메뉴 건너뛰기




Volumn 16, Issue 6, 2017, Pages 387-399

Delivery technologies for genome editing

Author keywords

[No Author keywords available]

Indexed keywords

ADENO ASSOCIATED VIRUS VECTOR; ADENOVIRUS VECTOR; AGENTS ACTING ON THE PERIPHERAL NERVOUS AND NEUROMUSCULAR SYSTEMS; AGENTS AFFECTING CARBOHYDRATE METABOLISM; ANTIDIABETIC AGENT; ANTIVIRUS AGENT; INTEGRASE DEFECTIVE LENTIVIRUS VECTOR; LENTIVIRUS VECTOR; NANOPARTICLE; SB 318; SB 509; SB 728MR HSPC; SB 728MR T; SB 728T; SB 913; TRANSCRIPTION ACTIVATOR LIKE EFFECTOR NUCLEASE; UNCLASSIFIED DRUG; ZINC FINGER NUCLEASE; ZINC FINGER PROTEIN;

EID: 85015923074     PISSN: 14741776     EISSN: 14741784     Source Type: Journal    
DOI: 10.1038/nrd.2016.280     Document Type: Review
Times cited : (438)

References (146)
  • 1
    • 84884416457 scopus 로고    scopus 로고
    • Rare-disease genetics in the era of next-generation sequencing: Discovery to translation
    • Boycott, K. M., Vanstone, M. R., Bulman, D. E. & MacKenzie, A. E. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 14, 681-691 (2013).
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 681-691
    • Boycott, K.M.1    Vanstone, M.R.2    Bulman, D.E.3    MacKenzie, A.E.4
  • 3
    • 84975744535 scopus 로고    scopus 로고
    • Cystic fibrosis
    • Elborn, J. S. Cystic fibrosis. Lancet 388, 2519-2531 (2016).
    • (2016) Lancet , vol.388 , pp. 2519-2531
    • Elborn, J.S.1
  • 4
    • 85020616105 scopus 로고    scopus 로고
    • Small molecule therapy for genetic diseases
    • Yang, Q. Small molecule therapy for genetic diseases. Yale J. Biol. Med. 85, 161-162 (2012).
    • (2012) Yale J. Biol. Med. , vol.85 , pp. 161-162
    • Yang, Q.1
  • 5
    • 33645127443 scopus 로고    scopus 로고
    • Genetic medicines: Treatment strategies for hereditary disorders
    • OConnor, T. P. & Crystal, R. G. Genetic medicines: treatment strategies for hereditary disorders. Nat. Rev. Genet. 7, 261-276 (2006).
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 261-276
    • Oconnor, T.P.1    Crystal, R.G.2
  • 6
    • 12144287218 scopus 로고    scopus 로고
    • Enzyme replacement therapy in late-onset Pompes disease: A three-year follow-up
    • Winkel, L. P. et al. Enzyme replacement therapy in late-onset Pompes disease: a three-year follow-up. Ann. Neurol. 55, 495-502 (2004).
    • (2004) Ann. Neurol. , vol.55 , pp. 495-502
    • Winkel, L.P.1
  • 7
    • 4944256880 scopus 로고    scopus 로고
    • Dose and response in haemophilia - Optimization of factor replacement therapy
    • Srivastava, A. Dose and response in haemophilia - optimization of factor replacement therapy. Br. J. Haematol. 127, 12-25 (2004).
    • (2004) Br. J. Haematol. , vol.127 , pp. 12-25
    • Srivastava, A.1
  • 8
    • 84897560418 scopus 로고    scopus 로고
    • Recent developments in the treatment of age-related macular degeneration
    • Holz, F. G., Schmitz-Valckenberg, S. & Fleckenstein, M. Recent developments in the treatment of age-related macular degeneration. J. Clin. Invest. 124, 1430-1438 (2014).
    • (2014) J. Clin. Invest. , vol.124 , pp. 1430-1438
    • Holz, F.G.1    Schmitz-Valckenberg, S.2    Fleckenstein, M.3
  • 9
    • 84876115251 scopus 로고    scopus 로고
    • Protein replacement therapies for rare diseases: A breeze for regulatory approval?
    • Gorzelany, J. A. & de Souza, M. P. Protein replacement therapies for rare diseases: a breeze for regulatory approval? Sci. Transl Med. 5, 178fs10 (2013).
    • (2013) Sci. Transl Med. , vol.5 , pp. 178fs10
    • Gorzelany, J.A.1    De Souza, M.P.2
  • 10
    • 84904544984 scopus 로고    scopus 로고
    • Non-viral vectors for gene-based therapy
    • Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541-555 (2014).
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 541-555
    • Yin, H.1
  • 11
    • 79954650563 scopus 로고    scopus 로고
    • State-of-the-art gene-based therapies: The road ahead
    • Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316-328 (2011).
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 316-328
    • Kay, M.A.1
  • 12
    • 67349213986 scopus 로고    scopus 로고
    • Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics
    • Mansoor, M. & Melendez, A. J. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. Gene Regul. Syst. Bio. 2, 275-295 (2008).
    • (2008) Gene Regul. Syst. Bio. , vol.2 , pp. 275-295
    • Mansoor, M.1    Melendez, A.J.2
  • 13
    • 58749104364 scopus 로고    scopus 로고
    • The promises and pitfalls of RNA-interference-based therapeutics
    • Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426-433 (2009).
    • (2009) Nature , vol.457 , pp. 426-433
    • Castanotto, D.1    Rossi, J.J.2
  • 14
    • 33645451483 scopus 로고    scopus 로고
    • Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors
    • Baum, C., Kustikova, O., Modlich, U., Li, Z. & Fehse, B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum. Gene Ther. 17, 253-263 (2006).
    • (2006) Hum. Gene Ther. , vol.17 , pp. 253-263
    • Baum, C.1    Kustikova, O.2    Modlich, U.3    Li, Z.4    Fehse, B.5
  • 15
    • 84940671562 scopus 로고    scopus 로고
    • Hemophilia gene therapy: Caught between a cure and an immune response
    • Herzog, R. W. Hemophilia gene therapy: caught between a cure and an immune response. Mol. Ther. 23, 1411-1412 (2015).
    • (2015) Mol. Ther. , vol.23 , pp. 1411-1412
    • Herzog, R.W.1
  • 16
    • 80455168205 scopus 로고    scopus 로고
    • AAV vector biology in primates: Finding the missing link?
    • Herzog, R. W., Davidoff, A. M., Markusic, D. M. & Nathwani, A. C. AAV vector biology in primates: finding the missing link? Mol. Ther. 19, 1923-1924 (2011).
    • (2011) Mol. Ther. , vol.19 , pp. 1923-1924
    • Herzog, R.W.1    Davidoff, A.M.2    Markusic, D.M.3    Nathwani, A.C.4
  • 17
    • 80455174705 scopus 로고    scopus 로고
    • AAV8-mediated hepatic gene transfer in infant rhesus monkeys (Macaca mulatta)
    • Wang, L. et al. AAV8-mediated hepatic gene transfer in infant rhesus monkeys (Macaca mulatta). Mol. Ther. 19, 2012-2020 (2011).
    • (2011) Mol. Ther. , vol.19 , pp. 2012-2020
    • Wang, L.1
  • 18
    • 84944339068 scopus 로고    scopus 로고
    • Gene therapy returns to centre stage
    • Naldini, L. Gene therapy returns to centre stage. Nature 526, 351-360 (2015).
    • (2015) Nature , vol.526 , pp. 351-360
    • Naldini, L.1
  • 19
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. the new frontier of genome engineering with CRISPR-Cas9
    • Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 20
    • 78651240053 scopus 로고    scopus 로고
    • Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modification
    • Stoddard, B. L. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19, 7-15 (2011).
    • (2011) Structure , vol.19 , pp. 7-15
    • Stoddard, B.L.1
  • 22
    • 84871519181 scopus 로고    scopus 로고
    • TALENs: A widely applicable technology for targeted genome editing
    • Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49-55 (2013).
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 49-55
    • Joung, J.K.1    Sander, J.D.2
  • 23
    • 0028061666 scopus 로고
    • Introduction of doublestrand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
    • Rouet, P., Smih, F. & Jasin, M. Introduction of doublestrand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096-8106 (1994).
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 8096-8106
    • Rouet, P.1    Smih, F.2    Jasin, M.3
  • 24
    • 0042839614 scopus 로고    scopus 로고
    • Mechanism and regulation of human non-homologous DNA end-joining
    • Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell Biol. 4, 712-720 (2003).
    • (2003) Nat. Rev. Mol. Cell Biol. , vol.4 , pp. 712-720
    • Lieber, M.R.1    Ma, Y.2    Pannicke, U.3    Schwarz, K.4
  • 25
    • 34547623918 scopus 로고    scopus 로고
    • Quality control of eukaryotic mRNA: Safeguarding cells from abnormal mRNA function
    • Isken, O. & Maquat, L. E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833-1856 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 1833-1856
    • Isken, O.1    Maquat, L.E.2
  • 26
    • 84961291537 scopus 로고    scopus 로고
    • Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy
    • Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400-403 (2016).
    • (2016) Science , vol.351 , pp. 400-403
    • Long, C.1
  • 27
    • 84907200149 scopus 로고    scopus 로고
    • Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA
    • Long, C. et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184-1188 (2014).
    • (2014) Science , vol.345 , pp. 1184-1188
    • Long, C.1
  • 28
    • 84963940775 scopus 로고    scopus 로고
    • In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy
    • Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403-407 (2016).
    • (2016) Science , vol.351 , pp. 403-407
    • Nelson, C.E.1
  • 29
    • 84963985350 scopus 로고    scopus 로고
    • In vivo gene editing in dystrophic mouse muscle and muscle stem cells
    • Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407-411 (2016).
    • (2016) Science , vol.351 , pp. 407-411
    • Tabebordbar, M.1
  • 30
    • 84960328499 scopus 로고    scopus 로고
    • CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice
    • Xu, L. et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol. Ther. 24, 564-569 (2016).
    • (2016) Mol. Ther. , vol.24 , pp. 564-569
    • Xu, L.1
  • 31
    • 84655170273 scopus 로고    scopus 로고
    • Safe harbours for the integration of new DNA in the human genome
    • Sadelain, M., Papapetrou, E. P. & Bushman, F. D. Safe harbours for the integration of new DNA in the human genome. Nat. Rev. Cancer 12, 51-58 (2012).
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 51-58
    • Sadelain, M.1    Papapetrou, E.P.2    Bushman, F.D.3
  • 32
    • 79960424171 scopus 로고    scopus 로고
    • In vivo genome editing restores haemostasis in a mouse model of haemophilia
    • Li, H. et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475, 217-221 (2011).
    • (2011) Nature , vol.475 , pp. 217-221
    • Li, H.1
  • 33
    • 84902095353 scopus 로고    scopus 로고
    • Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
    • Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551-553 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 551-553
    • Yin, H.1
  • 34
    • 84954188167 scopus 로고    scopus 로고
    • Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing
    • Oakes, B. L. et al. Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing. Nat. Commun. 7, 10194 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 10194
    • Oakes, B.L.1
  • 35
    • 84874601177 scopus 로고    scopus 로고
    • Highly active zinc-finger nucleases by extended modular assembly
    • Bhakta, M. S. et al. Highly active zinc-finger nucleases by extended modular assembly. Genome Res. 23, 530-538 (2013).
    • (2013) Genome Res. , vol.23 , pp. 530-538
    • Bhakta, M.S.1
  • 36
    • 84878861985 scopus 로고    scopus 로고
    • Expanding the repertoire of target sites for zinc finger nuclease-mediated genome modification
    • Wilson, K. A. et al. Expanding the repertoire of target sites for zinc finger nuclease-mediated genome modification. Mol. Ther. Nucleic Acids 2, e88 (2013).
    • (2013) Mol. Ther. Nucleic Acids , vol.2 , pp. e88
    • Wilson, K.A.1
  • 37
    • 66249147273 scopus 로고    scopus 로고
    • Precise genome modification in the crop species Zea mays using zinc-finger nucleases
    • Shukla, V. K. et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437-441 (2009).
    • (2009) Nature , vol.459 , pp. 437-441
    • Shukla, V.K.1
  • 38
    • 84898778301 scopus 로고    scopus 로고
    • A guide to genome engineering with programmable nucleases
    • Kim, H. & Kim, J.-S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321-334 (2014).
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 321-334
    • Kim, H.1    Kim, J.-S.2
  • 39
    • 84875157258 scopus 로고    scopus 로고
    • A library of TAL effector nucleases spanning the human genome
    • Kim, Y. et al. A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 31, 251-258 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 251-258
    • Kim, Y.1
  • 40
    • 84983792922 scopus 로고    scopus 로고
    • Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
    • Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766 (2015).
    • (2015) ELife , vol.3 , pp. e04766
    • Lin, S.1    Staahl, B.T.2    Alla, R.K.3    Doudna, J.A.4
  • 41
    • 84884165315 scopus 로고    scopus 로고
    • DNA targeting specificity of RNAguided Cas9 nucleases
    • Hsu, P. D. et al. DNA targeting specificity of RNAguided Cas9 nucleases. Nat. Biotechnol. 31, 827-832 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 827-832
    • Hsu, P.D.1
  • 42
    • 80052766645 scopus 로고    scopus 로고
    • An unbiased genome-wide analysis of zinc-finger nuclease specificity
    • Gabriel, R. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 29, 816-823 (2011).
    • (2011) Nat. Biotechnol. , vol.29 , pp. 816-823
    • Gabriel, R.1
  • 43
    • 84885979507 scopus 로고    scopus 로고
    • In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites
    • Sander, J. D. et al. In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. 41, e181 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , pp. e181
    • Sander, J.D.1
  • 44
    • 84923266604 scopus 로고    scopus 로고
    • GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
    • Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187-197 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 187-197
    • Tsai, S.Q.1
  • 45
    • 84923275611 scopus 로고    scopus 로고
    • Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
    • Frock, R. L. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33, 179-186 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 179-186
    • Frock, R.L.1
  • 46
    • 84923846574 scopus 로고    scopus 로고
    • Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
    • Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237-243 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 237-243
    • Kim, D.1
  • 47
    • 84923221641 scopus 로고    scopus 로고
    • Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors
    • Wang, X. et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat. Biotechnol. 33, 175-178 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 175-178
    • Wang, X.1
  • 48
    • 84884288934 scopus 로고    scopus 로고
    • Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
    • Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389 (2013).
    • (2013) Cell , vol.154 , pp. 1380-1389
    • Ran, F.A.1
  • 49
    • 84884160273 scopus 로고    scopus 로고
    • CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
    • Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 833-838
    • Mali, P.1
  • 50
    • 84902204289 scopus 로고    scopus 로고
    • Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
    • Tsai, S. Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569-576 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 569-576
    • Tsai, S.Q.1
  • 51
    • 84902210542 scopus 로고    scopus 로고
    • Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
    • Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577-582 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 577-582
    • Guilinger, J.P.1    Thompson, D.B.2    Liu, D.R.3
  • 52
    • 84896929630 scopus 로고    scopus 로고
    • Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
    • Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-284 (2013).
    • (2013) Nat. Biotechnol. , vol.32 , pp. 279-284
    • Fu, Y.1    Sander, J.D.2    Reyon, D.3    Cascio, V.M.4    Joung, J.K.5
  • 53
    • 84952943845 scopus 로고    scopus 로고
    • Rationally engineered Cas9 nucleases with improved specificity
    • Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88 (2016).
    • (2016) Science , vol.351 , pp. 84-88
    • Slaymaker, I.M.1
  • 54
    • 84963941043 scopus 로고    scopus 로고
    • High-fidelity CRISPR-Cas9 nucleases with no detec table genome-wide off-target effects
    • Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detec table genome-wide off-target effects. Nature 529, 490-495 (2016).
    • (2016) Nature , vol.529 , pp. 490-495
    • Kleinstiver, B.P.1
  • 55
    • 84949087122 scopus 로고    scopus 로고
    • DNA-binding-domain fusions enhance the targeting range and precision of Cas9
    • Bolukbasi, M. F. et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12, 1150-1156 (2015)
    • (2015) Nat. Methods , vol.12 , pp. 1150-1156
    • Bolukbasi, M.F.1
  • 56
    • 77957755672 scopus 로고    scopus 로고
    • Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion
    • Sollu, C. et al. Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res. 38, 8269-8276 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. 8269-8276
    • Sollu, C.1
  • 57
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 58
    • 84884289608 scopus 로고    scopus 로고
    • One-step generation of mice carrying reporter and conditional alleles by CRISPR/Casmediated genome engineering
    • Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Casmediated genome engineering. Cell 154, 1370-1379 (2013).
    • (2013) Cell , vol.154 , pp. 1370-1379
    • Yang, H.1
  • 59
    • 84908382195 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated genome engineering: An adeno-associated viral (AAV) vector toolbox
    • Senis, E. et al. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol. J. 9, 1402-1412 (2014).
    • (2014) Biotechnol. J. , vol.9 , pp. 1402-1412
    • Senis, E.1
  • 60
    • 84902315464 scopus 로고    scopus 로고
    • Targeted genome editing in human repopulating haematopoietic stem cells
    • Genovese, P. et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510, 235-240 (2014).
    • (2014) Nature , vol.510 , pp. 235-240
    • Genovese, P.1
  • 61
    • 84937558934 scopus 로고    scopus 로고
    • Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses
    • Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432-442 (2015).
    • (2015) Hum. Gene Ther. , vol.26 , pp. 432-442
    • Wang, D.1
  • 62
    • 84940184252 scopus 로고    scopus 로고
    • Generation of knock-in primary human T cells using Cas9 ribonucleoproteins
    • Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl Acad. Sci. USA 112, 10437-10442 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 10437-10442
    • Schumann, K.1
  • 63
    • 84922671463 scopus 로고    scopus 로고
    • Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9
    • Mandal, P. K. et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15, 643-652 (2014).
    • (2014) Cell Stem Cell , vol.15 , pp. 643-652
    • Mandal, P.K.1
  • 64
    • 85034700814 scopus 로고    scopus 로고
    • CRISPR-Cas9 delivery to hard-totransfect cells via membrane deformation
    • Han, X. et al. CRISPR-Cas9 delivery to hard-totransfect cells via membrane deformation. Sci. Adv. 1, e1500454 (2015).
    • (2015) Sci. Adv. , vol.1 , pp. e1500454
    • Han, X.1
  • 65
    • 84873444254 scopus 로고    scopus 로고
    • A vector-free microfluidic platform for intracellular delivery
    • Sharei, A. et al. A vector-free microfluidic platform for intracellular delivery. Proc. Natl Acad. Sci. USA 110, 2082-2087 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 2082-2087
    • Sharei, A.1
  • 66
    • 84961288301 scopus 로고    scopus 로고
    • Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
    • Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73-80 (2014).
    • (2014) Nat. Biotechnol. , vol.33 , pp. 73-80
    • Zuris, J.A.1
  • 67
    • 84930943161 scopus 로고    scopus 로고
    • Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
    • Liang, X. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44-53 (2015).
    • (2015) J. Biotechnol. , vol.208 , pp. 44-53
    • Liang, X.1
  • 68
    • 84901843996 scopus 로고    scopus 로고
    • Gene disruption by cellpenetrating peptide-mediated delivery of Cas9 protein and guide RNA
    • Ramakrishna, S. et al. Gene disruption by cellpenetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020-1027 (2014).
    • (2014) Genome Res. , vol.24 , pp. 1020-1027
    • Ramakrishna, S.1
  • 69
    • 84942821644 scopus 로고    scopus 로고
    • Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
    • Sun, W. et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. 54, 12029-12033 (2015).
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 12029-12033
    • Sun, W.1
  • 70
    • 84977267071 scopus 로고    scopus 로고
    • Optimizing T cell receptor gene therapy for hematologic malignancies
    • Morris, E. C. & Stauss, H. J. Optimizing T cell receptor gene therapy for hematologic malignancies. Blood 127, 3305-3311 (2016).
    • (2016) Blood , vol.127 , pp. 3305-3311
    • Morris, E.C.1    Stauss, H.J.2
  • 71
    • 84897550064 scopus 로고    scopus 로고
    • Gene therapy for Wiskott-Aldrich syndrome - Long-term efficacy and genotoxicity
    • Braun, C. J. et al. Gene therapy for Wiskott-Aldrich syndrome - long-term efficacy and genotoxicity. Sci. Transl Med. 6, 227ra33 (2014).
    • (2014) Sci. Transl Med. , vol.6 , pp. 227ra33
    • Braun, C.J.1
  • 72
    • 33748083041 scopus 로고    scopus 로고
    • Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC
    • Bankiewicz, K. S. et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther. 14, 564-570 (2006).
    • (2006) Mol. Ther. , vol.14 , pp. 564-570
    • Bankiewicz, K.S.1
  • 73
    • 84960882884 scopus 로고    scopus 로고
    • Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
    • Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328-333 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 328-333
    • Yin, H.1
  • 74
    • 84961917299 scopus 로고    scopus 로고
    • RNAi-nanoparticulate manipulation of gene expression as a new functional genomics tool in the liver
    • Yin, H. et al. RNAi-nanoparticulate manipulation of gene expression as a new functional genomics tool in the liver. J. Hepatol. 64, 899-907 (2016).
    • (2016) J. Hepatol. , vol.64 , pp. 899-907
    • Yin, H.1
  • 75
    • 84926061715 scopus 로고    scopus 로고
    • In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
    • Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33, 102-106 (2014).
    • (2014) Nat. Biotechnol. , vol.33 , pp. 102-106
    • Swiech, L.1
  • 76
    • 35948946526 scopus 로고    scopus 로고
    • Gene editing in human stem cells using zinc finger nucleases and integrasedefective lentiviral vector delivery
    • Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrasedefective lentiviral vector delivery. Nat. Biotechnol. 25, 1298-1306 (2007).
    • (2007) Nat. Biotechnol. , vol.25 , pp. 1298-1306
    • Lombardo, A.1
  • 77
    • 84963516618 scopus 로고    scopus 로고
    • Targeted gene addition in human CD34 hematopoietic cells for correction of X-linked chronic granulomatous disease
    • De Ravin, S. S. et al. Targeted gene addition in human CD34 hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat. Biotechnol. 34, 424-429 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 424-429
    • De Ravin, S.S.1
  • 78
    • 84949814888 scopus 로고    scopus 로고
    • Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors
    • Wang, J. et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 33, 1256-1263 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1256-1263
    • Wang, J.1
  • 79
    • 84860681545 scopus 로고    scopus 로고
    • Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer
    • Provasi, E. et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 18, 807-815 (2012).
    • (2012) Nat. Med. , vol.18 , pp. 807-815
    • Provasi, E.1
  • 80
    • 84942921684 scopus 로고    scopus 로고
    • Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template
    • Sather, B. D. et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl Med. 7, 307ra156 (2015).
    • (2015) Sci. Transl Med. , vol.7 , pp. 307ra156
    • Sather, B.D.1
  • 81
    • 84921779116 scopus 로고    scopus 로고
    • Adenoviral vector DNA for accurate genome editing with engineered nucleases
    • Holkers, M. et al. Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nat. Methods 11, 1051-1057 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 1051-1057
    • Holkers, M.1
  • 82
    • 55749107812 scopus 로고    scopus 로고
    • The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases
    • Weissman, I. L. & Shizuru, J. A. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112, 3543-3553 (2008).
    • (2008) Blood , vol.112 , pp. 3543-3553
    • Weissman, I.L.1    Shizuru, J.A.2
  • 83
    • 84961219372 scopus 로고    scopus 로고
    • The future of cancer treatment: Immunomodulation CARs and combination immunotherapy
    • Khalil, D. N., Smith, E. L., Brentjens, R. J. & Wolchok, J. D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13, 273-290 (2016).
    • (2016) Nat. Rev. Clin. Oncol. , vol.13 , pp. 273-290
    • Khalil, D.N.1    Smith, E.L.2    Brentjens, R.J.3    Wolchok, J.D.4
  • 84
    • 77955157281 scopus 로고    scopus 로고
    • Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome
    • DeKelver, R. C. et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res. 20, 1133-1142 (2010).
    • (2010) Genome Res. , vol.20 , pp. 1133-1142
    • DeKelver, R.C.1
  • 85
    • 34248595961 scopus 로고    scopus 로고
    • Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond
    • Cohen, C. J. et al. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67, 3898-3903 (2007).
    • (2007) Cancer Res. , vol.67 , pp. 3898-3903
    • Cohen, C.J.1
  • 86
    • 84938419048 scopus 로고    scopus 로고
    • Clinical scale zinc finger nucleasemediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma
    • Beane, J. D. et al. Clinical scale zinc finger nucleasemediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma. Mol. Ther. 23, 1380-1390 (2015).
    • (2015) Mol. Ther. , vol.23 , pp. 1380-1390
    • Beane, J.D.1
  • 87
    • 84886849781 scopus 로고    scopus 로고
    • Toward eliminating HLA class i expression to generate universal cells from allogeneic donors
    • Torikai, H. et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122, 1341-1349 (2013).
    • (2013) Blood , vol.122 , pp. 1341-1349
    • Torikai, H.1
  • 88
    • 84951263594 scopus 로고    scopus 로고
    • A new era of innovation for CAR T-cell therapy
    • Frederickson, R. M. A new era of innovation for CAR T-cell therapy. Mol. Ther. 23, 1795-1796 (2015).
    • (2015) Mol. Ther. , vol.23 , pp. 1795-1796
    • Frederickson, R.M.1
  • 89
    • 84964788489 scopus 로고    scopus 로고
    • Highly efficient homology-driven genome editing in human T cells by combining zincfinger nuclease mRNA and AAV6 donor delivery
    • Wang, J. et al. Highly efficient homology-driven genome editing in human T cells by combining zincfinger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Res. 44, e30 (2016).
    • (2016) Nucleic Acids Res. , vol.44 , pp. e30
    • Wang, J.1
  • 90
    • 84960192799 scopus 로고    scopus 로고
    • CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo
    • Wang, X. et al. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo. Arterioscler. Thromb. Vasc. Biol. 36, 783-786 (2016).
    • (2016) Arterioscler. Thromb. Vasc. Biol. , vol.36 , pp. 783-786
    • Wang, X.1
  • 91
    • 84906079358 scopus 로고    scopus 로고
    • Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing
    • Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488-492 (2014).
    • (2014) Circ. Res. , vol.115 , pp. 488-492
    • Ding, Q.1
  • 92
    • 84888261840 scopus 로고    scopus 로고
    • Robust ZFN-mediated genome editing in adult hemophilic mice
    • Anguela, X. M. et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122, 3283-3287 (2013).
    • (2013) Blood , vol.122 , pp. 3283-3287
    • Anguela, X.M.1
  • 93
    • 84943601842 scopus 로고    scopus 로고
    • In vivo genome editing of the albumin locus as a platform for protein replacement therapy
    • Sharma, R. et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126, 1777-1784 (2015).
    • (2015) Blood , vol.126 , pp. 1777-1784
    • Sharma, R.1
  • 94
    • 84923297110 scopus 로고    scopus 로고
    • A split-Cas9 architecture for inducible genome editing and transcription modulation
    • Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139-142 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 139-142
    • Zetsche, B.1    Volz, S.E.2    Zhang, F.3
  • 95
    • 84924322574 scopus 로고    scopus 로고
    • Rational design of a split-Cas9 enzyme complex
    • Wright, A. V. et al. Rational design of a split-Cas9 enzyme complex. Proc. Natl Acad. Sci. USA 112, 2984-2989 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 2984-2989
    • Wright, A.V.1
  • 96
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191 (2015).
    • (2015) Nature , vol.520 , pp. 186-191
    • Ran, F.A.1
  • 97
    • 84960863986 scopus 로고    scopus 로고
    • A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
    • Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34, 334-338 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 334-338
    • Yang, Y.1
  • 98
    • 44649091268 scopus 로고    scopus 로고
    • Mechanism by which electroporation mediates DNA migration and entry into cells and targeted tissues
    • Rols, M. P. Mechanism by which electroporation mediates DNA migration and entry into cells and targeted tissues. Methods Mol. Biol. 423, 19-33 (2008).
    • (2008) Methods Mol. Biol. , vol.423 , pp. 19-33
    • Rols, M.P.1
  • 99
    • 84901834420 scopus 로고    scopus 로고
    • Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
    • Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012-1019 (2014).
    • (2014) Genome Res. , vol.24 , pp. 1012-1019
    • Kim, S.1    Kim, D.2    Cho, S.W.3    Kim, J.4    Kim, J.S.5
  • 100
    • 84937905397 scopus 로고    scopus 로고
    • Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
    • Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985-989 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 985-989
    • Hendel, A.1
  • 101
    • 84990186301 scopus 로고    scopus 로고
    • GMPgrade mRNA electroporation of dendritic cells for clinical use
    • Derdelinckx, J., Berneman, Z. N. & Cools, N. GMPgrade mRNA electroporation of dendritic cells for clinical use. Methods Mol. Biol. 1428, 139-150 (2016).
    • (2016) Methods Mol. Biol. , vol.1428 , pp. 139-150
    • Derdelinckx, J.1    Berneman, Z.N.2    Cools, N.3
  • 102
    • 85020596389 scopus 로고    scopus 로고
    • Vector free genome editing of immune cells for cell therapy
    • DiTommaso, T., Gilbert, J., Bernstein, H. & Sharei, A. Vector free genome editing of immune cells for cell therapy. Mol. Ther. 24 (Suppl. 1), S229 (2016).
    • (2016) Mol. Ther. , vol.24 , pp. S229
    • DiTommaso, T.1    Gilbert, J.2    Bernstein, H.3    Sharei, A.4
  • 103
    • 84928393912 scopus 로고    scopus 로고
    • Efficient intracellular delivery of native proteins
    • DAstolfo, D. S. et al. Efficient intracellular delivery of native proteins. Cell 161, 674-690 (2015).
    • (2015) Cell , vol.161 , pp. 674-690
    • Dastolfo, D.S.1
  • 104
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013).
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 105
    • 84890033064 scopus 로고    scopus 로고
    • Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients
    • Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653-658 (2013).
    • (2013) Cell Stem Cell , vol.13 , pp. 653-658
    • Schwank, G.1
  • 106
    • 84901838361 scopus 로고    scopus 로고
    • Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering
    • Liu, J., Gaj, T., Patterson, J. T., Sirk, S. J. & Barbas, C. F. III. Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS ONE 9, e85755 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e85755
    • Liu, J.1    Gaj, T.2    Patterson, J.T.3    Sirk, S.J.4    Barbas, C.F.5
  • 107
    • 84864439768 scopus 로고    scopus 로고
    • Targeted gene knockout by direct delivery of zincfinger nuclease proteins
    • Gaj, T., Guo, J., Kato, Y., Sirk, S. J. & Barbas, C. F. III. Targeted gene knockout by direct delivery of zincfinger nuclease proteins. Nat. Methods 9, 805-807 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 805-807
    • Gaj, T.1    Guo, J.2    Kato, Y.3    Sirk, S.J.4    Barbas, C.F.5
  • 108
    • 0032805251 scopus 로고    scopus 로고
    • Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA
    • Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258-1266 (1999).
    • (1999) Gene Ther. , vol.6 , pp. 1258-1266
    • Liu, F.1    Song, Y.2    Liu, D.3
  • 109
    • 40549090572 scopus 로고    scopus 로고
    • Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human
    • Khorsandi, S. E. et al. Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human. Cancer Gene Ther. 15, 225-230 (2008).
    • (2008) Cancer Gene Ther. , vol.15 , pp. 225-230
    • Khorsandi, S.E.1
  • 110
    • 84930947142 scopus 로고    scopus 로고
    • In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency
    • Mahiny, A. J. et al. In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat. Biotechnol. 33, 584-586 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 584-586
    • Mahiny, A.J.1
  • 111
    • 84962593365 scopus 로고    scopus 로고
    • Efficient delivery of genomeediting proteins using bioreducible lipid nanoparticles
    • Wang, M. et al. Efficient delivery of genomeediting proteins using bioreducible lipid nanoparticles. Proc. Natl Acad. Sci. USA 113, 2868-2873 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 2868-2873
    • Wang, M.1
  • 112
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/ Cas-mediated genome engineering
    • Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/ Cas-mediated genome engineering. Cell 153, 910-918 (2013).
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1
  • 113
    • 84948447883 scopus 로고    scopus 로고
    • Genome-wide inactivation of porcine endogenous retroviruses (PERVs)
    • Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101-1104 (2015).
    • (2015) Science , vol.350 , pp. 1101-1104
    • Yang, L.1
  • 114
    • 84930618439 scopus 로고    scopus 로고
    • CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
    • Liang, P. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6, 363-372 (2015)
    • (2015) Protein Cell , vol.6 , pp. 363-372
    • Liang, P.1
  • 115
    • 84928775846 scopus 로고    scopus 로고
    • A prudent path forward for genomic engineering and germline gene modification
    • Baltimore, B. D. et al. A prudent path forward for genomic engineering and germline gene modification. Science 348, 36-38 (2015).
    • (2015) Science , vol.348 , pp. 36-38
    • Baltimore, B.D.1
  • 116
    • 85020571012 scopus 로고    scopus 로고
    • US National Library of Medicine ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01543152 (2016).
    • (2016)
  • 117
    • 85020605458 scopus 로고    scopus 로고
    • US National Library of Medicine ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00842634 (2016).
    • (2016)
  • 118
    • 84895487305 scopus 로고    scopus 로고
    • Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV
    • Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901-910 (2014).
    • (2014) N. Engl. J. Med. , vol.370 , pp. 901-910
    • Tebas, P.1
  • 119
    • 85020584278 scopus 로고    scopus 로고
    • US National Library of Medicine. ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02225665 (2015).
    • (2015)
  • 120
    • 85020579947 scopus 로고    scopus 로고
    • US National Library of Medicine. ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02500849 (2016).
    • (2016)
  • 121
    • 85020609882 scopus 로고    scopus 로고
    • US National Library of Medicine. ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02695160 (2016).
    • (2016)
  • 122
    • 85020568337 scopus 로고    scopus 로고
    • US National Library of Medicine. ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02702115 (2016).
    • (2016)
  • 123
    • 84908190503 scopus 로고    scopus 로고
    • CRISPR-mediated direct mutation of cancer genes in the mouse liver
    • Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380-385 (2014).
    • (2014) Nature , vol.514 , pp. 380-385
    • Xue, W.1
  • 124
    • 84857787568 scopus 로고    scopus 로고
    • Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles
    • Mueller, C. et al. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol. Ther. 20, 590-600 (2012).
    • (2012) Mol. Ther. , vol.20 , pp. 590-600
    • Mueller, C.1
  • 125
    • 84865364870 scopus 로고    scopus 로고
    • Playing the end game: DNA double-strand break repair pathway choice
    • Chapman, J. R., Taylor, M. R. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497-510 (2012).
    • (2012) Mol. Cell , vol.47 , pp. 497-510
    • Chapman, J.R.1    Taylor, M.R.2    Boulton, S.J.3
  • 126
    • 84976340668 scopus 로고    scopus 로고
    • CRISPR repair reveals causative mutation in a preclinical model of retinitis pigmentosa
    • Wu, W. H. et al. CRISPR repair reveals causative mutation in a preclinical model of retinitis pigmentosa. Mol. Ther. 24, 1388-1394 (2016).
    • (2016) Mol. Ther. , vol.24 , pp. 1388-1394
    • Wu, W.H.1
  • 127
    • 0038076102 scopus 로고    scopus 로고
    • Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks
    • Miller, D. G., Petek, L. M. & Russell, D. W. Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks. Mol. Cell. Biol. 23, 3550-3557 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3550-3557
    • Miller, D.G.1    Petek, L.M.2    Russell, D.W.3
  • 129
    • 78149425175 scopus 로고    scopus 로고
    • Regulation of homologous recombination in eukaryotes
    • Heyer, W. D., Ehmsen, K. T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113-139 (2010).
    • (2010) Annu. Rev. Genet. , vol.44 , pp. 113-139
    • Heyer, W.D.1    Ehmsen, K.T.2    Liu, J.3
  • 130
    • 33847682924 scopus 로고    scopus 로고
    • Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases
    • Moehle, E. A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA 104, 3055-3060 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 3055-3060
    • Moehle, E.A.1
  • 131
    • 80052292973 scopus 로고    scopus 로고
    • High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases
    • Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8, 753-755 (2011).
    • (2011) Nat. Methods , vol.8 , pp. 753-755
    • Chen, F.1
  • 132
    • 84929166074 scopus 로고    scopus 로고
    • Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
    • Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538-542 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 538-542
    • Maruyama, T.1
  • 133
    • 84929147435 scopus 로고    scopus 로고
    • Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells
    • Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543-548 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 543-548
    • Chu, V.T.1
  • 134
  • 135
    • 85007398218 scopus 로고    scopus 로고
    • Targeted approaches to induce immune tolerance for Pompe disease therapy
    • Doerfler, P. A. et al. Targeted approaches to induce immune tolerance for Pompe disease therapy. Mol. Ther. Methods Clin. Dev. 3, 15053 (2016).
    • (2016) Mol. Ther. Methods Clin. Dev. , vol.3 , pp. 15053
    • Doerfler, P.A.1
  • 136
    • 84960366869 scopus 로고    scopus 로고
    • Genome engineering using adeno-associated virus: Basic and clinical research applications
    • Gaj, T., Epstein, B. E. & Schaffer, D. V. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol. Ther. 24, 458-464 (2016).
    • (2016) Mol. Ther. , vol.24 , pp. 458-464
    • Gaj, T.1    Epstein, B.E.2    Schaffer, D.V.3
  • 137
    • 0142084745 scopus 로고    scopus 로고
    • LMO2-associated clonal T cell proliferation in two patients after gene therapy
    • Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy. Science 302, 415-419 (2003).
    • (2003) Science , vol.302 , pp. 415-419
    • Hacein-Bey-Abina, S.1
  • 138
    • 0034724857 scopus 로고    scopus 로고
    • Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease
    • Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669-672 (2000).
    • (2000) Science , vol.288 , pp. 669-672
    • Cavazzana-Calvo, M.1
  • 139
    • 84960389900 scopus 로고    scopus 로고
    • Engineered viruses as genome editing devices
    • Chen, X., Gonalves, M. A. et al. Engineered viruses as genome editing devices. Mol. Ther. 3, 447-457 (2016).
    • (2016) Mol. Ther. , vol.3 , pp. 447-457
    • Chen, X.1    Gonalves, M.A.2
  • 140
    • 34447535345 scopus 로고    scopus 로고
    • Engineering targeted viral vectors for gene therapy
    • Waehler, R., Russell, S. J. & Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8, 573-587 (2007).
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 573-587
    • Waehler, R.1    Russell, S.J.2    Curiel, D.T.3
  • 141
    • 44349170706 scopus 로고    scopus 로고
    • Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection
    • Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 302, 1073-1080 (2008).
    • (2008) Mol. Ther. , vol.302 , pp. 1073-1080
    • Zincarelli, C.1    Soltys, S.2    Rengo, G.3    Rabinowitz, J.E.4
  • 142
    • 68549087056 scopus 로고    scopus 로고
    • Viral vectors: From virology to transgene expression
    • Bouard, D., Alazard-Dany, D.,Cosset, F. L.,et al. Viral vectors: from virology to transgene expression. Br. J. Pharmacol. 157, 153-165 (2000).
    • (2000) Br. J. Pharmacol. , vol.157 , pp. 153-165
    • Bouard, D.1    Alazard-Dany, D.2    Cosset, F.L.3
  • 143
    • 85020586904 scopus 로고    scopus 로고
    • US National Library of Medicine. ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03041324 (2017).
    • (2017)
  • 144
    • 85020556162 scopus 로고    scopus 로고
    • US National Library of Medicine. ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01252641 (2015).
    • (2015)
  • 145
    • 85020609978 scopus 로고    scopus 로고
    • US National Library of Medicine. ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01079325 (2016).
    • (2016)
  • 146
    • 85020556194 scopus 로고    scopus 로고
    • US National Library of Medicine. ClinicalTrials.gov
    • US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00748501 (2012).
    • (2012)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.