메뉴 건너뛰기




Volumn 54, Issue , 2017, Pages 13-21

Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance

Author keywords

Cancer; Chemoresistance; Detoxification; Keap1; Nrf2; Oxidative stress

Indexed keywords

ALDO KETO REDUCTASE; ANTINEOPLASTIC AGENT; GLUCURONOSYLTRANSFERASE; GLUTAMATE CYSTEINE LIGASE; GLUTATHIONE; GLUTATHIONE PEROXIDASE; GLUTATHIONE TRANSFERASE; HEME OXYGENASE 1; KELCH LIKE ECH ASSOCIATED PROTEIN 1; MULTIDRUG RESISTANCE PROTEIN; OXIDOREDUCTASE; PEROXIREDOXIN; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); THIOREDOXIN 1; THIOREDOXIN REDUCTASE; TRANSCRIPTION FACTOR NRF2; UNCLASSIFIED DRUG;

EID: 85017455586     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2017.03.008     Document Type: Review
Times cited : (76)

References (203)
  • 1
    • 68849092533 scopus 로고    scopus 로고
    • Cul3 overexpression depletes Nrf2 in breast cancer and is associated with sensitivity to carcinogens, to oxidative stress, and to chemotherapy
    • [1] Loignon, M., et al. Cul3 overexpression depletes Nrf2 in breast cancer and is associated with sensitivity to carcinogens, to oxidative stress, and to chemotherapy. Mol. Cancer Ther. 8:8 (2009), 2432–2440.
    • (2009) Mol. Cancer Ther. , vol.8 , Issue.8 , pp. 2432-2440
    • Loignon, M.1
  • 2
    • 0033801337 scopus 로고    scopus 로고
    • Immunodetection of NAD (P) H: quinone oxidoreductase 1 (NQO1) in human tissues
    • [2] Siegel, D., Ross, D., Immunodetection of NAD (P) H: quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic. Biol. Med. 29:3 (2000), 246–253.
    • (2000) Free Radic. Biol. Med. , vol.29 , Issue.3 , pp. 246-253
    • Siegel, D.1    Ross, D.2
  • 3
    • 12144287215 scopus 로고    scopus 로고
    • Immunohistochemical analysis of NAD (P) H: quinone oxidoreductase and NADPH cytochrome P450 reductase in human superficial bladder tumours: relationship between tumour enzymology and clinical outcome following intravesical mitomycin C therapy
    • [3] Basu, S., et al. Immunohistochemical analysis of NAD (P) H: quinone oxidoreductase and NADPH cytochrome P450 reductase in human superficial bladder tumours: relationship between tumour enzymology and clinical outcome following intravesical mitomycin C therapy. Int. J. Cancer 109:5 (2004), 703–709.
    • (2004) Int. J. Cancer , vol.109 , Issue.5 , pp. 703-709
    • Basu, S.1
  • 4
    • 66149168685 scopus 로고    scopus 로고
    • Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer
    • [4] Homma, S., et al. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin. Cancer Res. 15:10 (2009), 3423–3432.
    • (2009) Clin. Cancer Res. , vol.15 , Issue.10 , pp. 3423-3432
    • Homma, S.1
  • 5
    • 84921889428 scopus 로고    scopus 로고
    • Epigenetic modifications of keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy
    • [5] Mishra, M., Zhong, Q., Kowluru, R.A., Epigenetic modifications of keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci., 55(11), 2014, 7256.
    • (2014) Investig. Ophthalmol. Vis. Sci. , vol.55 , Issue.11 , pp. 7256
    • Mishra, M.1    Zhong, Q.2    Kowluru, R.A.3
  • 6
    • 77958115724 scopus 로고    scopus 로고
    • Regulation of the Nrf2–Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases
    • [6] Villeneuve, N.F., Lau, A., Zhang, D.D., Regulation of the Nrf2–Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid. Redox Signal. 13:11 (2010), 1699–1712.
    • (2010) Antioxid. Redox Signal. , vol.13 , Issue.11 , pp. 1699-1712
    • Villeneuve, N.F.1    Lau, A.2    Zhang, D.D.3
  • 7
    • 84885944468 scopus 로고    scopus 로고
    • The emerging role of the Nrf2–Keap1 signaling pathway in cancer
    • [7] Jaramillo, M.C., Zhang, D.D., The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes Dev. 27:20 (2013), 2179–2191.
    • (2013) Genes Dev. , vol.27 , Issue.20 , pp. 2179-2191
    • Jaramillo, M.C.1    Zhang, D.D.2
  • 8
    • 84873469216 scopus 로고    scopus 로고
    • The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene?
    • [8] Shelton, P., Jaiswal, A.K., The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene?. FASEB J. 27:2 (2013), 414–423.
    • (2013) FASEB J. , vol.27 , Issue.2 , pp. 414-423
    • Shelton, P.1    Jaiswal, A.K.2
  • 9
    • 78751703950 scopus 로고    scopus 로고
    • Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution
    • [9] Taguchi, K., Motohashi, H., Yamamoto, M., Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:2 (2011), 123–140.
    • (2011) Genes Cells , vol.16 , Issue.2 , pp. 123-140
    • Taguchi, K.1    Motohashi, H.2    Yamamoto, M.3
  • 10
    • 77956839436 scopus 로고    scopus 로고
    • Nrf2: a central regulator of UV protection in the epidermis
    • [10] Schafer, M., et al. Nrf2: a central regulator of UV protection in the epidermis. Cell Cycle 9:15 (2010), 2917–2918.
    • (2010) Cell Cycle , vol.9 , Issue.15 , pp. 2917-2918
    • Schafer, M.1
  • 11
    • 42449110757 scopus 로고    scopus 로고
    • The cytoprotective Nrf2 transcription factor controls insulin receptor signaling in the regenerating liver
    • [11] Beyer, T.A., Werner, S., The cytoprotective Nrf2 transcription factor controls insulin receptor signaling in the regenerating liver. Cell Cycle 7:7 (2008), 874–878.
    • (2008) Cell Cycle , vol.7 , Issue.7 , pp. 874-878
    • Beyer, T.A.1    Werner, S.2
  • 12
    • 38049055294 scopus 로고    scopus 로고
    • Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance
    • [12] Beyer, T.A., et al. Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J. 27:1 (2008), 212–223.
    • (2008) EMBO J. , vol.27 , Issue.1 , pp. 212-223
    • Beyer, T.A.1
  • 13
    • 84862271577 scopus 로고    scopus 로고
    • The yin and yang of nrf2-regulated selenoproteins in carcinogenesis
    • [13] Brigelius-Flohé, R., et al. The yin and yang of nrf2-regulated selenoproteins in carcinogenesis. Int. J. Cell Biol., 2012, 2012.
    • (2012) Int. J. Cell Biol. , vol.2012
    • Brigelius-Flohé, R.1
  • 14
    • 81755171451 scopus 로고    scopus 로고
    • miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells
    • [14] Eades, G., et al. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J. Biol. Chem. 286:47 (2011), 40725–40733.
    • (2011) J. Biol. Chem. , vol.286 , Issue.47 , pp. 40725-40733
    • Eades, G.1
  • 15
    • 85006223126 scopus 로고    scopus 로고
    • Effects of Nrf2 silencing on oxidative stress-associated intestinal carcinogenesis in mice
    • [15] Yokoo, Y., et al. Effects of Nrf2 silencing on oxidative stress-associated intestinal carcinogenesis in mice. Cancer Med., 2016.
    • (2016) Cancer Med.
    • Yokoo, Y.1
  • 16
    • 4644328941 scopus 로고    scopus 로고
    • Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis
    • [16] Iida, K., et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 64:18 (2004), 6424–6431.
    • (2004) Cancer Res. , vol.64 , Issue.18 , pp. 6424-6431
    • Iida, K.1
  • 17
    • 56249086316 scopus 로고    scopus 로고
    • Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer
    • [17] Khor, T.O., et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prevent. Res. 1:3 (2008), 187–191.
    • (2008) Cancer Prevent. Res. , vol.1 , Issue.3 , pp. 187-191
    • Khor, T.O.1
  • 18
    • 76649089973 scopus 로고    scopus 로고
    • Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth
    • [18] Zhang, P., et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9:2 (2010), 336–346.
    • (2010) Mol. Cancer Ther. , vol.9 , Issue.2 , pp. 336-346
    • Zhang, P.1
  • 19
    • 84938681490 scopus 로고    scopus 로고
    • Dysregulation of the Keap1–Nrf2 pathway in cancer
    • [19] Leinonen, H.M., et al. Dysregulation of the Keap1–Nrf2 pathway in cancer. Biochem. Soc. Trans. 43:4 (2015), 645–649.
    • (2015) Biochem. Soc. Trans. , vol.43 , Issue.4 , pp. 645-649
    • Leinonen, H.M.1
  • 20
    • 79952202823 scopus 로고    scopus 로고
    • High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors
    • [20] Rushworth, S.A., Bowles, K.M., MacEwan, D.J., High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors. Cancer Res. 71:5 (2011), 1999–2009.
    • (2011) Cancer Res. , vol.71 , Issue.5 , pp. 1999-2009
    • Rushworth, S.A.1    Bowles, K.M.2    MacEwan, D.J.3
  • 21
    • 0037462675 scopus 로고    scopus 로고
    • Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones
    • [21] Pietsch, E.C., et al. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J. Biol. Chem. 278:4 (2003), 2361–2369.
    • (2003) J. Biol. Chem. , vol.278 , Issue.4 , pp. 2361-2369
    • Pietsch, E.C.1
  • 22
    • 46649112474 scopus 로고    scopus 로고
    • Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells
    • [22] Kim, S.K., et al. Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic. Biol. Med. 45:4 (2008), 537–546.
    • (2008) Free Radic. Biol. Med. , vol.45 , Issue.4 , pp. 537-546
    • Kim, S.K.1
  • 23
    • 67650922529 scopus 로고    scopus 로고
    • Involvement of Nrf2 activation in resistance to 5-fluorouracil in human colon cancer HT-29 cells
    • [23] Akhdar, H., et al. Involvement of Nrf2 activation in resistance to 5-fluorouracil in human colon cancer HT-29 cells. Eur. J. Cancer 45:12 (2009), 2219–2227.
    • (2009) Eur. J. Cancer , vol.45 , Issue.12 , pp. 2219-2227
    • Akhdar, H.1
  • 24
    • 33644501791 scopus 로고    scopus 로고
    • Activation of the Nrf2–ARE signaling pathway: a promising strategy in cancer prevention
    • [24] Giudice, A., Montella, M., Activation of the Nrf2–ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 28:2 (2006), 169–181.
    • (2006) Bioessays , vol.28 , Issue.2 , pp. 169-181
    • Giudice, A.1    Montella, M.2
  • 25
    • 77649270763 scopus 로고    scopus 로고
    • Targeting NRF2 signaling for cancer chemoprevention
    • [25] Kwak, M.-K., Kensler, T.W., Targeting NRF2 signaling for cancer chemoprevention. Toxicology and applied pharmacology 244:1 (2010), 66–76.
    • (2010) Toxicology and applied pharmacology , vol.244 , Issue.1 , pp. 66-76
    • Kwak, M.-K.1    Kensler, T.W.2
  • 26
    • 77958130983 scopus 로고    scopus 로고
    • Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 pathway
    • [26] Hayes, J.D., et al. Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 pathway. Antioxid. Redox Signal. 13:11 (2010), 1713–1748.
    • (2010) Antioxid. Redox Signal. , vol.13 , Issue.11 , pp. 1713-1748
    • Hayes, J.D.1
  • 27
    • 79954424076 scopus 로고    scopus 로고
    • Nrf2: control of sensitivity to carcinogens
    • [27] Slocum, S.L., Kensler, T.W., Nrf2: control of sensitivity to carcinogens. Arch. Toxicol. 85:4 (2011), 273–284.
    • (2011) Arch. Toxicol. , vol.85 , Issue.4 , pp. 273-284
    • Slocum, S.L.1    Kensler, T.W.2
  • 28
    • 0030451213 scopus 로고    scopus 로고
    • NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development
    • [28] Chan, K., et al. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc. Natl. Acad. Sci. U. S. A. 93:24 (1996), 13943–13948.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , Issue.24 , pp. 13943-13948
    • Chan, K.1
  • 29
    • 84907337366 scopus 로고    scopus 로고
    • Cytoprotection “gone astray”: Nrf2 and its role in cancer
    • [29] Geismann, C., et al. Cytoprotection “gone astray”: Nrf2 and its role in cancer. OncoTargets Ther., 7, 2014, 1497.
    • (2014) OncoTargets Ther. , vol.7 , pp. 1497
    • Geismann, C.1
  • 30
    • 0035870298 scopus 로고    scopus 로고
    • The Cap ‘n’ Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes
    • [30] McMahon, M., et al. The Cap ‘n’ Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res. 61:8 (2001), 3299–3307.
    • (2001) Cancer Res. , vol.61 , Issue.8 , pp. 3299-3307
    • McMahon, M.1
  • 31
    • 0033956744 scopus 로고    scopus 로고
    • The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin
    • [31] Hayes, J., et al. The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem. Soc. Trans. 28:2 (2000), 33–41.
    • (2000) Biochem. Soc. Trans. , vol.28 , Issue.2 , pp. 33-41
    • Hayes, J.1
  • 32
    • 0037101768 scopus 로고    scopus 로고
    • Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice
    • [32] Chanas, S., et al. Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem. J. 365 (2002), 405–416.
    • (2002) Biochem. J. , vol.365 , pp. 405-416
    • Chanas, S.1
  • 33
    • 0034672595 scopus 로고    scopus 로고
    • Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein
    • [33] Chan, J.Y., Kwong, M., Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim. Biophys. Acta: Gene Struct. Expr. 1517:1 (2000), 19–26.
    • (2000) Biochim. Biophys. Acta: Gene Struct. Expr. , vol.1517 , Issue.1 , pp. 19-26
    • Chan, J.Y.1    Kwong, M.2
  • 34
    • 0035260034 scopus 로고    scopus 로고
    • Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione
    • [34] Kwak, M.-K., et al. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. Mol. Med., 7(2), 2001, 135.
    • (2001) Mol. Med. , vol.7 , Issue.2 , pp. 135
    • Kwak, M.-K.1
  • 35
    • 84899525548 scopus 로고    scopus 로고
    • Nrf1 and nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells
    • [35] Schultz, M.A., et al. Nrf1 and nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells. PLOS ONE, 9(1), 2014, e87204.
    • (2014) PLOS ONE , vol.9 , Issue.1 , pp. e87204
    • Schultz, M.A.1
  • 36
    • 0029906134 scopus 로고    scopus 로고
    • Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD (P) H: quinone oxidoreductase1 gene
    • [36] Venugopal, R., Jaiswal, A.K., Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD (P) H: quinone oxidoreductase1 gene. Proc. Natl. Acad. Sci. U. S. A. 93:25 (1996), 14960–14965.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , Issue.25 , pp. 14960-14965
    • Venugopal, R.1    Jaiswal, A.K.2
  • 37
    • 85069004862 scopus 로고    scopus 로고
    • Natural products for cancer prevention associated with Nrf2–ARE pathway
    • [37] Kou, X., et al. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci. Hum. Wellness 2:1 (2013), 22–28.
    • (2013) Food Sci. Hum. Wellness , vol.2 , Issue.1 , pp. 22-28
    • Kou, X.1
  • 38
    • 80053978389 scopus 로고    scopus 로고
    • Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation
    • [38] Khor, T.O., et al. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem. Pharmacol. 82:9 (2011), 1073–1078.
    • (2011) Biochem. Pharmacol. , vol.82 , Issue.9 , pp. 1073-1078
    • Khor, T.O.1
  • 39
    • 84890109914 scopus 로고    scopus 로고
    • Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases
    • [39] Kumar, H., et al. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep. 31:1 (2014), 109–139.
    • (2014) Nat. Prod. Rep. , vol.31 , Issue.1 , pp. 109-139
    • Kumar, H.1
  • 40
    • 56649083534 scopus 로고    scopus 로고
    • Dual roles of Nrf2 in cancer
    • [40] Lau, A., et al. Dual roles of Nrf2 in cancer. Pharmacol. Res. 58:5 (2008), 262–270.
    • (2008) Pharmacol. Res. , vol.58 , Issue.5 , pp. 262-270
    • Lau, A.1
  • 41
    • 84907337366 scopus 로고    scopus 로고
    • Cytoprotection “gone astray”: Nrf2 and its role in cancer
    • [41] Geismann, C., et al. Cytoprotection “gone astray”: Nrf2 and its role in cancer. Onco Targets Ther. 7 (2014), 1497–1518.
    • (2014) Onco Targets Ther. , vol.7 , pp. 1497-1518
    • Geismann, C.1
  • 42
    • 0037356451 scopus 로고    scopus 로고
    • Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene–DNA adducts and tumor yield in mice
    • [42] Ramos-Gomez, M., et al. Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene–DNA adducts and tumor yield in mice. Carcinogenesis 24:3 (2003), 461–467.
    • (2003) Carcinogenesis , vol.24 , Issue.3 , pp. 461-467
    • Ramos-Gomez, M.1
  • 43
    • 33644537902 scopus 로고    scopus 로고
    • Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole
    • [43] Yates, M.S., et al. Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole. Cancer Res. 66:4 (2006), 2488–2494.
    • (2006) Cancer Res. , vol.66 , Issue.4 , pp. 2488-2494
    • Yates, M.S.1
  • 44
    • 77957796093 scopus 로고    scopus 로고
    • Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung
    • [44] Satoh, H., et al. Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 31:10 (2010), 1833–1843.
    • (2010) Carcinogenesis , vol.31 , Issue.10 , pp. 1833-1843
    • Satoh, H.1
  • 46
    • 2942746263 scopus 로고    scopus 로고
    • Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis
    • [46] Ikeda, H., Nishi, S., Sakai, M., Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis. Biochem. J. 380 (2004), 515–521.
    • (2004) Biochem. J. , vol.380 , pp. 515-521
    • Ikeda, H.1    Nishi, S.2    Sakai, M.3
  • 47
    • 84864348569 scopus 로고    scopus 로고
    • NRF2 and cancer: the good, the bad and the importance of context
    • [47] Sporn, M.B., Liby, K.T., NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12:8 (2012), 564–571.
    • (2012) Nat. Rev. Cancer , vol.12 , Issue.8 , pp. 564-571
    • Sporn, M.B.1    Liby, K.T.2
  • 48
    • 84883736109 scopus 로고    scopus 로고
    • Oncogenic functions of the transcription factor Nrf2
    • [48] Gañán-Gómez, I., et al. Oncogenic functions of the transcription factor Nrf2. Free Radic. Biol. Med. 65 (2013), 750–764.
    • (2013) Free Radic. Biol. Med. , vol.65 , pp. 750-764
    • Gañán-Gómez, I.1
  • 49
    • 79953889329 scopus 로고    scopus 로고
    • Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy
    • [49] Lister, A., et al. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol. Cancer, 10, 2011, 37.
    • (2011) Mol. Cancer , vol.10 , pp. 37
    • Lister, A.1
  • 50
    • 79955109046 scopus 로고    scopus 로고
    • Nrf2 expression in endometrial serous carcinomas and its precancers
    • [50] Chen, N., et al. Nrf2 expression in endometrial serous carcinomas and its precancers. Int. J. Clin. Exp. Pathol. 4:1 (2010), 85–96.
    • (2010) Int. J. Clin. Exp. Pathol. , vol.4 , Issue.1 , pp. 85-96
    • Chen, N.1
  • 51
    • 84862786878 scopus 로고    scopus 로고
    • Somatic mutations of the KEAP1 gene in common solid cancers
    • [51] Yoo, N.J., et al. Somatic mutations of the KEAP1 gene in common solid cancers. Histopathology 60:6 (2012), 943–952.
    • (2012) Histopathology , vol.60 , Issue.6 , pp. 943-952
    • Yoo, N.J.1
  • 52
    • 84977570825 scopus 로고    scopus 로고
    • Clinicopathological and prognostic significance of GPX2 protein expression in esophageal squamous cell carcinoma
    • [52] Lei, Z., et al. Clinicopathological and prognostic significance of GPX2 protein expression in esophageal squamous cell carcinoma. BMC Cancer, 16(1), 2016, 410.
    • (2016) BMC Cancer , vol.16 , Issue.1 , pp. 410
    • Lei, Z.1
  • 53
    • 51649130168 scopus 로고    scopus 로고
    • Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy
    • [53] Shibata, T., et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. U. S. A. 105:36 (2008), 13568–13573.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , Issue.36 , pp. 13568-13573
    • Shibata, T.1
  • 54
    • 84874111758 scopus 로고    scopus 로고
    • The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation
    • [54] Bryan, H.K., et al. The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation. Biochem. Pharmacol. 85:6 (2013), 705–717.
    • (2013) Biochem. Pharmacol. , vol.85 , Issue.6 , pp. 705-717
    • Bryan, H.K.1
  • 55
    • 77954695549 scopus 로고    scopus 로고
    • Nrf2 and Keap1 abnormalities in non–small cell lung carcinoma and association with clinicopathologic features
    • [55] Solis, L.M., et al. Nrf2 and Keap1 abnormalities in non–small cell lung carcinoma and association with clinicopathologic features. Clin. Cancer Res. 16:14 (2010), 3743–3753.
    • (2010) Clin. Cancer Res. , vol.16 , Issue.14 , pp. 3743-3753
    • Solis, L.M.1
  • 56
    • 45849133744 scopus 로고    scopus 로고
    • Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues
    • [56] Wang, R., et al. Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem. Biophys. Res. Commun. 373:1 (2008), 151–154.
    • (2008) Biochem. Biophys. Res. Commun. , vol.373 , Issue.1 , pp. 151-154
    • Wang, R.1
  • 57
    • 84857997256 scopus 로고    scopus 로고
    • Methylation of the KEAP1 gene promoter region in human colorectal cancer
    • [57] Hanada, N., et al. Methylation of the KEAP1 gene promoter region in human colorectal cancer. BMC Cancer, 12(1), 2012, 66.
    • (2012) BMC Cancer , vol.12 , Issue.1 , pp. 66
    • Hanada, N.1
  • 58
    • 84872038941 scopus 로고    scopus 로고
    • Aberrant Keap1 methylation in breast cancer and association with clinicopathological features
    • [58] Barbano, R., et al. Aberrant Keap1 methylation in breast cancer and association with clinicopathological features. Epigenetics 8:1 (2013), 105–112.
    • (2013) Epigenetics , vol.8 , Issue.1 , pp. 105-112
    • Barbano, R.1
  • 59
    • 84883743438 scopus 로고    scopus 로고
    • miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells
    • [59] Van Jaarsveld, M., et al. miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene 32:36 (2013), 4284–4293.
    • (2013) Oncogene , vol.32 , Issue.36 , pp. 4284-4293
    • Van Jaarsveld, M.1
  • 60
    • 80052570740 scopus 로고    scopus 로고
    • MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism
    • [60] Yang, M., et al. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res. Treat. 129:3 (2011), 983–991.
    • (2011) Breast Cancer Res. Treat. , vol.129 , Issue.3 , pp. 983-991
    • Yang, M.1
  • 61
    • 84893143652 scopus 로고    scopus 로고
    • The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors
    • [61] Yamamoto, S., et al. The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol. Cancer Res. 12:1 (2014), 58–68.
    • (2014) Mol. Cancer Res. , vol.12 , Issue.1 , pp. 58-68
    • Yamamoto, S.1
  • 62
    • 80054724249 scopus 로고    scopus 로고
    • Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2
    • [62] Kinch, L., Grishin, N.V., Brugarolas, J., Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2. Cancer Cell 20:4 (2011), 418–420.
    • (2011) Cancer Cell , vol.20 , Issue.4 , pp. 418-420
    • Kinch, L.1    Grishin, N.V.2    Brugarolas, J.3
  • 63
    • 84938367162 scopus 로고    scopus 로고
    • Mechanism-based cancer therapy: resistance to therapy, therapy for resistance
    • [63] Ramos, P., Bentires-Alj, M., Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34:28 (2015), 3617–3626.
    • (2015) Oncogene , vol.34 , Issue.28 , pp. 3617-3626
    • Ramos, P.1    Bentires-Alj, M.2
  • 64
    • 33644775686 scopus 로고    scopus 로고
    • Targeting multidrug resistance in cancer
    • [64] Szakács, G., et al. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5:3 (2006), 219–234.
    • (2006) Nat. Rev. Drug Discov. , vol.5 , Issue.3 , pp. 219-234
    • Szakács, G.1
  • 65
    • 0028106016 scopus 로고
    • Glutathione-associated enzymes in anticancer drug resistance
    • [65] Tew, K.D., Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 54:16 (1994), 4313–4320.
    • (1994) Cancer Res. , vol.54 , Issue.16 , pp. 4313-4320
    • Tew, K.D.1
  • 66
    • 0031417680 scopus 로고    scopus 로고
    • Altered gene expression in drug-resistant human breast cancer cells
    • [66] Wosikowski, K., et al. Altered gene expression in drug-resistant human breast cancer cells. Clin. Cancer Res. 3:12 (1997), 2405–2414.
    • (1997) Clin. Cancer Res. , vol.3 , Issue.12 , pp. 2405-2414
    • Wosikowski, K.1
  • 67
    • 10744224719 scopus 로고    scopus 로고
    • Molecular predictors of response to chemotherapy in lung cancer
    • Elsevier
    • [67] Rosell, R., et al. Molecular predictors of response to chemotherapy in lung cancer. Seminars in Oncology, 2004, Elsevier.
    • (2004) Seminars in Oncology
    • Rosell, R.1
  • 68
    • 0030865104 scopus 로고    scopus 로고
    • Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents
    • [68] O'Connor, P.M., et al. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57:19 (1997), 4285–4300.
    • (1997) Cancer Res. , vol.57 , Issue.19 , pp. 4285-4300
    • O'Connor, P.M.1
  • 69
    • 7944237254 scopus 로고    scopus 로고
    • Antioxidants and radiation therapy
    • [69] Borek, C., Antioxidants and radiation therapy. J. Nutr. 134:11 (2004), 3207S–3209S.
    • (2004) J. Nutr. , vol.134 , Issue.11 , pp. 3207S-3209S
    • Borek, C.1
  • 70
    • 0033541417 scopus 로고    scopus 로고
    • Tumor radiosensitivity and apoptosis
    • [70] Zhivotovsky, B., Joseph, B., Orrenius, S., Tumor radiosensitivity and apoptosis. Exp. Cell Res. 248:1 (1999), 10–17.
    • (1999) Exp. Cell Res. , vol.248 , Issue.1 , pp. 10-17
    • Zhivotovsky, B.1    Joseph, B.2    Orrenius, S.3
  • 71
    • 0038146898 scopus 로고    scopus 로고
    • Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis
    • [71] Lee, J.-M., et al. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J. Biol. Chem. 278:14 (2003), 12029–12038.
    • (2003) J. Biol. Chem. , vol.278 , Issue.14 , pp. 12029-12038
    • Lee, J.-M.1
  • 72
    • 42149106250 scopus 로고    scopus 로고
    • In vitro evaluation of the effects of gefitinib on the modulation of cytotoxic activity of selected anticancer agents in a panel of human ovarian cancer cell lines
    • [72] Smith, J.A., et al. In vitro evaluation of the effects of gefitinib on the modulation of cytotoxic activity of selected anticancer agents in a panel of human ovarian cancer cell lines. Cancer Chemother. Pharmacol. 62:1 (2008), 51–58.
    • (2008) Cancer Chemother. Pharmacol. , vol.62 , Issue.1 , pp. 51-58
    • Smith, J.A.1
  • 73
    • 50849127129 scopus 로고    scopus 로고
    • Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer
    • [73] Meijerman, I., Beijnen, J.H., Schellens, J.H., Combined action and regulation of phase II enzymes and multidrug resistance proteins in multidrug resistance in cancer. Cancer Treat. Rev. 34:6 (2008), 505–520.
    • (2008) Cancer Treat. Rev. , vol.34 , Issue.6 , pp. 505-520
    • Meijerman, I.1    Beijnen, J.H.2    Schellens, J.H.3
  • 74
    • 85028271428 scopus 로고    scopus 로고
    • The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: an update
    • [74] Lu, M.C., et al. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: an update. Med. Res. Rev., 2016.
    • (2016) Med. Res. Rev.
    • Lu, M.C.1
  • 75
    • 53049105119 scopus 로고    scopus 로고
    • Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer
    • 1358.e4–1368.e4
    • [75] Shibata, T., et al. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology, 135(4), 2008 1358.e4–1368.e4.
    • (2008) Gastroenterology , vol.135 , Issue.4
    • Shibata, T.1
  • 76
    • 46949099638 scopus 로고    scopus 로고
    • Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2
    • [76] Wang, X.-J., et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:6 (2008), 1235–1243.
    • (2008) Carcinogenesis , vol.29 , Issue.6 , pp. 1235-1243
    • Wang, X.-J.1
  • 77
    • 12144289484 scopus 로고    scopus 로고
    • Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line
    • [77] Tarumoto, T., et al. Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line. Exp. Hematol. 32:4 (2004), 375–381.
    • (2004) Exp. Hematol. , vol.32 , Issue.4 , pp. 375-381
    • Tarumoto, T.1
  • 78
    • 84896123587 scopus 로고    scopus 로고
    • Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs
    • [78] Wang, X.J., et al. Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs. Free Radic. Biol. Med. 70 (2014), 68–77.
    • (2014) Free Radic. Biol. Med. , vol.70 , pp. 68-77
    • Wang, X.J.1
  • 79
    • 79955612814 scopus 로고    scopus 로고
    • Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs
    • [79] Tang, X., et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 50:11 (2011), 1599–1609.
    • (2011) Free Radic. Biol. Med. , vol.50 , Issue.11 , pp. 1599-1609
    • Tang, X.1
  • 80
    • 84899858360 scopus 로고    scopus 로고
    • Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway
    • [80] Chian, S., et al. Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac. J. Cancer Prevent. 15:6 (2013), 2911–2916.
    • (2013) Asian Pac. J. Cancer Prevent. , vol.15 , Issue.6 , pp. 2911-2916
    • Chian, S.1
  • 81
    • 84905388479 scopus 로고    scopus 로고
    • Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling
    • [81] Sabzichi, M., et al. Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling. Asian Pac. J. Cancer Prevent. 15:13 (2014), 5311–5316.
    • (2014) Asian Pac. J. Cancer Prevent. , vol.15 , Issue.13 , pp. 5311-5316
    • Sabzichi, M.1
  • 82
    • 84900299717 scopus 로고    scopus 로고
    • Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo
    • [82] Chian, S., et al. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochemical and biophysical research communications 447:4 (2014), 602–608.
    • (2014) Biochemical and biophysical research communications , vol.447 , Issue.4 , pp. 602-608
    • Chian, S.1
  • 83
    • 84937128067 scopus 로고    scopus 로고
    • Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis
    • [83] Verma, A.K., et al. Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis. Redox Biol. 6 (2015), 80–92.
    • (2015) Redox Biol. , vol.6 , pp. 80-92
    • Verma, A.K.1
  • 84
    • 78650738673 scopus 로고    scopus 로고
    • Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes-role of the redox-regulated transcription factor Nrf2
    • [84] Wagner, A.E., et al. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes-role of the redox-regulated transcription factor Nrf2. BMC Complement. Altern. Med., 11(1), 2011, 1.
    • (2011) BMC Complement. Altern. Med. , vol.11 , Issue.1 , pp. 1
    • Wagner, A.E.1
  • 85
    • 84906939255 scopus 로고    scopus 로고
    • Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells
    • [85] Valenzuela, M., et al. Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells. Br. J. Cancer 111:5 (2014), 874–882.
    • (2014) Br. J. Cancer , vol.111 , Issue.5 , pp. 874-882
    • Valenzuela, M.1
  • 86
    • 79952122321 scopus 로고    scopus 로고
    • Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism
    • [86] Ren, D., et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. U. S. A. 108:4 (2011), 1433–1438.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , Issue.4 , pp. 1433-1438
    • Ren, D.1
  • 87
    • 84919663660 scopus 로고    scopus 로고
    • Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity—implications for therapeutic targeting of Nrf2
    • [87] Olayanju, A., et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity—implications for therapeutic targeting of Nrf2. Free Radic. Biol. Med. 78 (2015), 202–212.
    • (2015) Free Radic. Biol. Med. , vol.78 , pp. 202-212
    • Olayanju, A.1
  • 88
    • 84904157844 scopus 로고    scopus 로고
    • Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents
    • [88] Do, M.T., et al. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic. Biol. Med. 74 (2014), 21–34.
    • (2014) Free Radic. Biol. Med. , vol.74 , pp. 21-34
    • Do, M.T.1
  • 89
    • 70349157178 scopus 로고    scopus 로고
    • Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells
    • [89] Boesch-Saadatmandi, C., et al. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J. Anim. Physiol. Anim. Nutr. 93:5 (2009), 547–554.
    • (2009) J. Anim. Physiol. Anim. Nutr. , vol.93 , Issue.5 , pp. 547-554
    • Boesch-Saadatmandi, C.1
  • 90
    • 84885177241 scopus 로고    scopus 로고
    • Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity
    • [90] Arlt, A., et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32:40 (2013), 4825–4835.
    • (2013) Oncogene , vol.32 , Issue.40 , pp. 4825-4835
    • Arlt, A.1
  • 91
    • 84988358996 scopus 로고    scopus 로고
    • An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy
    • [91] Zhu, J., et al. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radic. Biol. Med. 99 (2016), 544–556.
    • (2016) Free Radic. Biol. Med. , vol.99 , pp. 544-556
    • Zhu, J.1
  • 92
    • 70249138697 scopus 로고    scopus 로고
    • Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds
    • [92] MacLeod, A.K., et al. Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1–NRF2 pathway, and not the BACH1–NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis 30:9 (2009), 1571–1580.
    • (2009) Carcinogenesis , vol.30 , Issue.9 , pp. 1571-1580
    • MacLeod, A.K.1
  • 93
    • 77957237159 scopus 로고    scopus 로고
    • Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis
    • [93] Malhotra, D., et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 38:17 (2010), 5718–5734.
    • (2010) Nucleic Acids Res. , vol.38 , Issue.17 , pp. 5718-5734
    • Malhotra, D.1
  • 94
    • 77955488723 scopus 로고    scopus 로고
    • Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype
    • [94] Singh, A., et al. Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol. Cancer Ther. 9:8 (2010), 2365–2376.
    • (2010) Mol. Cancer Ther. , vol.9 , Issue.8 , pp. 2365-2376
    • Singh, A.1
  • 95
    • 84902436456 scopus 로고    scopus 로고
    • Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood–brain and blood–spinal cord barriers
    • [95] Wang, X., et al. Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood–brain and blood–spinal cord barriers. J. Neurosci. 34:25 (2014), 8585–8593.
    • (2014) J. Neurosci. , vol.34 , Issue.25 , pp. 8585-8593
    • Wang, X.1
  • 96
    • 35848942608 scopus 로고    scopus 로고
    • Heme oxygenase-1 in tumors: is it a false friend?
    • [96] Jozkowicz, A., Was, H., Dulak, J., Heme oxygenase-1 in tumors: is it a false friend?. Antioxid. Redox Signal. 9:12 (2007), 2099–2118.
    • (2007) Antioxid. Redox Signal. , vol.9 , Issue.12 , pp. 2099-2118
    • Jozkowicz, A.1    Was, H.2    Dulak, J.3
  • 97
    • 84927935911 scopus 로고    scopus 로고
    • Heme oxygenase-1: emerging target of cancer therapy
    • [97] Chau, L.-Y., Heme oxygenase-1: emerging target of cancer therapy. J. Biomed. Sci., 22(1), 2015, 22.
    • (2015) J. Biomed. Sci. , vol.22 , Issue.1 , pp. 22
    • Chau, L.-Y.1
  • 98
    • 84855189088 scopus 로고    scopus 로고
    • Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer
    • [98] Ferrando, M., et al. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis 14:4 (2011), 467–479.
    • (2011) Angiogenesis , vol.14 , Issue.4 , pp. 467-479
    • Ferrando, M.1
  • 99
    • 28744447937 scopus 로고    scopus 로고
    • Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase
    • [99] Hill, M., et al. Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. FASEB J. 19:14 (2005), 1957–1968.
    • (2005) FASEB J. , vol.19 , Issue.14 , pp. 1957-1968
    • Hill, M.1
  • 100
    • 84881493942 scopus 로고    scopus 로고
    • Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells
    • [100] Chao, C.-Y., et al. Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells. Carcinogenesis 34:8 (2013), 1843–1851.
    • (2013) Carcinogenesis , vol.34 , Issue.8 , pp. 1843-1851
    • Chao, C.-Y.1
  • 101
    • 35848932314 scopus 로고    scopus 로고
    • Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice
    • [101] Was, H., et al. Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am. J. Pathol. 169:6 (2006), 2181–2198.
    • (2006) Am. J. Pathol. , vol.169 , Issue.6 , pp. 2181-2198
    • Was, H.1
  • 102
    • 41149126775 scopus 로고    scopus 로고
    • Janus face of Nrf2–HO-1 axis in cancer—Friend in chemoprevention, foe in anticancer therapy
    • [102] Loboda, A., et al. Janus face of Nrf2–HO-1 axis in cancer—Friend in chemoprevention, foe in anticancer therapy. Lung Cancer 60:1 (2008), 1–3.
    • (2008) Lung Cancer , vol.60 , Issue.1 , pp. 1-3
    • Loboda, A.1
  • 103
    • 77958113395 scopus 로고    scopus 로고
    • Correlation of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to clinicopathologic features and survival
    • [103] Wang, J., et al. Correlation of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to clinicopathologic features and survival. J. Surg. Res. 164:1 (2010), e99–e105.
    • (2010) J. Surg. Res. , vol.164 , Issue.1 , pp. e99-e105
    • Wang, J.1
  • 104
    • 77349087094 scopus 로고    scopus 로고
    • Induction of heme oxygenase-1 in normal and malignant B lymphocytes by 15-deoxy-Δ 12,14-prostaglandin J 2 requires Nrf2
    • [104] Bancos, S., et al. Induction of heme oxygenase-1 in normal and malignant B lymphocytes by 15-deoxy-Δ 12,14-prostaglandin J 2 requires Nrf2. Cell. Immunol. 262:1 (2010), 18–27.
    • (2010) Cell. Immunol. , vol.262 , Issue.1 , pp. 18-27
    • Bancos, S.1
  • 105
    • 33845964413 scopus 로고    scopus 로고
    • Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate
    • [105] Kweon, M.-H., et al. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J. Biol. Chem. 281:44 (2006), 33761–33772.
    • (2006) J. Biol. Chem. , vol.281 , Issue.44 , pp. 33761-33772
    • Kweon, M.-H.1
  • 106
    • 45549101964 scopus 로고    scopus 로고
    • Selenium compounds and selenoproteins in cancer
    • [106] Brigelius-Flohé, R., Selenium compounds and selenoproteins in cancer. Chem. Biodivers. 5:3 (2008), 389–395.
    • (2008) Chem. Biodivers. , vol.5 , Issue.3 , pp. 389-395
    • Brigelius-Flohé, R.1
  • 107
    • 77956655098 scopus 로고    scopus 로고
    • Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets
    • [107] Turanov, A.A., et al. Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets. Biochem. J. 430:2 (2010), 285–293.
    • (2010) Biochem. J. , vol.430 , Issue.2 , pp. 285-293
    • Turanov, A.A.1
  • 108
    • 33746430147 scopus 로고    scopus 로고
    • Thioredoxin reductase as a novel molecular target for cancer therapy
    • [108] Nguyen, P., et al. Thioredoxin reductase as a novel molecular target for cancer therapy. Cancer Lett. 236:2 (2006), 164–174.
    • (2006) Cancer Lett. , vol.236 , Issue.2 , pp. 164-174
    • Nguyen, P.1
  • 109
    • 0034065729 scopus 로고    scopus 로고
    • Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival
    • [109] Grogan, T.M., et al. Thioredoxin, a putative oncogene product, is overexpressed in gastric carcinoma and associated with increased proliferation and increased cell survival. Hum. Pathol. 31:4 (2000), 475–481.
    • (2000) Hum. Pathol. , vol.31 , Issue.4 , pp. 475-481
    • Grogan, T.M.1
  • 110
    • 0042991494 scopus 로고    scopus 로고
    • Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival
    • [110] Raffel, J., et al. Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. J. Lab. Clin. Med. 142:1 (2003), 46–51.
    • (2003) J. Lab. Clin. Med. , vol.142 , Issue.1 , pp. 46-51
    • Raffel, J.1
  • 111
    • 84876444486 scopus 로고    scopus 로고
    • Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer
    • [111] Penney, R.B., Roy, D., Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim. Biophys. Acta: Rev. Cancer 1836:1 (2013), 60–79.
    • (2013) Biochim. Biophys. Acta: Rev. Cancer , vol.1836 , Issue.1 , pp. 60-79
    • Penney, R.B.1    Roy, D.2
  • 112
    • 84865690949 scopus 로고    scopus 로고
    • Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma
    • [112] Li, C., et al. Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma. Oncotarget 3:3 (2012), 314–326.
    • (2012) Oncotarget , vol.3 , Issue.3 , pp. 314-326
    • Li, C.1
  • 113
    • 33744958179 scopus 로고    scopus 로고
    • Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells
    • [113] Yoo, M.-H., et al. Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells. J. Biol. Chem. 281:19 (2006), 13005–13008.
    • (2006) J. Biol. Chem. , vol.281 , Issue.19 , pp. 13005-13008
    • Yoo, M.-H.1
  • 114
    • 18244386712 scopus 로고    scopus 로고
    • Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2
    • [114] Sakurai, A., et al. Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J. Cell. Physiol. 203:3 (2005), 529–537.
    • (2005) J. Cell. Physiol. , vol.203 , Issue.3 , pp. 529-537
    • Sakurai, A.1
  • 115
    • 0032840612 scopus 로고    scopus 로고
    • Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II)
    • [115] Sasada, T., et al. Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II). Free Radic. Biol. Med. 27:5 (1999), 504–514.
    • (1999) Free Radic. Biol. Med. , vol.27 , Issue.5 , pp. 504-514
    • Sasada, T.1
  • 116
    • 84874742657 scopus 로고    scopus 로고
    • Antiproliferative effect of gold (I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells
    • [116] Kim, N.-H., et al. Antiproliferative effect of gold (I) compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells. BMB Rep. 46:1 (2013), 59–64.
    • (2013) BMB Rep. , vol.46 , Issue.1 , pp. 59-64
    • Kim, N.-H.1
  • 117
    • 84907451634 scopus 로고    scopus 로고
    • Auranofin displays anticancer activity against ovarian cancer cells through FOXO3 activation independent of p53
    • [117] PArK, S.-H., et al. Auranofin displays anticancer activity against ovarian cancer cells through FOXO3 activation independent of p53. Int. J. Oncol. 45:4 (2014), 1691–1698.
    • (2014) Int. J. Oncol. , vol.45 , Issue.4 , pp. 1691-1698
    • PArK, S.-H.1
  • 118
    • 84901003011 scopus 로고    scopus 로고
    • Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo
    • [118] Fan, C., et al. Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis., 5(4), 2014, e1191.
    • (2014) Cell Death Dis. , vol.5 , Issue.4 , pp. e1191
    • Fan, C.1
  • 119
    • 84908212007 scopus 로고    scopus 로고
    • Auranofin promotes mitochondrial apoptosis by inducing annexin A5 expression and translocation in human prostate cancer cells
    • [119] Park, N., Chun, Y.-J., Auranofin promotes mitochondrial apoptosis by inducing annexin A5 expression and translocation in human prostate cancer cells. J. Toxicol. Environ. Health A 77:22–24 (2014), 1467–1476.
    • (2014) J. Toxicol. Environ. Health A , vol.77 , Issue.22-24 , pp. 1467-1476
    • Park, N.1    Chun, Y.-J.2
  • 120
    • 84891939128 scopus 로고    scopus 로고
    • PX-12 inhibits the growth of A549 lung cancer cells via G2/M phase arrest and ROS-dependent apoptosis
    • [120] You, B.R., Shin, H.R., Park, W.H., PX-12 inhibits the growth of A549 lung cancer cells via G2/M phase arrest and ROS-dependent apoptosis. Int. J. Oncol. 44:1 (2014), 301–308.
    • (2014) Int. J. Oncol. , vol.44 , Issue.1 , pp. 301-308
    • You, B.R.1    Shin, H.R.2    Park, W.H.3
  • 121
    • 84919455991 scopus 로고    scopus 로고
    • Thioredoxin-1 inhibitor, 1-methylpropyl 2-imidazolyl disulfide, inhibits the growth, migration and invasion of colorectal cancer cell lines
    • [121] Wang, F., et al. Thioredoxin-1 inhibitor, 1-methylpropyl 2-imidazolyl disulfide, inhibits the growth, migration and invasion of colorectal cancer cell lines. Oncol. Rep. 33:2 (2015), 967–973.
    • (2015) Oncol. Rep. , vol.33 , Issue.2 , pp. 967-973
    • Wang, F.1
  • 122
    • 84907919427 scopus 로고    scopus 로고
    • Thioredoxin-1 inhibitor PX-12 induces human acute myeloid leukemia cell apoptosis and enhances the sensitivity of cells to arsenic trioxide
    • [122] Tan, Y., et al. Thioredoxin-1 inhibitor PX-12 induces human acute myeloid leukemia cell apoptosis and enhances the sensitivity of cells to arsenic trioxide. Int. J. Clin. Exp. Pathol., 7(8), 2014, 4765.
    • (2014) Int. J. Clin. Exp. Pathol. , vol.7 , Issue.8 , pp. 4765
    • Tan, Y.1
  • 123
    • 34547692874 scopus 로고    scopus 로고
    • Human aldo–keto reductases: function, gene regulation, and single nucleotide polymorphisms
    • [123] Penning, T.M., Drury, J.E., Human aldo–keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch. Biochem. Biophys. 464:2 (2007), 241–250.
    • (2007) Arch. Biochem. Biophys. , vol.464 , Issue.2 , pp. 241-250
    • Penning, T.M.1    Drury, J.E.2
  • 124
    • 33744459971 scopus 로고    scopus 로고
    • Role of aldo–keto reductases in development of prostate and breast cancer
    • [124] Jin, J., Krishack, P., Cao, D., Role of aldo–keto reductases in development of prostate and breast cancer. Front. Biosci.: J. Virtual Libr. 11 (2005), 2767–2773.
    • (2005) Front. Biosci.: J. Virtual Libr. , vol.11 , pp. 2767-2773
    • Jin, J.1    Krishack, P.2    Cao, D.3
  • 125
    • 33947713276 scopus 로고    scopus 로고
    • Overexpression of aldo–keto reductase 1C2 as a high-risk factor in bladder cancer
    • [125] Tai, H.-L., et al. Overexpression of aldo–keto reductase 1C2 as a high-risk factor in bladder cancer. Oncol. Rep. 17:2 (2007), 305–312.
    • (2007) Oncol. Rep. , vol.17 , Issue.2 , pp. 305-312
    • Tai, H.-L.1
  • 126
    • 84866148364 scopus 로고    scopus 로고
    • Expression of the aldo–keto reductases AKR1B1 and AKR1B10 in human cancers
    • [126] Laffin, B., Petrash, M., Expression of the aldo–keto reductases AKR1B1 and AKR1B10 in human cancers. Front. Pharmacol., 3, 2012, 104.
    • (2012) Front. Pharmacol. , vol.3 , pp. 104
    • Laffin, B.1    Petrash, M.2
  • 127
    • 35348887886 scopus 로고    scopus 로고
    • Aldo–keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: implication for cancer intervention
    • [127] Yan, R., et al. Aldo–keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: implication for cancer intervention. Int. J. Cancer 121:10 (2007), 2301–2306.
    • (2007) Int. J. Cancer , vol.121 , Issue.10 , pp. 2301-2306
    • Yan, R.1
  • 128
    • 0034287545 scopus 로고    scopus 로고
    • Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo–keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones
    • [128] Penning, T.M., et al. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo–keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem. J., 351(Pt 1), 2000, 67.
    • (2000) Biochem. J. , vol.351 , pp. 67
    • Penning, T.M.1
  • 129
    • 0037177887 scopus 로고    scopus 로고
    • Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells
    • [129] Deng, H.B., et al. Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells. J. Biol. Chem. 277:17 (2002), 15035–15043.
    • (2002) J. Biol. Chem. , vol.277 , Issue.17 , pp. 15035-15043
    • Deng, H.B.1
  • 130
    • 33745902254 scopus 로고    scopus 로고
    • Infection of human papillomavirus and overexpression of dihydrodiol dehydrogenase in uterine cervical cancer
    • [130] Ueda, M., et al. Infection of human papillomavirus and overexpression of dihydrodiol dehydrogenase in uterine cervical cancer. Gynecol. Oncol. 102:2 (2006), 173–181.
    • (2006) Gynecol. Oncol. , vol.102 , Issue.2 , pp. 173-181
    • Ueda, M.1
  • 131
    • 84875211359 scopus 로고    scopus 로고
    • Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers
    • [131] Matsunaga, T., et al. Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chem. Biol. Interact. 202:1 (2013), 234–242.
    • (2013) Chem. Biol. Interact. , vol.202 , Issue.1 , pp. 234-242
    • Matsunaga, T.1
  • 132
    • 57449117769 scopus 로고    scopus 로고
    • Proteomic analysis of pancreatic ductal adenocarcinoma compared with normal adjacent pancreatic tissue and pancreatic benign cystadenoma
    • [132] Cui, Y., et al. Proteomic analysis of pancreatic ductal adenocarcinoma compared with normal adjacent pancreatic tissue and pancreatic benign cystadenoma. Pancreatology 9:1–2 (2009), 89–98.
    • (2009) Pancreatology , vol.9 , Issue.1-2 , pp. 89-98
    • Cui, Y.1
  • 133
    • 79957557701 scopus 로고    scopus 로고
    • The role of aldehyde reductase AKR1A1 in the metabolism of gamma-hydroxybutyrate in 1321N1 human astrocytoma cells
    • [133] Alzeer, S., Ellis, E.M., The role of aldehyde reductase AKR1A1 in the metabolism of gamma-hydroxybutyrate in 1321N1 human astrocytoma cells. Chem. Biol. Interact. 191:1 (2011), 303–307.
    • (2011) Chem. Biol. Interact. , vol.191 , Issue.1 , pp. 303-307
    • Alzeer, S.1    Ellis, E.M.2
  • 134
    • 70350778508 scopus 로고    scopus 로고
    • Aldo–keto reductase family 1 member B1 inhibitors: old drugs with new perspectives
    • [134] Liu, J., Wen, G., Cao, D., Aldo–keto reductase family 1 member B1 inhibitors: old drugs with new perspectives. Recent Pat. Anti-cancer Drug Discov. 4:3 (2009), 246–253.
    • (2009) Recent Pat. Anti-cancer Drug Discov. , vol.4 , Issue.3 , pp. 246-253
    • Liu, J.1    Wen, G.2    Cao, D.3
  • 135
    • 84862808747 scopus 로고    scopus 로고
    • Overexpression and oncogenic function of aldo–keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma
    • [135] Chung, Y.T., et al. Overexpression and oncogenic function of aldo–keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. Mod. Pathol. 25:5 (2012), 758–766.
    • (2012) Mod. Pathol. , vol.25 , Issue.5 , pp. 758-766
    • Chung, Y.T.1
  • 136
    • 84991107767 scopus 로고    scopus 로고
    • Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters
    • [136] Bai, X., et al. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab. Rev. 48:4 (2016), 541–567.
    • (2016) Drug Metab. Rev. , vol.48 , Issue.4 , pp. 541-567
    • Bai, X.1
  • 137
    • 37349121900 scopus 로고    scopus 로고
    • Transcriptional regulation of aldo–keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis
    • [137] Selga, E., Noé, V., Ciudad, C.J., Transcriptional regulation of aldo–keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: role in the cell cycle and apoptosis. Biochem. Pharmacol. 75:2 (2008), 414–426.
    • (2008) Biochem. Pharmacol. , vol.75 , Issue.2 , pp. 414-426
    • Selga, E.1    Noé, V.2    Ciudad, C.J.3
  • 138
    • 79955051623 scopus 로고    scopus 로고
    • Involvement of the aldo–keto reductase, AKR1B10, in mitomycin-c resistance through reactive oxygen species-dependent mechanisms
    • [138] Matsunaga, T., et al. Involvement of the aldo–keto reductase, AKR1B10, in mitomycin-c resistance through reactive oxygen species-dependent mechanisms. Anticancer Drugs 22:5 (2011), 402–408.
    • (2011) Anticancer Drugs , vol.22 , Issue.5 , pp. 402-408
    • Matsunaga, T.1
  • 139
    • 77956634018 scopus 로고    scopus 로고
    • Overexpression of aldo–keto reductase 1C2 is associated with disease progression in patients with prostatic cancer
    • [139] Huang, K.H., et al. Overexpression of aldo–keto reductase 1C2 is associated with disease progression in patients with prostatic cancer. Histopathology 57:3 (2010), 384–394.
    • (2010) Histopathology , vol.57 , Issue.3 , pp. 384-394
    • Huang, K.H.1
  • 140
    • 47249160785 scopus 로고    scopus 로고
    • Glutathione peroxidase family – an evolutionary overview
    • [140] Margis, R., et al. Glutathione peroxidase family – an evolutionary overview. FEBS J. 275:15 (2008), 3959–3970.
    • (2008) FEBS J. , vol.275 , Issue.15 , pp. 3959-3970
    • Margis, R.1
  • 141
    • 0842304289 scopus 로고    scopus 로고
    • Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes
    • [141] Chu, F.-F., et al. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res. 64:3 (2004), 962–968.
    • (2004) Cancer Res. , vol.64 , Issue.3 , pp. 962-968
    • Chu, F.-F.1
  • 142
    • 34250356291 scopus 로고    scopus 로고
    • Inactivation of glutathione peroxidase activity contributes to UV-induced squamous cell carcinoma formation
    • [142] Walshe, J., et al. Inactivation of glutathione peroxidase activity contributes to UV-induced squamous cell carcinoma formation. Cancer Res. 67:10 (2007), 4751–4758.
    • (2007) Cancer Res. , vol.67 , Issue.10 , pp. 4751-4758
    • Walshe, J.1
  • 143
    • 84949180422 scopus 로고    scopus 로고
    • Glutathione peroxidase 2 and its role in cancer
    • Springer
    • [143] Banning, A., Kipp, A., Brigelius-Flohé, R., Glutathione peroxidase 2 and its role in cancer. Selenium, 2011, Springer, 271–282.
    • (2011) Selenium , pp. 271-282
    • Banning, A.1    Kipp, A.2    Brigelius-Flohé, R.3
  • 144
    • 0035692705 scopus 로고    scopus 로고
    • Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue
    • [144] Florian, S., et al. Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue. Free Radic. Res. 35:6 (2001), 655–663.
    • (2001) Free Radic. Res. , vol.35 , Issue.6 , pp. 655-663
    • Florian, S.1
  • 145
    • 0033839550 scopus 로고    scopus 로고
    • Inverse mRNA expression of the selenocysteine-containing proteins GI-GPx and SeP in colorectal adenomas compared with adjacent normal mucosa
    • [145] Mork, H., et al. Inverse mRNA expression of the selenocysteine-containing proteins GI-GPx and SeP in colorectal adenomas compared with adjacent normal mucosa. Nutr. Cancer 37:1 (2000), 108–116.
    • (2000) Nutr. Cancer , vol.37 , Issue.1 , pp. 108-116
    • Mork, H.1
  • 146
    • 17144452376 scopus 로고    scopus 로고
    • Glutathione peroxidase isoforms as part of the local antioxidative defense system in normal and Barrett's esophagus
    • [146] Mörk, H., et al. Glutathione peroxidase isoforms as part of the local antioxidative defense system in normal and Barrett's esophagus. Int. J. Cancer 105:3 (2003), 300–304.
    • (2003) Int. J. Cancer , vol.105 , Issue.3 , pp. 300-304
    • Mörk, H.1
  • 147
    • 20344405468 scopus 로고    scopus 로고
    • The GI-GPx gene is a target for Nrf2
    • [147] Banning, A., et al. The GI-GPx gene is a target for Nrf2. Mol. Cell. Biol. 25:12 (2005), 4914–4923.
    • (2005) Mol. Cell. Biol. , vol.25 , Issue.12 , pp. 4914-4923
    • Banning, A.1
  • 148
    • 0034910990 scopus 로고    scopus 로고
    • Overexpression of peroxiredoxin in human breast cancer
    • [148] Noh, D.-Y., et al. Overexpression of peroxiredoxin in human breast cancer. Anticancer Res. 21:3B (2000), 2085–2090.
    • (2000) Anticancer Res. , vol.21 , Issue.3B , pp. 2085-2090
    • Noh, D.-Y.1
  • 149
    • 0035976790 scopus 로고    scopus 로고
    • Augmented expression of peroxiredoxin I in lung cancer
    • [149] Chang, J.W., et al. Augmented expression of peroxiredoxin I in lung cancer. Biochem. Biophys. Res. Commun. 289:2 (2001), 507–512.
    • (2001) Biochem. Biophys. Res. Commun. , vol.289 , Issue.2 , pp. 507-512
    • Chang, J.W.1
  • 150
    • 0032887516 scopus 로고    scopus 로고
    • Peroxiredoxin I expression in human thyroid tumors
    • [150] Yanagawa, T., et al. Peroxiredoxin I expression in human thyroid tumors. Cancer Lett. 145:1 (1999), 127–132.
    • (1999) Cancer Lett. , vol.145 , Issue.1 , pp. 127-132
    • Yanagawa, T.1
  • 151
    • 18744426119 scopus 로고    scopus 로고
    • Peroxiredoxin I expression in oral cancer: a potential new tumor marker
    • [151] Yanagawa, T., et al. Peroxiredoxin I expression in oral cancer: a potential new tumor marker. Cancer Lett. 156:1 (2000), 27–35.
    • (2000) Cancer Lett. , vol.156 , Issue.1 , pp. 27-35
    • Yanagawa, T.1
  • 152
    • 34447118171 scopus 로고    scopus 로고
    • Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer
    • [152] Kim, J.-H., et al. Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer. Clin. Cancer Res. 13:13 (2007), 3875–3882.
    • (2007) Clin. Cancer Res. , vol.13 , Issue.13 , pp. 3875-3882
    • Kim, J.-H.1
  • 153
    • 30544431972 scopus 로고    scopus 로고
    • Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression
    • [153] Chen, M.-F., et al. Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression. Int. J. Radiat. Oncol. Biol. Phys. 64:2 (2006), 581–591.
    • (2006) Int. J. Radiat. Oncol. Biol. Phys. , vol.64 , Issue.2 , pp. 581-591
    • Chen, M.-F.1
  • 154
    • 0033230043 scopus 로고    scopus 로고
    • Glutathione and its role in cellular functions
    • [154] Sies, H., Glutathione and its role in cellular functions. Free Radic. Biol. Med. 27:9 (1999), 916–921.
    • (1999) Free Radic. Biol. Med. , vol.27 , Issue.9 , pp. 916-921
    • Sies, H.1
  • 155
    • 0036132106 scopus 로고    scopus 로고
    • Expression of heavy subunit of γ-glutamylcysteine synthetase (γ-GCSh) in human colorectal carcinoma
    • [155] Tatebe, S., et al. Expression of heavy subunit of γ-glutamylcysteine synthetase (γ-GCSh) in human colorectal carcinoma. Int. J. Cancer 97:1 (2002), 21–27.
    • (2002) Int. J. Cancer , vol.97 , Issue.1 , pp. 21-27
    • Tatebe, S.1
  • 156
    • 0035575767 scopus 로고    scopus 로고
    • Expression of γ-glutamyl cysteine synthetase in nonsmall cell lung carcinoma
    • [156] Soini, Y., et al. Expression of γ-glutamyl cysteine synthetase in nonsmall cell lung carcinoma. Cancer 92:11 (2001), 2911–2919.
    • (2001) Cancer , vol.92 , Issue.11 , pp. 2911-2919
    • Soini, Y.1
  • 157
    • 0032215804 scopus 로고    scopus 로고
    • Breast cancer and benign breast disease patients evaluated in relation to oxidative stress
    • [157] Seven, A., et al. Breast cancer and benign breast disease patients evaluated in relation to oxidative stress. Cancer Biochem. Biophys. 16:4 (1998), 333–345.
    • (1998) Cancer Biochem. Biophys. , vol.16 , Issue.4 , pp. 333-345
    • Seven, A.1
  • 158
    • 0033506111 scopus 로고    scopus 로고
    • Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells
    • [158] Carretero, J., et al. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin. Exp. Metastasis, 17(7), 1999, 567.
    • (1999) Clin. Exp. Metastasis , vol.17 , Issue.7 , pp. 567
    • Carretero, J.1
  • 159
    • 18544399201 scopus 로고    scopus 로고
    • Clinical studies of reversal of drug resistance based on glutathione
    • [159] Calvert, P., et al. Clinical studies of reversal of drug resistance based on glutathione. Chem. Biol. Interact. 111 (1998), 213–224.
    • (1998) Chem. Biol. Interact. , vol.111 , pp. 213-224
    • Calvert, P.1
  • 160
    • 0033009895 scopus 로고    scopus 로고
    • Co-expression of gamma-glutamylcysteine synthetase sub-units in response to cisplatin and doxorubicin in human cancer cells
    • [160] Iida, T., et al. Co-expression of gamma-glutamylcysteine synthetase sub-units in response to cisplatin and doxorubicin in human cancer cells. Int. J. Cancer 82:3 (1999), 405–411.
    • (1999) Int. J. Cancer , vol.82 , Issue.3 , pp. 405-411
    • Iida, T.1
  • 161
    • 39049136869 scopus 로고    scopus 로고
    • Changes in antioxidant defense status in response to cisplatin and 5-FU in esophageal carcinoma
    • [161] Kaur, T., et al. Changes in antioxidant defense status in response to cisplatin and 5-FU in esophageal carcinoma. Dis. Esophagus 21:2 (2008), 103–107.
    • (2008) Dis. Esophagus , vol.21 , Issue.2 , pp. 103-107
    • Kaur, T.1
  • 162
    • 16644392633 scopus 로고    scopus 로고
    • The subunits of glutamate cysteine ligase enhance cisplatin resistance in human non-small cell lung cancer xenografts in vivo
    • [162] Fujimori, S., et al. The subunits of glutamate cysteine ligase enhance cisplatin resistance in human non-small cell lung cancer xenografts in vivo. Int. J. Oncol. 25 (2004), 413–418.
    • (2004) Int. J. Oncol. , vol.25 , pp. 413-418
    • Fujimori, S.1
  • 163
    • 0026343403 scopus 로고
    • Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy
    • [163] Meister, A., Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol. Ther. 51:2 (1991), 155–194.
    • (1991) Pharmacol. Ther. , vol.51 , Issue.2 , pp. 155-194
    • Meister, A.1
  • 164
    • 9044254931 scopus 로고    scopus 로고
    • Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer
    • [164] O'Dwyer, P.J., et al. Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer. J. Clin. Oncol. 14:1 (1996), 249–256.
    • (1996) J. Clin. Oncol. , vol.14 , Issue.1 , pp. 249-256
    • O'Dwyer, P.J.1
  • 165
    • 0033540268 scopus 로고    scopus 로고
    • Depletion of glutathione by buthionine sulfoximine is cytotoxic for human neuroblastoma cell lines via apoptosis
    • [165] Anderson, C.P., et al. Depletion of glutathione by buthionine sulfoximine is cytotoxic for human neuroblastoma cell lines via apoptosis. Exp. Cell Res. 246:1 (1999), 183–192.
    • (1999) Exp. Cell Res. , vol.246 , Issue.1 , pp. 183-192
    • Anderson, C.P.1
  • 166
    • 7544236965 scopus 로고    scopus 로고
    • Quinone reductases multitasking in the metabolic world
    • [166] Ross, D., Quinone reductases multitasking in the metabolic world. Drug Metab. Rev. 36:3–4 (2004), 639–654.
    • (2004) Drug Metab. Rev. , vol.36 , Issue.3-4 , pp. 639-654
    • Ross, D.1
  • 167
    • 2142655894 scopus 로고    scopus 로고
    • NAD (P) H: quinone oxidoreductase 1: role as a superoxide scavenger
    • [167] Siegel, D., et al. NAD (P) H: quinone oxidoreductase 1: role as a superoxide scavenger. Mol. Pharmacol. 65:5 (2004), 1238–1247.
    • (2004) Mol. Pharmacol. , vol.65 , Issue.5 , pp. 1238-1247
    • Siegel, D.1
  • 168
    • 33645993864 scopus 로고    scopus 로고
    • Quinone reductase induction as a biomarker for cancer chemoprevention
    • [168] Cuendet, M., et al. Quinone reductase induction as a biomarker for cancer chemoprevention. J. Nat. Prod. 69:3 (2006), 460–463.
    • (2006) J. Nat. Prod. , vol.69 , Issue.3 , pp. 460-463
    • Cuendet, M.1
  • 169
    • 0034326245 scopus 로고    scopus 로고
    • NAD (P) H: quinone oxidoreductase 1 deficiency increases susceptibility to benzo (a) pyrene-induced mouse skin carcinogenesis
    • [169] Long, D.J., et al. NAD (P) H: quinone oxidoreductase 1 deficiency increases susceptibility to benzo (a) pyrene-induced mouse skin carcinogenesis. Cancer Res. 60:21 (2000), 5913–5915.
    • (2000) Cancer Res. , vol.60 , Issue.21 , pp. 5913-5915
    • Long, D.J.1
  • 170
    • 0025248106 scopus 로고
    • (P) H:(Quinone-acceptor) oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol
    • [170] Schlager, J.J., Powis, G., Cytosolic, N.A.D., (P) H:(Quinone-acceptor) oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int. J. Cancer 45:3 (1990), 403–409.
    • (1990) Int. J. Cancer , vol.45 , Issue.3 , pp. 403-409
    • Schlager, J.J.1    Powis, G.2    Cytosolic, N.A.D.3
  • 171
    • 0031791376 scopus 로고    scopus 로고
    • Immunological quantitation of DT-diaphorase in carcinoma cell lines and clinical colon cancers: advanced tumors express greater levels of DT-diaphorase
    • [171] Mikami, K., et al. Immunological quantitation of DT-diaphorase in carcinoma cell lines and clinical colon cancers: advanced tumors express greater levels of DT-diaphorase. Cancer Sci. 89:9 (1998), 910–915.
    • (1998) Cancer Sci. , vol.89 , Issue.9 , pp. 910-915
    • Mikami, K.1
  • 172
    • 76149134359 scopus 로고    scopus 로고
    • Dicoumarol enhances doxorubicin-induced cytotoxicity in p53 wild-type urothelial cancer cells through p38 activation
    • [172] Matsui, Y., et al. Dicoumarol enhances doxorubicin-induced cytotoxicity in p53 wild-type urothelial cancer cells through p38 activation. BJU Int. 105:4 (2010), 558–564.
    • (2010) BJU Int. , vol.105 , Issue.4 , pp. 558-564
    • Matsui, Y.1
  • 173
    • 84892704442 scopus 로고    scopus 로고
    • Suppression of NAD (P) H-quinone oxidoreductase 1 enhanced the susceptibility of cholangiocarcinoma cells to chemotherapeutic agents
    • [173] Zeekpudsa, P., et al. Suppression of NAD (P) H-quinone oxidoreductase 1 enhanced the susceptibility of cholangiocarcinoma cells to chemotherapeutic agents. J. Exp. Clin. Cancer Res., 33(1), 2014, 11.
    • (2014) J. Exp. Clin. Cancer Res. , vol.33 , Issue.1 , pp. 11
    • Zeekpudsa, P.1
  • 174
    • 77954762075 scopus 로고    scopus 로고
    • Functions and transcriptional regulation of adult human hepatic UDP-glucuronosyl-transferases (UGTs): mechanisms responsible for interindividual variation of UGT levels
    • [174] Bock, K.W., Functions and transcriptional regulation of adult human hepatic UDP-glucuronosyl-transferases (UGTs): mechanisms responsible for interindividual variation of UGT levels. Biochem. Pharmacol. 80:6 (2010), 771–777.
    • (2010) Biochem. Pharmacol. , vol.80 , Issue.6 , pp. 771-777
    • Bock, K.W.1
  • 175
    • 15244342411 scopus 로고    scopus 로고
    • UDP-glucuronosyltransferases and clinical drug–drug interactions
    • [175] Kiang, T.K., Ensom, M.H., Chang, T.K., UDP-glucuronosyltransferases and clinical drug–drug interactions. Pharmacol. Ther. 106:1 (2005), 97–132.
    • (2005) Pharmacol. Ther. , vol.106 , Issue.1 , pp. 97-132
    • Kiang, T.K.1    Ensom, M.H.2    Chang, T.K.3
  • 176
    • 36849028688 scopus 로고    scopus 로고
    • Phytochemical regulation of UDP-glucuronosyltransferases: implications for cancer prevention
    • [176] Saracino, M.R., Lampe, J.W., Phytochemical regulation of UDP-glucuronosyltransferases: implications for cancer prevention. Nutrition and cancer 59:2 (2007), 121–141.
    • (2007) Nutrition and cancer , vol.59 , Issue.2 , pp. 121-141
    • Saracino, M.R.1    Lampe, J.W.2
  • 177
    • 0345549402 scopus 로고    scopus 로고
    • Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins
    • [177] Cummings, J., et al. Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins. Biochem. Pharmacol. 67:1 (2004), 31–39.
    • (2004) Biochem. Pharmacol. , vol.67 , Issue.1 , pp. 31-39
    • Cummings, J.1
  • 178
    • 84941985486 scopus 로고    scopus 로고
    • Molecular pathways: GLI1-induced drug glucuronidation in resistant cancer cells
    • [178] Zahreddine, H.A., Borden, K.L., Molecular pathways: GLI1-induced drug glucuronidation in resistant cancer cells. Clin. Cancer Res. 21:10 (2015), 2207–2210.
    • (2015) Clin. Cancer Res. , vol.21 , Issue.10 , pp. 2207-2210
    • Zahreddine, H.A.1    Borden, K.L.2
  • 179
    • 84908159566 scopus 로고    scopus 로고
    • Clinical significance of UGT1A1 gene polymorphisms on irinotecan-based regimens as the treatment in metastatic colorectal cancer
    • [179] Li, M., et al. Clinical significance of UGT1A1 gene polymorphisms on irinotecan-based regimens as the treatment in metastatic colorectal cancer. OncoTargets Ther., 7, 2014, 1653.
    • (2014) OncoTargets Ther. , vol.7 , pp. 1653
    • Li, M.1
  • 180
    • 84941360366 scopus 로고    scopus 로고
    • Impacts of the glucuronidase genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on tamoxifen metabolism in breast cancer patients
    • [180] Romero-Lorca, A., et al. Impacts of the glucuronidase genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on tamoxifen metabolism in breast cancer patients. PLOS ONE, 10(7), 2015, e0132269.
    • (2015) PLOS ONE , vol.10 , Issue.7 , pp. e0132269
    • Romero-Lorca, A.1
  • 182
    • 84907034868 scopus 로고
    • The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance part II
    • [182] Hayes, J.D., Pulford, D.J., The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance part II. Crit. Rev. Biochem. Mol. Biol. 30:6 (1995), 521–600.
    • (1995) Crit. Rev. Biochem. Mol. Biol. , vol.30 , Issue.6 , pp. 521-600
    • Hayes, J.D.1    Pulford, D.J.2
  • 183
    • 0036799080 scopus 로고    scopus 로고
    • Associations between carcinogen–DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective Physicians’ Health Cohort Study
    • [183] Perera, F.P., et al. Associations between carcinogen–DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective Physicians’ Health Cohort Study. Carcinogenesis 23:10 (2002), 1641–1646.
    • (2002) Carcinogenesis , vol.23 , Issue.10 , pp. 1641-1646
    • Perera, F.P.1
  • 184
    • 0036845569 scopus 로고    scopus 로고
    • The null genotype of glutathione s-transferase M1 and T1 locus increases the risk for thyroid cancer
    • [184] Morari, E.C., et al. The null genotype of glutathione s-transferase M1 and T1 locus increases the risk for thyroid cancer. Cancer Epidemiol. Prevent. Biomark. 11:11 (2002), 1485–1488.
    • (2002) Cancer Epidemiol. Prevent. Biomark. , vol.11 , Issue.11 , pp. 1485-1488
    • Morari, E.C.1
  • 185
    • 0034976926 scopus 로고    scopus 로고
    • Relationship between glutathione S-transferase M1, P1 and T1 polymorphisms and early onset prostate cancer
    • [185] Kote-Jarai, Z., et al. Relationship between glutathione S-transferase M1, P1 and T1 polymorphisms and early onset prostate cancer. Pharmacogenet. Genomics 11:4 (2001), 325–330.
    • (2001) Pharmacogenet. Genomics , vol.11 , Issue.4 , pp. 325-330
    • Kote-Jarai, Z.1
  • 186
    • 0035074675 scopus 로고    scopus 로고
    • Glutathione S-transferase M1 gene polymorphism in bladder cancer patients: a marker for invasive bladder cancer?
    • [186] Aktas, D., et al. Glutathione S-transferase M1 gene polymorphism in bladder cancer patients: a marker for invasive bladder cancer?. Cancer Genet. Cytogenet. 125:1 (2001), 1–4.
    • (2001) Cancer Genet. Cytogenet. , vol.125 , Issue.1 , pp. 1-4
    • Aktas, D.1
  • 187
    • 0033150345 scopus 로고    scopus 로고
    • Glutathione and glutathione-dependent enzymes in cancer drug resistance
    • [187] McLellan, L.I., Wolf, C.R., Glutathione and glutathione-dependent enzymes in cancer drug resistance. Drug Resist. Updat. 2:3 (1999), 153–164.
    • (1999) Drug Resist. Updat. , vol.2 , Issue.3 , pp. 153-164
    • McLellan, L.I.1    Wolf, C.R.2
  • 188
    • 0025303623 scopus 로고
    • Characterization of glutathione S-transferase expression in lymphocytes from chronic lymphocytic leukemia patients
    • [188] Schisselbauer, J.C., et al. Characterization of glutathione S-transferase expression in lymphocytes from chronic lymphocytic leukemia patients. Cancer Res. 50:12 (1990), 3562–3568.
    • (1990) Cancer Res. , vol.50 , Issue.12 , pp. 3562-3568
    • Schisselbauer, J.C.1
  • 189
    • 84858164003 scopus 로고    scopus 로고
    • Predictive value of expression of ERCC 1 and GST-p for 5-fluorouracil/oxaliplatin chemotherapy in advanced colorectal cancer
    • [189] Noda, E., et al. Predictive value of expression of ERCC 1 and GST-p for 5-fluorouracil/oxaliplatin chemotherapy in advanced colorectal cancer. Hepato-gastroenterology 59:113 (2011), 130–133.
    • (2011) Hepato-gastroenterology , vol.59 , Issue.113 , pp. 130-133
    • Noda, E.1
  • 190
    • 0029680939 scopus 로고    scopus 로고
    • Transfection of glutathione S-transferase (GST)-π antisense complementary DNA increases the sensitivity of a colon cancer cell line to adriamycin, cisplatin, melphalan, and etoposide
    • [190] Ban, N., et al. Transfection of glutathione S-transferase (GST)-π antisense complementary DNA increases the sensitivity of a colon cancer cell line to adriamycin, cisplatin, melphalan, and etoposide. Cancer Res. 56:15 (1996), 3577–3582.
    • (1996) Cancer Res. , vol.56 , Issue.15 , pp. 3577-3582
    • Ban, N.1
  • 191
    • 33847272669 scopus 로고    scopus 로고
    • Microsomal glutathione transferase 1 in anticancer drug resistance
    • [191] Johansson, K., et al. Microsomal glutathione transferase 1 in anticancer drug resistance. Carcinogenesis 28:2 (2006), 465–470.
    • (2006) Carcinogenesis , vol.28 , Issue.2 , pp. 465-470
    • Johansson, K.1
  • 192
    • 84908353712 scopus 로고    scopus 로고
    • Wogonin reverses multi-drug resistance of human myelogenous leukemia K562/A02 cells via downregulation of MRP1 expression by inhibiting Nrf2/ARE signaling pathway
    • [192] Xu, X., et al. Wogonin reverses multi-drug resistance of human myelogenous leukemia K562/A02 cells via downregulation of MRP1 expression by inhibiting Nrf2/ARE signaling pathway. Biochem. Pharmacol. 92:2 (2014), 220–234.
    • (2014) Biochem. Pharmacol. , vol.92 , Issue.2 , pp. 220-234
    • Xu, X.1
  • 193
    • 0034895918 scopus 로고    scopus 로고
    • Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer
    • [193] Young, L.C., et al. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer. Clin. Cancer Res. 7:6 (2001), 1798–1804.
    • (2001) Clin. Cancer Res. , vol.7 , Issue.6 , pp. 1798-1804
    • Young, L.C.1
  • 194
    • 84931464340 scopus 로고    scopus 로고
    • Emodin augments cisplatin cytotoxicity in platinum-resistant ovarian cancer cells via ROS-dependent MRP1 downregulation
    • [194] Ma, J., et al. Emodin augments cisplatin cytotoxicity in platinum-resistant ovarian cancer cells via ROS-dependent MRP1 downregulation. BioMed Res. Int., 2014, 2014.
    • (2014) BioMed Res. Int. , vol.2014
    • Ma, J.1
  • 195
    • 0029095763 scopus 로고
    • Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein
    • [195] Zaman, G., et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc. Natl. Acad. Sci. U. S. A. 92:17 (1995), 7690–7694.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , Issue.17 , pp. 7690-7694
    • Zaman, G.1
  • 196
    • 70350620150 scopus 로고    scopus 로고
    • Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway
    • [196] Shim, G.-s., et al. Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic. Biol. Med. 47:11 (2009), 1619–1631.
    • (2009) Free Radic. Biol. Med. , vol.47 , Issue.11 , pp. 1619-1631
    • Shim, G.-S.1
  • 197
    • 0035896509 scopus 로고    scopus 로고
    • Role of multidrug resistance protein 1 (MRP1) and glutathione S-transferase A1-1 in alkylating agent resistance kinetics of glutathione conjugate formation and efflux govern differential cellular sensitivity to chlorambucil versus melphalan toxicity
    • [197] Paumi, C.M., et al. Role of multidrug resistance protein 1 (MRP1) and glutathione S-transferase A1-1 in alkylating agent resistance kinetics of glutathione conjugate formation and efflux govern differential cellular sensitivity to chlorambucil versus melphalan toxicity. J. Biol. Chem. 276:11 (2001), 7952–7956.
    • (2001) J. Biol. Chem. , vol.276 , Issue.11 , pp. 7952-7956
    • Paumi, C.M.1
  • 198
    • 0346497684 scopus 로고    scopus 로고
    • Role of multidrug resistance protein 2 (MRP2, ABCC2) in alkylating agent detoxification: MRP2 potentiates glutathione S-transferase A1-1-mediated resistance to chlorambucil cytotoxicity
    • [198] Smitherman, P.K., et al. Role of multidrug resistance protein 2 (MRP2, ABCC2) in alkylating agent detoxification: MRP2 potentiates glutathione S-transferase A1-1-mediated resistance to chlorambucil cytotoxicity. J. Pharmacol. Exp. Ther. 308:1 (2004), 260–267.
    • (2004) J. Pharmacol. Exp. Ther. , vol.308 , Issue.1 , pp. 260-267
    • Smitherman, P.K.1
  • 199
    • 84904610693 scopus 로고    scopus 로고
    • Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway
    • [199] Lin, H., et al. Sulforaphane reverses glucocorticoid-induced apoptosis in osteoblastic cells through regulation of the Nrf2 pathway. Drug Des. Dev. Ther., 8, 2014, 973.
    • (2014) Drug Des. Dev. Ther. , vol.8 , pp. 973
    • Lin, H.1
  • 200
    • 84928911735 scopus 로고    scopus 로고
    • Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of NRF2 signalling and modulation of inflammation in prevention of cancer
    • [200] Das, L., Vinayak, M., Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of NRF2 signalling and modulation of inflammation in prevention of cancer. PLOS ONE, 10(4), 2015, e0124000.
    • (2015) PLOS ONE , vol.10 , Issue.4 , pp. e0124000
    • Das, L.1    Vinayak, M.2
  • 201
    • 79959926939 scopus 로고    scopus 로고
    • Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation
    • [201] Tsai, P.-Y., et al. Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radic. Biol. Med. 51:3 (2011), 744–754.
    • (2011) Free Radic. Biol. Med. , vol.51 , Issue.3 , pp. 744-754
    • Tsai, P.-Y.1
  • 202
    • 79551511123 scopus 로고    scopus 로고
    • Coffee, broccoli and spices are strong inducers of electrophile response element-dependent transcription in vitro and in vivo – studies in electrophile response element transgenic mice
    • [202] Balstad, T.R., et al. Coffee, broccoli and spices are strong inducers of electrophile response element-dependent transcription in vitro and in vivo – studies in electrophile response element transgenic mice. Mol. Nut. Food Res. 55:2 (2011), 185–197.
    • (2011) Mol. Nut. Food Res. , vol.55 , Issue.2 , pp. 185-197
    • Balstad, T.R.1
  • 203
    • 84881525302 scopus 로고    scopus 로고
    • Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway
    • [203] Gao, A.-M., et al. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 34:8 (2013), 1806–1814.
    • (2013) Carcinogenesis , vol.34 , Issue.8 , pp. 1806-1814
    • Gao, A.-M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.