross, D.2
-
3
-
-
12144287215
-
Immunohistochemical analysis of NAD (P) H: quinone oxidoreductase and NADPH cytochrome P450 reductase in human superficial bladder tumours: relationship between tumour enzymology and clinical outcome following intravesical mitomycin C therapy
-
[3] Basu, S., et al. Immunohistochemical analysis of NAD (P) H: quinone oxidoreductase and NADPH cytochrome P450 reductase in human superficial bladder tumours: relationship between tumour enzymology and clinical outcome following intravesical mitomycin C therapy. Int. J. Cancer 109:5 (2004), 703–709.
-
(2004)
Int. J. Cancer
, vol.109
, Issue.5
, pp. 703-709
-
-
Basu, S.1
-
4
-
-
66149168685
-
Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer
-
[4] Homma, S., et al. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin. Cancer Res. 15:10 (2009), 3423–3432.
-
(2009)
Clin. Cancer Res.
, vol.15
, Issue.10
, pp. 3423-3432
-
-
Homma, S.1
-
5
-
-
84921889428
-
Epigenetic modifications of keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy
-
[5] Mishra, M., Zhong, Q., Kowluru, R.A., Epigenetic modifications of keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci., 55(11), 2014, 7256.
-
(2014)
Investig. Ophthalmol. Vis. Sci.
, vol.55
, Issue.11
, pp. 7256
-
-
Mishra, M.1
Zhong, Q.2
Kowluru, R.A.3
-
6
-
-
77958115724
-
Regulation of the Nrf2–Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases
-
[6] Villeneuve, N.F., Lau, A., Zhang, D.D., Regulation of the Nrf2–Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid. Redox Signal. 13:11 (2010), 1699–1712.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, Issue.11
, pp. 1699-1712
-
-
Villeneuve, N.F.1
Lau, A.2
Zhang, D.D.3
-
7
-
-
84885944468
-
The emerging role of the Nrf2–Keap1 signaling pathway in cancer
-
[7] Jaramillo, M.C., Zhang, D.D., The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev. 27:20 (2013), 2179–2191.
-
(2013)
Genes Dev.
, vol.27
, Issue.20
, pp. 2179-2191
-
-
Jaramillo, M.C.1
Zhang, D.D.2
-
8
-
-
84873469216
-
The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene?
-
[8] Shelton, P., Jaiswal, A.K., The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene?. FASEB J. 27:2 (2013), 414–423.
-
(2013)
FASEB J.
, vol.27
, Issue.2
, pp. 414-423
-
-
Shelton, P.1
Jaiswal, A.K.2
-
9
-
-
78751703950
-
Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution
-
[9] Taguchi, K., Motohashi, H., Yamamoto, M., Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:2 (2011), 123–140.
-
(2011)
Genes Cells
, vol.16
, Issue.2
, pp. 123-140
-
-
Taguchi, K.1
Motohashi, H.2
Yamamoto, M.3
-
10
-
-
77956839436
-
Nrf2: a central regulator of UV protection in the epidermis
-
[10] Schafer, M., et al. Nrf2: a central regulator of UV protection in the epidermis. Cell Cycle 9:15 (2010), 2917–2918.
-
(2010)
Cell Cycle
, vol.9
, Issue.15
, pp. 2917-2918
-
-
Schafer, M.1
-
11
-
-
42449110757
-
The cytoprotective Nrf2 transcription factor controls insulin receptor signaling in the regenerating liver
-
[11] Beyer, T.A., Werner, S., The cytoprotective Nrf2 transcription factor controls insulin receptor signaling in the regenerating liver. Cell Cycle 7:7 (2008), 874–878.
-
(2008)
Cell Cycle
, vol.7
, Issue.7
, pp. 874-878
-
-
Beyer, T.A.1
Werner, S.2
-
12
-
-
38049055294
-
Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance
-
[12] Beyer, T.A., et al. Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J. 27:1 (2008), 212–223.
-
(2008)
EMBO J.
, vol.27
, Issue.1
, pp. 212-223
-
-
Beyer, T.A.1
-
13
-
-
84862271577
-
The yin and yang of nrf2-regulated selenoproteins in carcinogenesis
-
[13] Brigelius-Flohé, R., et al. The yin and yang of nrf2-regulated selenoproteins in carcinogenesis. Int. J. Cell Biol., 2012, 2012.
-
(2012)
Int. J. Cell Biol.
, vol.2012
-
-
Brigelius-Flohé, R.1
-
14
-
-
81755171451
-
miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells
-
[14] Eades, G., et al. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J. Biol. Chem. 286:47 (2011), 40725–40733.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.47
, pp. 40725-40733
-
-
Eades, G.1
-
15
-
-
85006223126
-
Effects of Nrf2 silencing on oxidative stress-associated intestinal carcinogenesis in mice
-
[15] Yokoo, Y., et al. Effects of Nrf2 silencing on oxidative stress-associated intestinal carcinogenesis in mice. Cancer Med., 2016.
-
(2016)
Cancer Med.
-
-
Yokoo, Y.1
-
16
-
-
4644328941
-
Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis
-
[16] Iida, K., et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 64:18 (2004), 6424–6431.
-
(2004)
Cancer Res.
, vol.64
, Issue.18
, pp. 6424-6431
-
-
Iida, K.1
-
17
-
-
56249086316
-
Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer
-
[17] Khor, T.O., et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prevent. Res. 1:3 (2008), 187–191.
-
(2008)
Cancer Prevent. Res.
, vol.1
, Issue.3
, pp. 187-191
-
-
Khor, T.O.1
-
18
-
-
76649089973
-
Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth
-
[18] Zhang, P., et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9:2 (2010), 336–346.
-
(2010)
Mol. Cancer Ther.
, vol.9
, Issue.2
, pp. 336-346
-
-
Zhang, P.1
-
19
-
-
84938681490
-
Dysregulation of the Keap1–Nrf2 pathway in cancer
-
[19] Leinonen, H.M., et al. Dysregulation of the Keap1–Nrf2 pathway in cancer. Biochem. Soc. Trans. 43:4 (2015), 645–649.
-
(2015)
Biochem. Soc. Trans.
, vol.43
, Issue.4
, pp. 645-649
-
-
Leinonen, H.M.1
-
20
-
-
79952202823
-
High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors
-
[20] Rushworth, S.A., Bowles, K.M., MacEwan, D.J., High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors. Cancer Res. 71:5 (2011), 1999–2009.
-
(2011)
Cancer Res.
, vol.71
, Issue.5
, pp. 1999-2009
-
-
Rushworth, S.A.1
Bowles, K.M.2
MacEwan, D.J.3
-
21
-
-
0037462675
-
Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones
-
[21] Pietsch, E.C., et al. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J. Biol. Chem. 278:4 (2003), 2361–2369.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.4
, pp. 2361-2369
-
-
Pietsch, E.C.1
-
22
-
-
46649112474
-
Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells
-
[22] Kim, S.K., et al. Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic. Biol. Med. 45:4 (2008), 537–546.
-
(2008)
Free Radic. Biol. Med.
, vol.45
, Issue.4
, pp. 537-546
-
-
Kim, S.K.1
-
23
-
-
67650922529
-
Involvement of Nrf2 activation in resistance to 5-fluorouracil in human colon cancer HT-29 cells
-
[23] Akhdar, H., et al. Involvement of Nrf2 activation in resistance to 5-fluorouracil in human colon cancer HT-29 cells. Eur. J. Cancer 45:12 (2009), 2219–2227.
-
(2009)
Eur. J. Cancer
, vol.45
, Issue.12
, pp. 2219-2227
-
-
Akhdar, H.1
-
24
-
-
33644501791
-
Activation of the Nrf2–ARE signaling pathway: a promising strategy in cancer prevention
-
[24] Giudice, A., Montella, M., Activation of the Nrf2–ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 28:2 (2006), 169–181.
-
(2006)
Bioessays
, vol.28
, Issue.2
, pp. 169-181
-
-
Giudice, A.1
Montella, M.2
-
25
-
-
77649270763
-
Targeting NRF2 signaling for cancer chemoprevention
-
[25] Kwak, M.-K., Kensler, T.W., Targeting NRF2 signaling for cancer chemoprevention. Toxicology and applied pharmacology 244:1 (2010), 66–76.
-
(2010)
Toxicology and applied pharmacology
, vol.244
, Issue.1
, pp. 66-76
-
-
Kwak, M.-K.1
Kensler, T.W.2
-
26
-
-
77958130983
-
Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 pathway
-
[26] Hayes, J.D., et al. Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 pathway. Antioxid. Redox Signal. 13:11 (2010), 1713–1748.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, Issue.11
, pp. 1713-1748
-
-
Hayes, J.D.1
-
27
-
-
79954424076
-
Nrf2: control of sensitivity to carcinogens
-
[27] Slocum, S.L., Kensler, T.W., Nrf2: control of sensitivity to carcinogens. Arch. Toxicol. 85:4 (2011), 273–284.
-
(2011)
Arch. Toxicol.
, vol.85
, Issue.4
, pp. 273-284
-
-
Slocum, S.L.1
Kensler, T.W.2
-
28
-
-
0030451213
-
NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development
-
[28] Chan, K., et al. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc. Natl. Acad. Sci. U. S. A. 93:24 (1996), 13943–13948.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, Issue.24
, pp. 13943-13948
-
-
Chan, K.1
-
29
-
-
84907337366
-
Cytoprotection “gone astray”: Nrf2 and its role in cancer
-
[29] Geismann, C., et al. Cytoprotection “gone astray”: Nrf2 and its role in cancer. OncoTargets Ther., 7, 2014, 1497.
-
(2014)
OncoTargets Ther.
, vol.7
, pp. 1497
-
-
Geismann, C.1
-
30
-
-
0035870298
-
The Cap ‘n’ Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes
-
[30] McMahon, M., et al. The Cap ‘n’ Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res. 61:8 (2001), 3299–3307.
-
(2001)
Cancer Res.
, vol.61
, Issue.8
, pp. 3299-3307
-
-
McMahon, M.1
-
31
-
-
0033956744
-
The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin
-
[31] Hayes, J., et al. The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem. Soc. Trans. 28:2 (2000), 33–41.
-
(2000)
Biochem. Soc. Trans.
, vol.28
, Issue.2
, pp. 33-41
-
-
Hayes, J.1
-
32
-
-
0037101768
-
Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice
-
[32] Chanas, S., et al. Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem. J. 365 (2002), 405–416.
-
(2002)
Biochem. J.
, vol.365
, pp. 405-416
-
-
Chanas, S.1
-
33
-
-
0034672595
-
Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein
-
[33] Chan, J.Y., Kwong, M., Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim. Biophys. Acta: Gene Struct. Expr. 1517:1 (2000), 19–26.
-
(2000)
Biochim. Biophys. Acta: Gene Struct. Expr.
, vol.1517
, Issue.1
, pp. 19-26
-
-
Chan, J.Y.1
Kwong, M.2
-
34
-
-
0035260034
-
Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione
-
[34] Kwak, M.-K., et al. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. Mol. Med., 7(2), 2001, 135.
-
(2001)
Mol. Med.
, vol.7
, Issue.2
, pp. 135
-
-
Kwak, M.-K.1
-
35
-
-
84899525548
-
Nrf1 and nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells
-
[35] Schultz, M.A., et al. Nrf1 and nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells. PLOS ONE, 9(1), 2014, e87204.
-
(2014)
PLOS ONE
, vol.9
, Issue.1
, pp. e87204
-
-
Schultz, M.A.1
-
36
-
-
0029906134
-
Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD (P) H: quinone oxidoreductase1 gene
-
[36] Venugopal, R., Jaiswal, A.K., Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD (P) H: quinone oxidoreductase1 gene. Proc. Natl. Acad. Sci. U. S. A. 93:25 (1996), 14960–14965.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, Issue.25
, pp. 14960-14965
-
-
Venugopal, R.1
Jaiswal, A.K.2
-
37
-
-
85069004862
-
Natural products for cancer prevention associated with Nrf2–ARE pathway
-
[37] Kou, X., et al. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci. Hum. Wellness 2:1 (2013), 22–28.
-
(2013)
Food Sci. Hum. Wellness
, vol.2
, Issue.1
, pp. 22-28
-
-
Kou, X.1
-
38
-
-
80053978389
-
Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation
-
[38] Khor, T.O., et al. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem. Pharmacol. 82:9 (2011), 1073–1078.
-
(2011)
Biochem. Pharmacol.
, vol.82
, Issue.9
, pp. 1073-1078
-
-
Khor, T.O.1
-
39
-
-
84890109914
-
Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases
-
[39] Kumar, H., et al. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep. 31:1 (2014), 109–139.
-
(2014)
Nat. Prod. Rep.
, vol.31
, Issue.1
, pp. 109-139
-
-
Kumar, H.1
-
40
-
-
56649083534
-
Dual roles of Nrf2 in cancer
-
[40] Lau, A., et al. Dual roles of Nrf2 in cancer. Pharmacol. Res. 58:5 (2008), 262–270.
-
(2008)
Pharmacol. Res.
, vol.58
, Issue.5
, pp. 262-270
-
-
Lau, A.1
-
41
-
-
84907337366
-
Cytoprotection “gone astray”: Nrf2 and its role in cancer
-
[41] Geismann, C., et al. Cytoprotection “gone astray”: Nrf2 and its role in cancer. Onco Targets Ther. 7 (2014), 1497–1518.
-
(2014)
Onco Targets Ther.
, vol.7
, pp. 1497-1518
-
-
Geismann, C.1
-
42
-
-
0037356451
-
Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene–DNA adducts and tumor yield in mice
-
[42] Ramos-Gomez, M., et al. Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene–DNA adducts and tumor yield in mice. Carcinogenesis 24:3 (2003), 461–467.
-
(2003)
Carcinogenesis
, vol.24
, Issue.3
, pp. 461-467
-
-
Ramos-Gomez, M.1
-
43
-
-
33644537902
-
Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole
-
[43] Yates, M.S., et al. Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole. Cancer Res. 66:4 (2006), 2488–2494.
-
(2006)
Cancer Res.
, vol.66
, Issue.4
, pp. 2488-2494
-
-
Yates, M.S.1
-
44
-
-
77957796093
-
Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung
-
[44] Satoh, H., et al. Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 31:10 (2010), 1833–1843.
-
(2010)
Carcinogenesis
, vol.31
, Issue.10
, pp. 1833-1843
-
-
Satoh, H.1
-
45
-
-
84976444942
-
The dual roles of NRF2 in cancer
-
[45] Menegon, S., Columbano, A., Giordano, S., The dual roles of NRF2 in cancer. Trends Mol. Med., 2016.
-
(2016)
Trends Mol. Med.
-
-
Menegon, S.1
Columbano, A.2
Giordano, S.3
-
46
-
-
2942746263
-
Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis
-
[46] Ikeda, H., Nishi, S., Sakai, M., Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis. Biochem. J. 380 (2004), 515–521.
-
(2004)
Biochem. J.
, vol.380
, pp. 515-521
-
-
Ikeda, H.1
Nishi, S.2
Sakai, M.3
-
47
-
-
84864348569
-
NRF2 and cancer: the good, the bad and the importance of context
-
[47] Sporn, M.B., Liby, K.T., NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12:8 (2012), 564–571.
-
(2012)
Nat. Rev. Cancer
, vol.12
, Issue.8
, pp. 564-571
-
-
Sporn, M.B.1
Liby, K.T.2
-
48
-
-
84883736109
-
Oncogenic functions of the transcription factor Nrf2
-
[48] Gañán-Gómez, I., et al. Oncogenic functions of the transcription factor Nrf2. Free Radic. Biol. Med. 65 (2013), 750–764.
-
(2013)
Free Radic. Biol. Med.
, vol.65
, pp. 750-764
-
-
Gañán-Gómez, I.1
-
49
-
-
79953889329
-
Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy
-
[49] Lister, A., et al. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol. Cancer, 10, 2011, 37.
-
(2011)
Mol. Cancer
, vol.10
, pp. 37
-
-
Lister, A.1
-
50
-
-
79955109046
-
Nrf2 expression in endometrial serous carcinomas and its precancers
-
[50] Chen, N., et al. Nrf2 expression in endometrial serous carcinomas and its precancers. Int. J. Clin. Exp. Pathol. 4:1 (2010), 85–96.
-
(2010)
Int. J. Clin. Exp. Pathol.
, vol.4
, Issue.1
, pp. 85-96
-
-
Chen, N.1
-
51
-
-
84862786878
-
Somatic mutations of the KEAP1 gene in common solid cancers
-
[51] Yoo, N.J., et al. Somatic mutations of the KEAP1 gene in common solid cancers. Histopathology 60:6 (2012), 943–952.
-
(2012)
Histopathology
, vol.60
, Issue.6
, pp. 943-952
-
-
Yoo, N.J.1
-
52
-
-
84977570825
-
Clinicopathological and prognostic significance of GPX2 protein expression in esophageal squamous cell carcinoma
-
[52] Lei, Z., et al. Clinicopathological and prognostic significance of GPX2 protein expression in esophageal squamous cell carcinoma. BMC Cancer, 16(1), 2016, 410.
-
(2016)
BMC Cancer
, vol.16
, Issue.1
, pp. 410
-
-
Lei, Z.1
-
53
-
-
51649130168
-
Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy
-
[53] Shibata, T., et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. U. S. A. 105:36 (2008), 13568–13573.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, Issue.36
, pp. 13568-13573
-
-
Shibata, T.1
-
54
-
-
84874111758
-
The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation
-
[54] Bryan, H.K., et al. The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation. Biochem. Pharmacol. 85:6 (2013), 705–717.
-
(2013)
Biochem. Pharmacol.
, vol.85
, Issue.6
, pp. 705-717
-
-
Bryan, H.K.1
-
55
-
-
77954695549
-
Nrf2 and Keap1 abnormalities in non–small cell lung carcinoma and association with clinicopathologic features
-
[55] Solis, L.M., et al. Nrf2 and Keap1 abnormalities in non–small cell lung carcinoma and association with clinicopathologic features. Clin. Cancer Res. 16:14 (2010), 3743–3753.
-
(2010)
Clin. Cancer Res.
, vol.16
, Issue.14
, pp. 3743-3753
-
-
Solis, L.M.1
-
56
-
-
45849133744
-
Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues
-
[56] Wang, R., et al. Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem. Biophys. Res. Commun. 373:1 (2008), 151–154.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.373
, Issue.1
, pp. 151-154
-
-
Wang, R.1
-
57
-
-
84857997256
-
Methylation of the KEAP1 gene promoter region in human colorectal cancer
-
[57] Hanada, N., et al. Methylation of the KEAP1 gene promoter region in human colorectal cancer. BMC Cancer, 12(1), 2012, 66.
-
(2012)
BMC Cancer
, vol.12
, Issue.1
, pp. 66
-
-
Hanada, N.1
-
58
-
-
84872038941
-
Aberrant Keap1 methylation in breast cancer and association with clinicopathological features
-
[58] Barbano, R., et al. Aberrant Keap1 methylation in breast cancer and association with clinicopathological features. Epigenetics 8:1 (2013), 105–112.
-
(2013)
Epigenetics
, vol.8
, Issue.1
, pp. 105-112
-
-
Barbano, R.1
-
59
-
-
84883743438
-
miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells
-
[59] Van Jaarsveld, M., et al. miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene 32:36 (2013), 4284–4293.
-
(2013)
Oncogene
, vol.32
, Issue.36
, pp. 4284-4293
-
-
Van Jaarsveld, M.1
-
60
-
-
80052570740
-
MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism
-
[60] Yang, M., et al. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res. Treat. 129:3 (2011), 983–991.
-
(2011)
Breast Cancer Res. Treat.
, vol.129
, Issue.3
, pp. 983-991
-
-
Yang, M.1
-
61
-
-
84893143652
-
The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors
-
[61] Yamamoto, S., et al. The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol. Cancer Res. 12:1 (2014), 58–68.
-
(2014)
Mol. Cancer Res.
, vol.12
, Issue.1
, pp. 58-68
-
-
Yamamoto, S.1
-
62
-
-
80054724249
-
Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2
-
[62] Kinch, L., Grishin, N.V., Brugarolas, J., Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2. Cancer Cell 20:4 (2011), 418–420.
-
(2011)
Cancer Cell
, vol.20
, Issue.4
, pp. 418-420
-
-
Kinch, L.1
Grishin, N.V.2
Brugarolas, J.3
-
63
-
-
84938367162
-
Mechanism-based cancer therapy: resistance to therapy, therapy for resistance
-
[63] Ramos, P., Bentires-Alj, M., Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34:28 (2015), 3617–3626.
-
(2015)
Oncogene
, vol.34
, Issue.28
, pp. 3617-3626
-
-
Ramos, P.1
Bentires-Alj, M.2
-
64
-
-
33644775686
-
Targeting multidrug resistance in cancer
-
[64] Szakács, G., et al. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5:3 (2006), 219–234.
-
(2006)
Nat. Rev. Drug Discov.
, vol.5
, Issue.3
, pp. 219-234
-
-
Szakács, G.1
-
65
-
-
0028106016
-
Glutathione-associated enzymes in anticancer drug resistance
-
[65] Tew, K.D., Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 54:16 (1994), 4313–4320.
-
(1994)
Cancer Res.
, vol.54
, Issue.16
, pp. 4313-4320
-
-
Tew, K.D.1
-
66
-
-
0031417680
-
Altered gene expression in drug-resistant human breast cancer cells
-
[66] Wosikowski, K., et al. Altered gene expression in drug-resistant human breast cancer cells. Clin. Cancer Res. 3:12 (1997), 2405–2414.
-
(1997)
Clin. Cancer Res.
, vol.3
, Issue.12
, pp. 2405-2414
-
-
Wosikowski, K.1
-
67
-
-
10744224719
-
Molecular predictors of response to chemotherapy in lung cancer
-
Elsevier
-
[67] Rosell, R., et al. Molecular predictors of response to chemotherapy in lung cancer. Seminars in Oncology, 2004, Elsevier.
-
(2004)
Seminars in Oncology
-
-
Rosell, R.1
-
68
-
-
0030865104
-
Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents
-
[68] O'Connor, P.M., et al. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57:19 (1997), 4285–4300.
-
(1997)
Cancer Res.
, vol.57
, Issue.19
, pp. 4285-4300
-
-
O'Connor, P.M.1
-
69
-
-
7944237254
-
Antioxidants and radiation therapy
-
[69] Borek, C., Antioxidants and radiation therapy. J. Nutr. 134:11 (2004), 3207S–3209S.
-
(2004)
J. Nutr.
, vol.134
, Issue.11
, pp. 3207S-3209S
-
-
Borek, C.1
-
70
-
-
0033541417
-
Tumor radiosensitivity and apoptosis
-
[70] Zhivotovsky, B., Joseph, B., Orrenius, S., Tumor radiosensitivity and apoptosis. Exp. Cell Res. 248:1 (1999), 10–17.
-
(1999)
Exp. Cell Res.
, vol.248
, Issue.1
, pp. 10-17
-
-
Zhivotovsky, B.1
Joseph, B.2
Orrenius, S.3
-
71
-
-
0038146898
-
Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis
-
[71] Lee, J.-M., et al. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J. Biol. Chem. 278:14 (2003), 12029–12038.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.14
, pp. 12029-12038
-
-
Lee, J.-M.1
-
72
-
-
42149106250
-
In vitro evaluation of the effects of gefitinib on the modulation of cytotoxic activity of selected anticancer agents in a panel of human ovarian cancer cell lines
-
[72] Smith, J.A., et al. In vitro evaluation of the effects of gefitinib on the modulation of cytotoxic activity of selected anticancer agents in a panel of human ovarian cancer cell lines. Cancer Chemother. Pharmacol. 62:1 (2008), 51–58.
-
(2008)
Cancer Chemother. Pharmacol.
, vol.62
, Issue.1
, pp. 51-58
-
-
Smith, J.A.1
-
73
-
-
50849127129
-
Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer
-
[73] Meijerman, I., Beijnen, J.H., Schellens, J.H., Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer. Cancer Treat. Rev. 34:6 (2008), 505–520.
-
(2008)
Cancer Treat. Rev.
, vol.34
, Issue.6
, pp. 505-520
-
-
Meijerman, I.1
Beijnen, J.H.2
Schellens, J.H.3
-
74
-
-
85028271428
-
The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: an update
-
[74] Lu, M.C., et al. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: an update. Med. Res. Rev., 2016.
-
(2016)
Med. Res. Rev.
-
-
Lu, M.C.1
-
75
-
-
53049105119
-
Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer
-
1358.e4–1368.e4
-
[75] Shibata, T., et al. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology, 135(4), 2008 1358.e4–1368.e4.
-
(2008)
Gastroenterology
, vol.135
, Issue.4
-
-
Shibata, T.1
-
76
-
-
46949099638
-
Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2
-
[76] Wang, X.-J., et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:6 (2008), 1235–1243.
-
(2008)
Carcinogenesis
, vol.29
, Issue.6
, pp. 1235-1243
-
-
Wang, X.-J.1
-
77
-
-
12144289484
-
Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line
-
[77] Tarumoto, T., et al. Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line. Exp. Hematol. 32:4 (2004), 375–381.
-
(2004)
Exp. Hematol.
, vol.32
, Issue.4
, pp. 375-381
-
-
Tarumoto, T.1
-
78
-
-
84896123587
-
Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs
-
[78] Wang, X.J., et al. Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs. Free Radic. Biol. Med. 70 (2014), 68–77.
-
(2014)
Free Radic. Biol. Med.
, vol.70
, pp. 68-77
-
-
Wang, X.J.1
-
79
-
-
79955612814
-
Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs
-
[79] Tang, X., et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 50:11 (2011), 1599–1609.
-
(2011)
Free Radic. Biol. Med.
, vol.50
, Issue.11
, pp. 1599-1609
-
-
Tang, X.1
-
80
-
-
84899858360
-
Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway
-
[80] Chian, S., et al. Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac. J. Cancer Prevent. 15:6 (2013), 2911–2916.
-
(2013)
Asian Pac. J. Cancer Prevent.
, vol.15
, Issue.6
, pp. 2911-2916
-
-
Chian, S.1
-
81
-
-
84905388479
-
Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling
-
[81] Sabzichi, M., et al. Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling. Asian Pac. J. Cancer Prevent. 15:13 (2014), 5311–5316.
-
(2014)
Asian Pac. J. Cancer Prevent.
, vol.15
, Issue.13
, pp. 5311-5316
-
-
Sabzichi, M.1
-
82
-
-
84900299717
-
Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo
-
[82] Chian, S., et al. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochemical and biophysical research communications 447:4 (2014), 602–608.
-
(2014)
Biochemical and biophysical research communications
, vol.447
, Issue.4
, pp. 602-608
-
-
Chian, S.1
-
83
-
-
84937128067
-
Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis
-
[83] Verma, A.K., et al. Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis. Redox Biol. 6 (2015), 80–92.
-
(2015)
Redox Biol.
, vol.6
, pp. 80-92
-
-
Verma, A.K.1
-
84
-
-
78650738673
-
Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes-role of the redox-regulated transcription factor Nrf2
-
[84] Wagner, A.E., et al. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes-role of the redox-regulated transcription factor Nrf2. BMC Complement. Altern. Med., 11(1), 2011, 1.
-
(2011)
BMC Complement. Altern. Med.
, vol.11
, Issue.1
, pp. 1
-
-
Wagner, A.E.1
-
85
-
-
84906939255
-
Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells
-
[85] Valenzuela, M., et al. Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells. Br. J. Cancer 111:5 (2014), 874–882.
-
(2014)
Br. J. Cancer
, vol.111
, Issue.5
, pp. 874-882
-
-
Valenzuela, M.1
-
86
-
-
79952122321
-
Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism
-
[86] Ren, D., et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. U. S. A. 108:4 (2011), 1433–1438.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, Issue.4
, pp. 1433-1438
-
-
Ren, D.1
-
87
-
-
84919663660
-
Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity—implications for therapeutic targeting of Nrf2
-
[87] Olayanju, A., et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity—implications for therapeutic targeting of Nrf2. Free Radic. Biol. Med. 78 (2015), 202–212.
-
(2015)
Free Radic. Biol. Med.
, vol.78
, pp. 202-212
-
-
Olayanju, A.1
-
88
-
-
84904157844
-
Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents
-
[88] Do, M.T., et al. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic. Biol. Med. 74 (2014), 21–34.
-
(2014)
Free Radic. Biol. Med.
, vol.74
, pp. 21-34
-
-
Do, M.T.1
-
89
-
-
70349157178
-
Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells
-
[89] Boesch-Saadatmandi, C., et al. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J. Anim. Physiol. Anim. Nutr. 93:5 (2009), 547–554.
-
(2009)
J. Anim. Physiol. Anim. Nutr.
, vol.93
, Issue.5
, pp. 547-554
-
-
Boesch-Saadatmandi, C.1
-
90
-
-
84885177241
-
Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity
-
[90] Arlt, A., et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32:40 (2013), 4825–4835.
-
(2013)
Oncogene
, vol.32
, Issue.40
, pp. 4825-4835
-
-
Arlt, A.1
-
91
-
-
84988358996
-
An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy
-
[91] Zhu, J., et al. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radic. Biol. Med. 99 (2016), 544–556.
-
(2016)
Free Radic. Biol. Med.
, vol.99
, pp. 544-556
-
-
Zhu, J.1
-
92
-
-
70249138697
-
Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds
-
[92] MacLeod, A.K., et al. Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis 30:9 (2009), 1571–1580.
-
(2009)
Carcinogenesis
, vol.30
, Issue.9
, pp. 1571-1580
-
-
MacLeod, A.K.1
-
93
-
-
77957237159
-
Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis
-
[93] Malhotra, D., et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 38:17 (2010), 5718–5734.
-
(2010)
Nucleic Acids Res.
, vol.38
, Issue.17
, pp. 5718-5734
-
-
Malhotra, D.1
-
94
-
-
77955488723
-
Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype
-
[94] Singh, A., et al. Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol. Cancer Ther. 9:8 (2010), 2365–2376.
-
(2010)
Mol. Cancer Ther.
, vol.9
, Issue.8
, pp. 2365-2376
-
-
Singh, A.1
-
95
-
-
84902436456
-
Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood–brain and blood–spinal cord barriers
-
[95] Wang, X., et al. Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood–brain and blood–spinal cord barriers. J. Neurosci. 34:25 (2014), 8585–8593.
-
(2014)
J. Neurosci.
, vol.34
, Issue.25
, pp. 8585-8593
-
-
Wang, X.1
-
96
-
-
35848942608
-
Heme oxygenase-1 in tumors: is it a false friend?
-
[96] Jozkowicz, A., Was, H., Dulak, J., Heme oxygenase-1 in tumors: is it a false friend?. Antioxid. Redox Signal. 9:12 (2007), 2099–2118.
-
(2007)
Antioxid. Redox Signal.
, vol.9
, Issue.12
, pp. 2099-2118
-
-
Jozkowicz, A.1
Was, H.2
Dulak, J.3
-
97
-
-
84927935911
-
Heme oxygenase-1: emerging target of cancer therapy
-
[97] Chau, L.-Y., Heme oxygenase-1: emerging target of cancer therapy. J. Biomed. Sci., 22(1), 2015, 22.
-
(2015)
J. Biomed. Sci.
, vol.22
, Issue.1
, pp. 22
-
-
Chau, L.-Y.1
-
98
-
-
84855189088
-
Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer
-
[98] Ferrando, M., et al. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis 14:4 (2011), 467–479.
-
(2011)
Angiogenesis
, vol.14
, Issue.4
, pp. 467-479
-
-
Ferrando, M.1
-
99
-
-
28744447937
-
Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase
-
[99] Hill, M., et al. Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. FASEB J. 19:14 (2005), 1957–1968.
-
(2005)
FASEB J.
, vol.19
, Issue.14
, pp. 1957-1968
-
-
Hill, M.1
-
100
-
-
84881493942
-
Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells
-
[100] Chao, C.-Y., et al. Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells. Carcinogenesis 34:8 (2013), 1843–1851.
-
(2013)
Carcinogenesis
, vol.34
, Issue.8
, pp. 1843-1851
-
-
Chao, C.-Y.1
-
101
-
-
35848932314
-
Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice
-
[101] Was, H., et al. Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am. J. Pathol. 169:6 (2006), 2181–2198.
-
(2006)
Am. J. Pathol.
, vol.169
, Issue.6
, pp. 2181-2198
-
-
Was, H.1
-
102
-
-
41149126775
-
Janus face of Nrf2–HO-1 axis in cancer—Friend in chemoprevention, foe in anticancer therapy
-
[102] Loboda, A., et al. Janus face of Nrf2–HO-1 axis in cancer—Friend in chemoprevention, foe in anticancer therapy. Lung Cancer 60:1 (2008), 1–3.
-
(2008)
Lung Cancer
, vol.60
, Issue.1
, pp. 1-3
-
-
Loboda, A.1
-
103
-
-
77958113395
-
Correlation of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to clinicopathologic features and survival
-
[103] Wang, J., et al. Correlation of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to clinicopathologic features and survival. J. Surg. Res. 164:1 (2010), e99–e105.
-
(2010)
J. Surg. Res.
, vol.164
, Issue.1
, pp. e99-e105
-
-
Wang, J.1
-
104
-
-
77349087094
-
Induction of heme oxygenase-1 in normal and malignant B lymphocytes by 15-deoxy-Δ 12,14-prostaglandin J 2 requires Nrf2
-
[104] Bancos, S., et al. Induction of heme oxygenase-1 in normal and malignant B lymphocytes by 15-deoxy-Δ 12,14-prostaglandin J 2 requires Nrf2. Cell. Immunol. 262:1 (2010), 18–27.
-
(2010)
Cell. Immunol.
, vol.262
, Issue.1
, pp. 18-27
-
-
Bancos, S.1
-
105
-
-
33845964413
-
Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate
-
[105] Kweon, M.-H., et al. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J. Biol. Chem. 281:44 (2006), 33761–33772.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.44
, pp. 33761-33772
-
-
Kweon, M.-H.1
-
106
-
-
45549101964
-
Selenium compounds and selenoproteins in cancer
-
[106] Brigelius-Flohé, R., Selenium compounds and selenoproteins in cancer. Chem. Biodivers. 5:3 (2008), 389–395.
-
(2008)
Chem. Biodivers.
, vol.5
, Issue.3
, pp. 389-395
-
-
Brigelius-Flohé, R.1
-
107
-
-
77956655098
-
Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets
-
[107] Turanov, A.A., et al. Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets. Biochem. J. 430:2 (2010), 285–293.
-
(2010)
Biochem. J.
, vol.430
, Issue.2
, pp. 285-293
-
-
Turanov, A.A.1
-
108
-
-
33746430147
-
Thioredoxin reductase as a novel molecular target for cancer therapy
-
[108] Nguyen, P., et al. Thioredoxin reductase as a novel molecular target for cancer therapy. Cancer Lett. 236:2 (2006), 164–174.
-
(2006)
Cancer Lett.
, vol.236
, Issue.2
, pp. 164-174
-
-
Nguyen, P.1
-
109
-
-
0034065729
-
Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival
-
[109] Grogan, T.M., et al. Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival. Hum. Pathol. 31:4 (2000), 475–481.
-
(2000)
Hum. Pathol.
, vol.31
, Issue.4
, pp. 475-481
-
-
Grogan, T.M.1
-
110
-
-
0042991494
-
Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival
-
[110] Raffel, J., et al. Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. J. Lab. Clin. Med. 142:1 (2003), 46–51.
-
(2003)
J. Lab. Clin. Med.
, vol.142
, Issue.1
, pp. 46-51
-
-
Raffel, J.1
-
111
-
-
84876444486
-
Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer
-
[111] Penney, R.B., Roy, D., Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim. Biophys. Acta: Rev. Cancer 1836:1 (2013), 60–79.
-
(2013)
Biochim. Biophys. Acta: Rev. Cancer
, vol.1836
, Issue.1
, pp. 60-79
-
-
Penney, R.B.1
Roy, D.2
-
112
-
-
84865690949
-
Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma
-
[112] Li, C., et al. Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma. Oncotarget 3:3 (2012), 314–326.
-
(2012)
Oncotarget
, vol.3
, Issue.3
, pp. 314-326
-
-
Li, C.1
-
113
-
-
33744958179
-
Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells
-
[113] Yoo, M.-H., et al. Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells. J. Biol. Chem. 281:19 (2006), 13005–13008.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.19
, pp. 13005-13008
-
-
Yoo, M.-H.1
-
114
-
-
18244386712
-
Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2
-
[114] Sakurai, A., et al. Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J. Cell. Physiol. 203:3 (2005), 529–537.
-
(2005)
J. Cell. Physiol.
, vol.203
, Issue.3
, pp. 529-537
-
-
Sakurai, A.1
-
115
-
-
0032840612
-
Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II)
-
[115] Sasada, T., et al. Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II). Free Radic. Biol. Med. 27:5 (1999), 504–514.
-
(1999)
Free Radic. Biol. Med.
, vol.27
, Issue.5
, pp. 504-514
-
-
Sasada, T.1
-
116
-
-
84874742657
-
Antiproliferative effect of gold (I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells
-
[116] Kim, N.-H., et al. Antiproliferative effect of gold (I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells. BMB Rep. 46:1 (2013), 59–64.
-
(2013)
BMB Rep.
, vol.46
, Issue.1
, pp. 59-64
-
-
Kim, N.-H.1
-
117
-
-
84907451634
-
Auranofin displays anticancer activity against ovarian cancer cells through FOXO3 activation independent of p53
-
[117] PArK, S.-H., et al. Auranofin displays anticancer activity against ovarian cancer cells through FOXO3 activation independent of p53. Int. J. Oncol. 45:4 (2014), 1691–1698.
-
(2014)
Int. J. Oncol.
, vol.45
, Issue.4
, pp. 1691-1698
-
-
PArK, S.-H.1
-
118
-
-
84901003011
-
Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo
-
[118] Fan, C., et al. Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis., 5(4), 2014, e1191.
-
(2014)
Cell Death Dis.
, vol.5
, Issue.4
, pp. e1191
-
-
Fan, C.1
-
119
-
-
84908212007
-
Auranofin promotes mitochondrial apoptosis by inducing annexin A5 expression and translocation in human prostate cancer cells
-
[119] Park, N., Chun, Y.-J., Auranofin promotes mitochondrial apoptosis by inducing annexin A5 expression and translocation in human prostate cancer cells. J. Toxicol. Environ. Health A 77:22–24 (2014), 1467–1476.
-
(2014)
J. Toxicol. Environ. Health A
, vol.77
, Issue.22-24
, pp. 1467-1476
-
-
Park, N.1
Chun, Y.-J.2
-
120
-
-
84891939128
-
PX-12 inhibits the growth of A549 lung cancer cells via G2/M phase arrest and ROS-dependent apoptosis
-
[120] You, B.R., Shin, H.R., Park, W.H., PX-12 inhibits the growth of A549 lung cancer cells via G2/M phase arrest and ROS-dependent apoptosis. Int. J. Oncol. 44:1 (2014), 301–308.
-
(2014)
Int. J. Oncol.
, vol.44
, Issue.1
, pp. 301-308
-
-
You, B.R.1
Shin, H.R.2
Park, W.H.3
-
121
-
-
84919455991
-
Thioredoxin-1 inhibitor, 1-methylpropyl 2-imidazolyl disulfide, inhibits the growth, migration and invasion of colorectal cancer cell lines
-
[121] Wang, F., et al. Thioredoxin-1 inhibitor, 1-methylpropyl 2-imidazolyl disulfide, inhibits the growth, migration and invasion of colorectal cancer cell lines. Oncol. Rep. 33:2 (2015), 967–973.
-
(2015)
Oncol. Rep.
, vol.33
, Issue.2
, pp. 967-973
-
-
Wang, F.1
-
122
-
-
84907919427
-
Thioredoxin-1 inhibitor PX-12 induces human acute myeloid leukemia cell apoptosis and enhances the sensitivity of cells to arsenic trioxide
-
[122] Tan, Y., et al. Thioredoxin-1 inhibitor PX-12 induces human acute myeloid leukemia cell apoptosis and enhances the sensitivity of cells to arsenic trioxide. Int. J. Clin. Exp. Pathol., 7(8), 2014, 4765.
-
(2014)
Int. J. Clin. Exp. Pathol.
, vol.7
, Issue.8
, pp. 4765
-
-
Tan, Y.1
-
123
-
-
34547692874
-
Human aldo–keto reductases: function, gene regulation, and single nucleotide polymorphisms
-
[123] Penning, T.M., Drury, J.E., Human aldo–keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch. Biochem. Biophys. 464:2 (2007), 241–250.
-
(2007)
Arch. Biochem. Biophys.
, vol.464
, Issue.2
, pp. 241-250
-
-
Penning, T.M.1
Drury, J.E.2
-
124
-
-
33744459971
-
Role of aldo–keto reductases in development of prostate and breast cancer
-
[124] Jin, J., Krishack, P., Cao, D., Role of aldo–keto reductases in development of prostate and breast cancer. Front. Biosci.: J. Virtual Libr. 11 (2005), 2767–2773.
-
(2005)
Front. Biosci.: J. Virtual Libr.
, vol.11
, pp. 2767-2773
-
-
Jin, J.1
Krishack, P.2
Cao, D.3
-
125
-
-
33947713276
-
Overexpression of aldo–keto reductase 1C2 as a high-risk factor in bladder cancer
-
[125] Tai, H.-L., et al. Overexpression of aldo–keto reductase 1C2 as a high-risk factor in bladder cancer. Oncol. Rep. 17:2 (2007), 305–312.
-
(2007)
Oncol. Rep.
, vol.17
, Issue.2
, pp. 305-312
-
-
Tai, H.-L.1
-
126
-
-
84866148364
-
Expression of the aldo–keto reductases AKR1B1 and AKR1B10 in human cancers
-
[126] Laffin, B., Petrash, M., Expression of the aldo–keto reductases AKR1B1 and AKR1B10 in human cancers. Front. Pharmacol., 3, 2012, 104.
-
(2012)
Front. Pharmacol.
, vol.3
, pp. 104
-
-
Laffin, B.1
Petrash, M.2
-
127
-
-
35348887886
-
Aldo–keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: implication for cancer intervention
-
[127] Yan, R., et al. Aldo–keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: implication for cancer intervention. Int. J. Cancer 121:10 (2007), 2301–2306.
-
(2007)
Int. J. Cancer
, vol.121
, Issue.10
, pp. 2301-2306
-
-
Yan, R.1
-
128
-
-
0034287545
-
Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo–keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones
-
[128] Penning, T.M., et al. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo–keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem. J., 351(Pt 1), 2000, 67.
-
(2000)
Biochem. J.
, vol.351
, pp. 67
-
-
Penning, T.M.1
-
129
-
-
0037177887
-
Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells
-
[129] Deng, H.B., et al. Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells. J. Biol. Chem. 277:17 (2002), 15035–15043.
-
(2002)
J. Biol. Chem.
, vol.277
, Issue.17
, pp. 15035-15043
-
-
Deng, H.B.1
-
130
-
-
33745902254
-
Infection of human papillomavirus and overexpression of dihydrodiol dehydrogenase in uterine cervical cancer
-
[130] Ueda, M., et al. Infection of human papillomavirus and overexpression of dihydrodiol dehydrogenase in uterine cervical cancer. Gynecol. Oncol. 102:2 (2006), 173–181.
-
(2006)
Gynecol. Oncol.
, vol.102
, Issue.2
, pp. 173-181
-
-
Ueda, M.1
-
131
-
-
84875211359
-
Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers
-
[131] Matsunaga, T., et al. Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chem. Biol. Interact. 202:1 (2013), 234–242.
-
(2013)
Chem. Biol. Interact.
, vol.202
, Issue.1
, pp. 234-242
-
-
Matsunaga, T.1
-
132
-
-
57449117769
-
Proteomic analysis of pancreatic ductal adenocarcinoma compared with normal adjacent pancreatic tissue and pancreatic benign cystadenoma
-
[132] Cui, Y., et al. Proteomic analysis of pancreatic ductal adenocarcinoma compared with normal adjacent pancreatic tissue and pancreatic benign cystadenoma. Pancreatology 9:1–2 (2009), 89–98.
-
(2009)
Pancreatology
, vol.9
, Issue.1-2
, pp. 89-98
-
-
Cui, Y.1
-
133
-
-
79957557701
-
The role of aldehyde reductase AKR1A1 in the metabolism of gamma-hydroxybutyrate in 1321N1 human astrocytoma cells
-
[133] Alzeer, S., Ellis, E.M., The role of aldehyde reductase AKR1A1 in the metabolism of gamma-hydroxybutyrate in 1321N1 human astrocytoma cells. Chem. Biol. Interact. 191:1 (2011), 303–307.
-
(2011)
Chem. Biol. Interact.
, vol.191
, Issue.1
, pp. 303-307
-
-
Alzeer, S.1
Ellis, E.M.2
-
134
-
-
70350778508
-
Aldo–keto reductase family 1 member B1 inhibitors: old drugs with new perspectives
-
[134] Liu, J., Wen, G., Cao, D., Aldo–keto reductase family 1 member B1 inhibitors: old drugs with new perspectives. Recent Pat. Anti-cancer Drug Discov. 4:3 (2009), 246–253.
-
(2009)
Recent Pat. Anti-cancer Drug Discov.
, vol.4
, Issue.3
, pp. 246-253
-
-
Liu, J.1
Wen, G.2
Cao, D.3
-
135
-
-
84862808747
-
Overexpression and oncogenic function of aldo–keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma
-
[135] Chung, Y.T., et al. Overexpression and oncogenic function of aldo–keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. Mod. Pathol. 25:5 (2012), 758–766.
-
(2012)
Mod. Pathol.
, vol.25
, Issue.5
, pp. 758-766
-
-
Chung, Y.T.1
-
136
-
-
84991107767
-
Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters
-
[136] Bai, X., et al. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab. Rev. 48:4 (2016), 541–567.
-
(2016)
Drug Metab. Rev.
, vol.48
, Issue.4
, pp. 541-567
-
-
Bai, X.1
-
137
-
-
37349121900
-
Transcriptional regulation of aldo–keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis
-
[137] Selga, E., Noé, V., Ciudad, C.J., Transcriptional regulation of aldo–keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis. Biochem. Pharmacol. 75:2 (2008), 414–426.
-
(2008)
Biochem. Pharmacol.
, vol.75
, Issue.2
, pp. 414-426
-
-
Selga, E.1
Noé, V.2
Ciudad, C.J.3
-
138
-
-
79955051623
-
Involvement of the aldo–keto reductase, AKR1B10, in mitomycin-c resistance through reactive oxygen species-dependent mechanisms
-
[138] Matsunaga, T., et al. Involvement of the aldo–keto reductase, AKR1B10, in mitomycin-c resistance through reactive oxygen species-dependent mechanisms. Anticancer Drugs 22:5 (2011), 402–408.
-
(2011)
Anticancer Drugs
, vol.22
, Issue.5
, pp. 402-408
-
-
Matsunaga, T.1
-
139
-
-
77956634018
-
Overexpression of aldo–keto reductase 1C2 is associated with disease progression in patients with prostatic cancer
-
[139] Huang, K.H., et al. Overexpression of aldo–keto reductase 1C2 is associated with disease progression in patients with prostatic cancer. Histopathology 57:3 (2010), 384–394.
-
(2010)
Histopathology
, vol.57
, Issue.3
, pp. 384-394
-
-
Huang, K.H.1
-
140
-
-
47249160785
-
Glutathione peroxidase family – an evolutionary overview
-
[140] Margis, R., et al. Glutathione peroxidase family – an evolutionary overview. FEBS J. 275:15 (2008), 3959–3970.
-
(2008)
FEBS J.
, vol.275
, Issue.15
, pp. 3959-3970
-
-
Margis, R.1
-
141
-
-
0842304289
-
Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes
-
[141] Chu, F.-F., et al. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res. 64:3 (2004), 962–968.
-
(2004)
Cancer Res.
, vol.64
, Issue.3
, pp. 962-968
-
-
Chu, F.-F.1
-
142
-
-
34250356291
-
Inactivation of glutathione peroxidase activity contributes to UV-induced squamous cell carcinoma formation
-
[142] Walshe, J., et al. Inactivation of glutathione peroxidase activity contributes to UV-induced squamous cell carcinoma formation. Cancer Res. 67:10 (2007), 4751–4758.
-
(2007)
Cancer Res.
, vol.67
, Issue.10
, pp. 4751-4758
-
-
Walshe, J.1
-
143
-
-
84949180422
-
Glutathione peroxidase 2 and its role in cancer
-
Springer
-
[143] Banning, A., Kipp, A., Brigelius-Flohé, R., Glutathione peroxidase 2 and its role in cancer. Selenium, 2011, Springer, 271–282.
-
(2011)
Selenium
, pp. 271-282
-
-
Banning, A.1
Kipp, A.2
Brigelius-Flohé, R.3
-
144
-
-
0035692705
-
Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue
-
[144] Florian, S., et al. Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue. Free Radic. Res. 35:6 (2001), 655–663.
-
(2001)
Free Radic. Res.
, vol.35
, Issue.6
, pp. 655-663
-
-
Florian, S.1
-
145
-
-
0033839550
-
Inverse mRNA expression of the selenocysteine-containing proteins GI-GPx and SeP in colorectal adenomas compared with adjacent normal mucosa
-
[145] Mork, H., et al. Inverse mRNA expression of the selenocysteine-containing proteins GI-GPx and SeP in colorectal adenomas compared with adjacent normal mucosa. Nutr. Cancer 37:1 (2000), 108–116.
-
(2000)
Nutr. Cancer
, vol.37
, Issue.1
, pp. 108-116
-
-
Mork, H.1
-
146
-
-
17144452376
-
Glutathione peroxidase isoforms as part of the local antioxidative defense system in normal and Barrett's esophagus
-
[146] Mörk, H., et al. Glutathione peroxidase isoforms as part of the local antioxidative defense system in normal and Barrett's esophagus. Int. J. Cancer 105:3 (2003), 300–304.
-
(2003)
Int. J. Cancer
, vol.105
, Issue.3
, pp. 300-304
-
-
Mörk, H.1
-
147
-
-
20344405468
-
The GI-GPx gene is a target for Nrf2
-
[147] Banning, A., et al. The GI-GPx gene is a target for Nrf2. Mol. Cell. Biol. 25:12 (2005), 4914–4923.
-
(2005)
Mol. Cell. Biol.
, vol.25
, Issue.12
, pp. 4914-4923
-
-
Banning, A.1
-
148
-
-
0034910990
-
Overexpression of peroxiredoxin in human breast cancer
-
[148] Noh, D.-Y., et al. Overexpression of peroxiredoxin in human breast cancer. Anticancer Res. 21:3B (2000), 2085–2090.
-
(2000)
Anticancer Res.
, vol.21
, Issue.3B
, pp. 2085-2090
-
-
Noh, D.-Y.1
-
149
-
-
0035976790
-
Augmented expression of peroxiredoxin I in lung cancer
-
[149] Chang, J.W., et al. Augmented expression of peroxiredoxin I in lung cancer. Biochem. Biophys. Res. Commun. 289:2 (2001), 507–512.
-
(2001)
Biochem. Biophys. Res. Commun.
, vol.289
, Issue.2
, pp. 507-512
-
-
Chang, J.W.1
-
150
-
-
0032887516
-
Peroxiredoxin I expression in human thyroid tumors
-
[150] Yanagawa, T., et al. Peroxiredoxin I expression in human thyroid tumors. Cancer Lett. 145:1 (1999), 127–132.
-
(1999)
Cancer Lett.
, vol.145
, Issue.1
, pp. 127-132
-
-
Yanagawa, T.1
-
151
-
-
18744426119
-
Peroxiredoxin I expression in oral cancer: a potential new tumor marker
-
[151] Yanagawa, T., et al. Peroxiredoxin I expression in oral cancer: a potential new tumor marker. Cancer Lett. 156:1 (2000), 27–35.
-
(2000)
Cancer Lett.
, vol.156
, Issue.1
, pp. 27-35
-
-
Yanagawa, T.1
-
152
-
-
34447118171
-
Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer
-
[152] Kim, J.-H., et al. Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer. Clin. Cancer Res. 13:13 (2007), 3875–3882.
-
(2007)
Clin. Cancer Res.
, vol.13
, Issue.13
, pp. 3875-3882
-
-
Kim, J.-H.1
-
153
-
-
30544431972
-
Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression
-
[153] Chen, M.-F., et al. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression. Int. J. Radiat. Oncol. Biol. Phys. 64:2 (2006), 581–591.
-
(2006)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.64
, Issue.2
, pp. 581-591
-
-
Chen, M.-F.1
-
154
-
-
0033230043
-
Glutathione and its role in cellular functions
-
[154] Sies, H., Glutathione and its role in cellular functions. Free Radic. Biol. Med. 27:9 (1999), 916–921.
-
(1999)
Free Radic. Biol. Med.
, vol.27
, Issue.9
, pp. 916-921
-
-
Sies, H.1
-
155
-
-
0036132106
-
Expression of heavy subunit of γ-glutamylcysteine synthetase (γ-GCSh) in human colorectal carcinoma
-
[155] Tatebe, S., et al. Expression of heavy subunit of γ-glutamylcysteine synthetase (γ-GCSh) in human colorectal carcinoma. Int. J. Cancer 97:1 (2002), 21–27.
-
(2002)
Int. J. Cancer
, vol.97
, Issue.1
, pp. 21-27
-
-
Tatebe, S.1
-
156
-
-
0035575767
-
Expression of γ-glutamyl cysteine synthetase in nonsmall cell lung carcinoma
-
[156] Soini, Y., et al. Expression of γ-glutamyl cysteine synthetase in nonsmall cell lung carcinoma. Cancer 92:11 (2001), 2911–2919.
-
(2001)
Cancer
, vol.92
, Issue.11
, pp. 2911-2919
-
-
Soini, Y.1
-
157
-
-
0032215804
-
Breast cancer and benign breast disease patients evaluated in relation to oxidative stress
-
[157] Seven, A., et al. Breast cancer and benign breast disease patients evaluated in relation to oxidative stress. Cancer Biochem. Biophys. 16:4 (1998), 333–345.
-
(1998)
Cancer Biochem. Biophys.
, vol.16
, Issue.4
, pp. 333-345
-
-
Seven, A.1
-
158
-
-
0033506111
-
Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells
-
[158] Carretero, J., et al. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin. Exp. Metastasis, 17(7), 1999, 567.
-
(1999)
Clin. Exp. Metastasis
, vol.17
, Issue.7
, pp. 567
-
-
Carretero, J.1
-
159
-
-
18544399201
-
Clinical studies of reversal of drug resistance based on glutathione
-
[159] Calvert, P., et al. Clinical studies of reversal of drug resistance based on glutathione. Chem. Biol. Interact. 111 (1998), 213–224.
-
(1998)
Chem. Biol. Interact.
, vol.111
, pp. 213-224
-
-
Calvert, P.1
-
160
-
-
0033009895
-
Co-expression of gamma-glutamylcysteine synthetase sub-units in response to cisplatin and doxorubicin in human cancer cells
-
[160] Iida, T., et al. Co-expression of gamma-glutamylcysteine synthetase sub-units in response to cisplatin and doxorubicin in human cancer cells. Int. J. Cancer 82:3 (1999), 405–411.
-
(1999)
Int. J. Cancer
, vol.82
, Issue.3
, pp. 405-411
-
-
Iida, T.1
-
161
-
-
39049136869
-
Changes in antioxidant defense status in response to cisplatin and 5-FU in esophageal carcinoma
-
[161] Kaur, T., et al. Changes in antioxidant defense status in response to cisplatin and 5-FU in esophageal carcinoma. Dis. Esophagus 21:2 (2008), 103–107.
-
(2008)
Dis. Esophagus
, vol.21
, Issue.2
, pp. 103-107
-
-
Kaur, T.1
-
162
-
-
16644392633
-
The subunits of glutamate cysteine ligase enhance cisplatin resistance in human non-small cell lung cancer xenografts in vivo
-
[162] Fujimori, S., et al. The subunits of glutamate cysteine ligase enhance cisplatin resistance in human non-small cell lung cancer xenografts in vivo. Int. J. Oncol. 25 (2004), 413–418.
-
(2004)
Int. J. Oncol.
, vol.25
, pp. 413-418
-
-
Fujimori, S.1
-
163
-
-
0026343403
-
Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy
-
[163] Meister, A., Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol. Ther. 51:2 (1991), 155–194.
-
(1991)
Pharmacol. Ther.
, vol.51
, Issue.2
, pp. 155-194
-
-
Meister, A.1
-
164
-
-
9044254931
-
Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer
-
[164] O'Dwyer, P.J., et al. Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer. J. Clin. Oncol. 14:1 (1996), 249–256.
-
(1996)
J. Clin. Oncol.
, vol.14
, Issue.1
, pp. 249-256
-
-
O'Dwyer, P.J.1
-
165
-
-
0033540268
-
Depletion of glutathione by buthionine sulfoximine is cytotoxic for human neuroblastoma cell lines via apoptosis
-
[165] Anderson, C.P., et al. Depletion of glutathione by buthionine sulfoximine is cytotoxic for human neuroblastoma cell lines via apoptosis. Exp. Cell Res. 246:1 (1999), 183–192.
-
(1999)
Exp. Cell Res.
, vol.246
, Issue.1
, pp. 183-192
-
-
Anderson, C.P.1
-
166
-
-
7544236965
-
Quinone reductases multitasking in the metabolic world
-
[166] Ross, D., Quinone reductases multitasking in the metabolic world. Drug Metab. Rev. 36:3–4 (2004), 639–654.
-
(2004)
Drug Metab. Rev.
, vol.36
, Issue.3-4
, pp. 639-654
-
-
Ross, D.1
-
167
-
-
2142655894
-
NAD (P) H: quinone oxidoreductase 1: role as a superoxide scavenger
-
[167] Siegel, D., et al. NAD (P) H: quinone oxidoreductase 1: role as a superoxide scavenger. Mol. Pharmacol. 65:5 (2004), 1238–1247.
-
(2004)
Mol. Pharmacol.
, vol.65
, Issue.5
, pp. 1238-1247
-
-
Siegel, D.1
-
168
-
-
33645993864
-
Quinone reductase induction as a biomarker for cancer chemoprevention
-
[168] Cuendet, M., et al. Quinone reductase induction as a biomarker for cancer chemoprevention. J. Nat. Prod. 69:3 (2006), 460–463.
-
(2006)
J. Nat. Prod.
, vol.69
, Issue.3
, pp. 460-463
-
-
Cuendet, M.1
-
169
-
-
0034326245
-
NAD (P) H: quinone oxidoreductase 1 deficiency increases susceptibility to benzo (a) pyrene-induced mouse skin carcinogenesis
-
[169] Long, D.J., et al. NAD (P) H: quinone oxidoreductase 1 deficiency increases susceptibility to benzo (a) pyrene-induced mouse skin carcinogenesis. Cancer Res. 60:21 (2000), 5913–5915.
-
(2000)
Cancer Res.
, vol.60
, Issue.21
, pp. 5913-5915
-
-
Long, D.J.1
-
170
-
-
0025248106
-
(P) H:(Quinone-acceptor) oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol
-
[170] Schlager, J.J., Powis, G., Cytosolic, N.A.D., (P) H:(Quinone-acceptor) oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int. J. Cancer 45:3 (1990), 403–409.
-
(1990)
Int. J. Cancer
, vol.45
, Issue.3
, pp. 403-409
-
-
Schlager, J.J.1
Powis, G.2
Cytosolic, N.A.D.3
-
171
-
-
0031791376
-
Immunological quantitation of DT-diaphorase in carcinoma cell lines and clinical colon cancers: advanced tumors express greater levels of DT-diaphorase
-
[171] Mikami, K., et al. Immunological quantitation of DT-diaphorase in carcinoma cell lines and clinical colon cancers: advanced tumors express greater levels of DT-diaphorase. Cancer Sci. 89:9 (1998), 910–915.
-
(1998)
Cancer Sci.
, vol.89
, Issue.9
, pp. 910-915
-
-
Mikami, K.1
-
172
-
-
76149134359
-
Dicoumarol enhances doxorubicin-induced cytotoxicity in p53 wild-type urothelial cancer cells through p38 activation
-
[172] Matsui, Y., et al. Dicoumarol enhances doxorubicin-induced cytotoxicity in p53 wild-type urothelial cancer cells through p38 activation. BJU Int. 105:4 (2010), 558–564.
-
(2010)
BJU Int.
, vol.105
, Issue.4
, pp. 558-564
-
-
Matsui, Y.1
-
173
-
-
84892704442
-
Suppression of NAD (P) H-quinone oxidoreductase 1 enhanced the susceptibility of cholangiocarcinoma cells to chemotherapeutic agents
-
[173] Zeekpudsa, P., et al. Suppression of NAD (P) H-quinone oxidoreductase 1 enhanced the susceptibility of cholangiocarcinoma cells to chemotherapeutic agents. J. Exp. Clin. Cancer Res., 33(1), 2014, 11.
-
(2014)
J. Exp. Clin. Cancer Res.
, vol.33
, Issue.1
, pp. 11
-
-
Zeekpudsa, P.1
-
174
-
-
77954762075
-
Functions and transcriptional regulation of adult human hepatic UDP-glucuronosyl-transferases (UGTs): mechanisms responsible for interindividual variation of UGT levels
-
[174] Bock, K.W., Functions and transcriptional regulation of adult human hepatic UDP-glucuronosyl-transferases (UGTs): mechanisms responsible for interindividual variation of UGT levels. Biochem. Pharmacol. 80:6 (2010), 771–777.
-
(2010)
Biochem. Pharmacol.
, vol.80
, Issue.6
, pp. 771-777
-
-
Bock, K.W.1
-
175
-
-
15244342411
-
UDP-glucuronosyltransferases and clinical drug–drug interactions
-
[175] Kiang, T.K., Ensom, M.H., Chang, T.K., UDP-glucuronosyltransferases and clinical drug–drug interactions. Pharmacol. Ther. 106:1 (2005), 97–132.
-
(2005)
Pharmacol. Ther.
, vol.106
, Issue.1
, pp. 97-132
-
-
Kiang, T.K.1
Ensom, M.H.2
Chang, T.K.3
-
176
-
-
36849028688
-
Phytochemical regulation of UDP-glucuronosyltransferases: implications for cancer prevention
-
[176] Saracino, M.R., Lampe, J.W., Phytochemical regulation of UDP-glucuronosyltransferases: implications for cancer prevention. Nutrition and cancer 59:2 (2007), 121–141.
-
(2007)
Nutrition and cancer
, vol.59
, Issue.2
, pp. 121-141
-
-
Saracino, M.R.1
Lampe, J.W.2
-
177
-
-
0345549402
-
Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins
-
[177] Cummings, J., et al. Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins. Biochem. Pharmacol. 67:1 (2004), 31–39.
-
(2004)
Biochem. Pharmacol.
, vol.67
, Issue.1
, pp. 31-39
-
-
Cummings, J.1
-
178
-
-
84941985486
-
Molecular pathways: GLI1-induced drug glucuronidation in resistant cancer cells
-
[178] Zahreddine, H.A., Borden, K.L., Molecular pathways: GLI1-induced drug glucuronidation in resistant cancer cells. Clin. Cancer Res. 21:10 (2015), 2207–2210.
-
(2015)
Clin. Cancer Res.
, vol.21
, Issue.10
, pp. 2207-2210
-
-
Zahreddine, H.A.1
Borden, K.L.2
-
179
-
-
84908159566
-
Clinical significance of UGT1A1 gene polymorphisms on irinotecan-based regimens as the treatment in metastatic colorectal cancer
-
[179] Li, M., et al. Clinical significance of UGT1A1 gene polymorphisms on irinotecan-based regimens as the treatment in metastatic colorectal cancer. OncoTargets Ther., 7, 2014, 1653.
-
(2014)
OncoTargets Ther.
, vol.7
, pp. 1653
-
-
Li, M.1
-
180
-
-
84941360366
-
Impacts of the glucuronidase genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on tamoxifen metabolism in breast cancer patients
-
[180] Romero-Lorca, A., et al. Impacts of the glucuronidase genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on tamoxifen metabolism in breast cancer patients. PLOS ONE, 10(7), 2015, e0132269.
-
(2015)
PLOS ONE
, vol.10
, Issue.7
, pp. e0132269
-
-
Romero-Lorca, A.1
-
181
-
-
12844268268
-
Glutathione transferases
-
[181] Hayes, J.D., Flanagan, J.U., Jowsey, I.R., Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45 (2005), 51–88.
-
(2005)
Annu. Rev. Pharmacol. Toxicol.
, vol.45
, pp. 51-88
-
-
Hayes, J.D.1
Flanagan, J.U.2
Jowsey, I.R.3
-
182
-
-
84907034868
-
The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance part II
-
[182] Hayes, J.D., Pulford, D.J., The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance part II. Crit. Rev. Biochem. Mol. Biol. 30:6 (1995), 521–600.
-
(1995)
Crit. Rev. Biochem. Mol. Biol.
, vol.30
, Issue.6
, pp. 521-600
-
-
Hayes, J.D.1
Pulford, D.J.2
-
183
-
-
0036799080
-
Associations between carcinogen–DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective Physicians’ Health Cohort Study
-
[183] Perera, F.P., et al. Associations between carcinogen–DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective Physicians’ Health Cohort Study. Carcinogenesis 23:10 (2002), 1641–1646.
-
(2002)
Carcinogenesis
, vol.23
, Issue.10
, pp. 1641-1646
-
-
Perera, F.P.1
-
184
-
-
0036845569
-
The null genotype of glutathione s-transferase M1 and T1 locus increases the risk for thyroid cancer
-
[184] Morari, E.C., et al. The null genotype of glutathione s-transferase M1 and T1 locus increases the risk for thyroid cancer. Cancer Epidemiol. Prevent. Biomark. 11:11 (2002), 1485–1488.
-
(2002)
Cancer Epidemiol. Prevent. Biomark.
, vol.11
, Issue.11
, pp. 1485-1488
-
-
Morari, E.C.1
-
185
-
-
0034976926
-
Relationship between glutathione S-transferase M1, P1 and T1 polymorphisms and early onset prostate cancer
-
[185] Kote-Jarai, Z., et al. Relationship between glutathione S-transferase M1, P1 and T1 polymorphisms and early onset prostate cancer. Pharmacogenet. Genomics 11:4 (2001), 325–330.
-
(2001)
Pharmacogenet. Genomics
, vol.11
, Issue.4
, pp. 325-330
-
-
Kote-Jarai, Z.1
-
186
-
-
0035074675
-
Glutathione S-transferase M1 gene polymorphism in bladder cancer patients: a marker for invasive bladder cancer?
-
[186] Aktas, D., et al. Glutathione S-transferase M1 gene polymorphism in bladder cancer patients: a marker for invasive bladder cancer?. Cancer Genet. Cytogenet. 125:1 (2001), 1–4.
-
(2001)
Cancer Genet. Cytogenet.
, vol.125
, Issue.1
, pp. 1-4
-
-
Aktas, D.1
-
187
-
-
0033150345
-
Glutathione and glutathione-dependent enzymes in cancer drug resistance
-
[187] McLellan, L.I., Wolf, C.R., Glutathione and glutathione-dependent enzymes in cancer drug resistance. Drug Resist. Updat. 2:3 (1999), 153–164.
-
(1999)
Drug Resist. Updat.
, vol.2
, Issue.3
, pp. 153-164
-
-
McLellan, L.I.1
Wolf, C.R.2
-
188
-
-
0025303623
-
Characterization of glutathione S-transferase expression in lymphocytes from chronic lymphocytic leukemia patients
-
[188] Schisselbauer, J.C., et al. Characterization of glutathione S-transferase expression in lymphocytes from chronic lymphocytic leukemia patients. Cancer Res. 50:12 (1990), 3562–3568.
-
(1990)
Cancer Res.
, vol.50
, Issue.12
, pp. 3562-3568
-
-
Schisselbauer, J.C.1
-
189
-
-
84858164003
-
Predictive value of expression of ERCC 1 and GST-p for 5-fluorouracil/oxaliplatin chemotherapy in advanced colorectal cancer
-
[189] Noda, E., et al. Predictive value of expression of ERCC 1 and GST-p for 5-fluorouracil/oxaliplatin chemotherapy in advanced colorectal cancer. Hepato-gastroenterology 59:113 (2011), 130–133.
-
(2011)
Hepato-gastroenterology
, vol.59
, Issue.113
, pp. 130-133
-
-
Noda, E.1
-
190
-
-
0029680939
-
Transfection of glutathione S-transferase (GST)-π antisense complementary DNA increases the sensitivity of a colon cancer cell line to adriamycin, cisplatin, melphalan, and etoposide
-
[190] Ban, N., et al. Transfection of glutathione S-transferase (GST)-π antisense complementary DNA increases the sensitivity of a colon cancer cell line to adriamycin, cisplatin, melphalan, and etoposide. Cancer Res. 56:15 (1996), 3577–3582.
-
(1996)
Cancer Res.
, vol.56
, Issue.15
, pp. 3577-3582
-
-
Ban, N.1
-
191
-
-
33847272669
-
Microsomal glutathione transferase 1 in anticancer drug resistance
-
[191] Johansson, K., et al. Microsomal glutathione transferase 1 in anticancer drug resistance. Carcinogenesis 28:2 (2006), 465–470.
-
(2006)
Carcinogenesis
, vol.28
, Issue.2
, pp. 465-470
-
-
Johansson, K.1
-
192
-
-
84908353712
-
Wogonin reverses multi-drug resistance of human myelogenous leukemia K562/A02 cells via downregulation of MRP1 expression by inhibiting Nrf2/ARE signaling pathway
-
[192] Xu, X., et al. Wogonin reverses multi-drug resistance of human myelogenous leukemia K562/A02 cells via downregulation of MRP1 expression by inhibiting Nrf2/ARE signaling pathway. Biochem. Pharmacol. 92:2 (2014), 220–234.
-
(2014)
Biochem. Pharmacol.
, vol.92
, Issue.2
, pp. 220-234
-
-
Xu, X.1
-
193
-
-
0034895918
-
Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer
-
[193] Young, L.C., et al. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer. Clin. Cancer Res. 7:6 (2001), 1798–1804.
-
(2001)
Clin. Cancer Res.
, vol.7
, Issue.6
, pp. 1798-1804
-
-
Young, L.C.1
-
194
-
-
84931464340
-
Emodin augments cisplatin cytotoxicity in platinum-resistant ovarian cancer cells via ROS-dependent MRP1 downregulation
-
[194] Ma, J., et al. Emodin augments cisplatin cytotoxicity in platinum-resistant ovarian cancer cells via ROS-dependent MRP1 downregulation. BioMed Res. Int., 2014, 2014.
-
(2014)
BioMed Res. Int.
, vol.2014
-
-
Ma, J.1
-
195
-
-
0029095763
-
Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein
-
[195] Zaman, G., et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc. Natl. Acad. Sci. U. S. A. 92:17 (1995), 7690–7694.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, Issue.17
, pp. 7690-7694
-
-
Zaman, G.1
-
196
-
-
70350620150
-
Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway
-
[196] Shim, G.-s., et al. Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic. Biol. Med. 47:11 (2009), 1619–1631.
-
(2009)
Free Radic. Biol. Med.
, vol.47
, Issue.11
, pp. 1619-1631
-
-
Shim, G.-S.1
-
197
-
-
0035896509
-
Role of multidrug resistance protein 1 (MRP1) and glutathione S-transferase A1-1 in alkylating agent resistance kinetics of glutathione conjugate formation and efflux govern differential cellular sensitivity to chlorambucil versus melphalan toxicity
-
[197] Paumi, C.M., et al. Role of multidrug resistance protein 1 (MRP1) and glutathione S-transferase A1-1 in alkylating agent resistance kinetics of glutathione conjugate formation and efflux govern differential cellular sensitivity to chlorambucil versus melphalan toxicity. J. Biol. Chem. 276:11 (2001), 7952–7956.
-
(2001)
J. Biol. Chem.
, vol.276
, Issue.11
, pp. 7952-7956
-
-
Paumi, C.M.1
-
198
-
-
0346497684
-
Role of multidrug resistance protein 2 (MRP2, ABCC2) in alkylating agent detoxification: MRP2 potentiates glutathione S-transferase A1-1-mediated resistance to chlorambucil cytotoxicity
-
[198] Smitherman, P.K., et al. Role of multidrug resistance protein 2 (MRP2, ABCC2) in alkylating agent detoxification: MRP2 potentiates glutathione S-transferase A1-1-mediated resistance to chlorambucil cytotoxicity. J. Pharmacol. Exp. Ther. 308:1 (2004), 260–267.
-
(2004)
J. Pharmacol. Exp. Ther.
, vol.308
, Issue.1
, pp. 260-267
-
-
Smitherman, P.K.1
-
199
-
-
84904610693
-
Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway
-
[199] Lin, H., et al. Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway. Drug Des. Dev. Ther., 8, 2014, 973.
-
(2014)
Drug Des. Dev. Ther.
, vol.8
, pp. 973
-
-
Lin, H.1
-
200
-
-
84928911735
-
Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of NRF2 signalling and modulation of inflammation in prevention of cancer
-
[200] Das, L., Vinayak, M., Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of NRF2 signalling and modulation of inflammation in prevention of cancer. PLOS ONE, 10(4), 2015, e0124000.
-
(2015)
PLOS ONE
, vol.10
, Issue.4
, pp. e0124000
-
-
Das, L.1
Vinayak, M.2
-
201
-
-
79959926939
-
Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation
-
[201] Tsai, P.-Y., et al. Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radic. Biol. Med. 51:3 (2011), 744–754.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, Issue.3
, pp. 744-754
-
-
Tsai, P.-Y.1
-
202
-
-
79551511123
-
Coffee, broccoli and spices are strong inducers of electrophile response element-dependent transcription in vitro and in vivo – studies in electrophile response element transgenic mice
-
[202] Balstad, T.R., et al. Coffee, broccoli and spices are strong inducers of electrophile response element-dependent transcription in vitro and in vivo – studies in electrophile response element transgenic mice. Mol. Nut. Food Res. 55:2 (2011), 185–197.
-
(2011)
Mol. Nut. Food Res.
, vol.55
, Issue.2
, pp. 185-197
-
-
Balstad, T.R.1
-
203
-
-
84881525302
-
Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway
-
[203] Gao, A.-M., et al. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 34:8 (2013), 1806–1814.
-
(2013)
Carcinogenesis
, vol.34
, Issue.8
, pp. 1806-1814
-
-
Gao, A.-M.1
|