메뉴 건너뛰기




Volumn 18, Issue 2, 2017, Pages 101-116

Order from clutter: Selective interactions at mammalian replication origins

Author keywords

[No Author keywords available]

Indexed keywords

CHROMATIN; DNA BINDING; DNA DETERMINATION; DNA REPLICATION; DNA SEQUENCE; DNA STRUCTURE; HIGH THROUGHPUT SEQUENCING; MATHEMATICAL MODEL; MOLECULAR INTERACTION; NONHUMAN; PRIORITY JOURNAL; PROTEIN DNA INTERACTION; REVIEW; ANIMAL; BIOLOGICAL MODEL; DNA REPLICATION ORIGIN; GENETICS; HUMAN; MAMMAL; TRANSCRIPTION INITIATION SITE;

EID: 84995784684     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg.2016.141     Document Type: Review
Times cited : (47)

References (177)
  • 1
    • 84867716702 scopus 로고    scopus 로고
    • Structural mutations in cancer: Mechanistic and functional insights
    • Inaki, K. & Liu, E. T. Structural mutations in cancer: mechanistic and functional insights. Trends Genet. 28, 550-559 (2012).
    • (2012) Trends Genet , vol.28 , pp. 550-559
    • Inaki, K.1    Liu, E.T.2
  • 3
    • 84881145018 scopus 로고    scopus 로고
    • DNA helicases involved in DNA repair and their roles in cancer
    • Brosh, R. M. Jr. DNA helicases involved in DNA repair and their roles in cancer. Nat. Rev. Cancer 13, 542-558 (2013).
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 542-558
    • Brosh, R.M.1
  • 4
    • 84939980016 scopus 로고    scopus 로고
    • Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity
    • Sousa, F. G. et al. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity. DNA Repair (Amst.) 28, 107-115 (2015).
    • (2015) DNA Repair (Amst) , vol.28 , pp. 107-115
    • Sousa, F.G.1
  • 7
    • 84971434492 scopus 로고    scopus 로고
    • Replicating large genomes: Divide and conquer
    • Rivera-Mulia, J. C. & Gilbert, D. M. Replicating large genomes: divide and conquer. Mol. Cell 62, 756-765 (2016).
    • (2016) Mol. Cell , vol.62 , pp. 756-765
    • Rivera-Mulia, J.C.1    Gilbert, D.M.2
  • 8
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: Many choices for appropriate answers
    • Mechali, M. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. Mol. Cell Biol. 11, 728-738 (2010).
    • (2010) Nat. Rev. Mol. Cell Biol , vol.11 , pp. 728-738
    • Mechali, M.1
  • 9
    • 77953632048 scopus 로고    scopus 로고
    • Eukaryotic chromosome DNA replication: Where, when, and how? Annu
    • Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N. & Oda, M. Eukaryotic chromosome DNA replication: where, when, and how? Annu. Rev. Biochem. 79, 89-130 (2010).
    • (2010) Rev. Biochem , vol.79 , pp. 89-130
    • Masai, H.1    Matsumoto, S.2    You, Z.3    Yoshizawa-Sugata, N.4    Oda, M.5
  • 10
    • 34447565003 scopus 로고    scopus 로고
    • Replication in context: Dynamic regulation of DNA replication patterns in metazoans
    • Aladjem, M. I. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat. Rev. Genet. 8, 588-600 (2007).
    • (2007) Nat. Rev. Genet , vol.8 , pp. 588-600
    • Aladjem, M.I.1
  • 12
    • 84911478490 scopus 로고    scopus 로고
    • Topologically associating domains are stable units of replication-Timing regulation
    • Pope, B. D. et al. Topologically associating domains are stable units of replication-Timing regulation. Nature 515, 402-405 (2014).
    • (2014) Nature , vol.515 , pp. 402-405
    • Pope, B.D.1
  • 13
    • 84898648796 scopus 로고    scopus 로고
    • A chromatin structure-based model accurately predicts DNA replication timing in human cells
    • Gindin, Y., Valenzuela, M. S., Aladjem, M. I., Meltzer, P. S. & Bilke, S. A chromatin structure-based model accurately predicts DNA replication timing in human cells. Mol. Syst. Biol. 10, 722 (2014).
    • (2014) Mol. Syst. Biol , vol.10 , pp. 722
    • Gindin, Y.1    Valenzuela, M.S.2    Aladjem, M.I.3    Meltzer, P.S.4    Bilke, S.5
  • 14
    • 80555157584 scopus 로고    scopus 로고
    • Genome-wide depletion of replication initiation events in highly transcribed regions
    • Martin, M. M. et al. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res. 21, 1822-1832 (2011).
    • (2011) Genome Res , vol.21 , pp. 1822-1832
    • Martin, M.M.1
  • 15
    • 84956702920 scopus 로고    scopus 로고
    • Replication origins: Determinants or consequences of nuclear organization?
    • Marks, A. B., Smith, O. K. & Aladjem, M. I. Replication origins: determinants or consequences of nuclear organization? Curr. Opin. Genet. Dev. 37, 67-75 (2016).
    • (2016) Curr Opin. Genet. Dev , vol.37 , pp. 67-75
    • Marks, A.B.1    Smith, O.K.2    Aladjem, M.I.3
  • 16
    • 84864690009 scopus 로고    scopus 로고
    • Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs
    • Besnard, E. et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19, 837-844 (2012).
    • (2012) Nat. Struct. Mol. Biol , vol.19 , pp. 837-844
    • Besnard, E.1
  • 17
    • 84877815977 scopus 로고    scopus 로고
    • Genetic and epigenetic determinants of DNA replication origins, position and activation
    • Mechali, M., Yoshida, K., Coulombe, P. & Pasero, P. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr. Opin. Genet. Dev. 23, 124-131 (2013).
    • (2013) Curr. Opin. Genet. Dev , vol.23 , pp. 124-131
    • Mechali, M.1    Yoshida, K.2    Coulombe, P.3    Pasero, P.4
  • 18
    • 84956605207 scopus 로고    scopus 로고
    • Replication timing is regulated by the number of MCMs loaded at origins
    • Das, S. P. et al. Replication timing is regulated by the number of MCMs loaded at origins. Genome Res. 25, 1886-1892 (2015).
    • (2015) Genome Res , vol.25 , pp. 1886-1892
    • Das, S.P.1
  • 20
    • 0042125189 scopus 로고    scopus 로고
    • Sequence-independent DNA binding and replication initiation by the human origin recognition complex
    • Vashee, S. et al. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17, 1894-1908 (2003).
    • (2003) Genes Dev , vol.17 , pp. 1894-1908
    • Vashee, S.1
  • 21
    • 75649109712 scopus 로고    scopus 로고
    • Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading
    • MacAlpine, H. K., Gordan, R., Powell, S. K., Hartemink, A. J. & MacAlpine, D. M. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res. 20, 201-211 (2010).
    • (2010) Genome Res , vol.20 , pp. 201-211
    • MacAlpine, H.K.1    Gordan, R.2    Powell, S.K.3    Hartemink, A.J.4    MacAlpine, D.M.5
  • 22
    • 84982102395 scopus 로고    scopus 로고
    • Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers
    • Miotto, B., Ji, Z. & Struhl, K. Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Proc. Natl Acad. Sci. USA 113, E4810-E4819 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E4810-E4819
    • Miotto, B.1    Ji, Z.2    Struhl, K.3
  • 23
    • 84871992012 scopus 로고    scopus 로고
    • Genome-wide mapping of human DNA-replication origins: Levels of transcription at ORC1 sites regulate origin selection and replication timing
    • Dellino, G. I. et al. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res. 23, 1-11 (2013).
    • (2013) Genome Res , vol.23 , pp. 1-11
    • Dellino, G.I.1
  • 24
    • 84956625318 scopus 로고    scopus 로고
    • The chromatin environment shapes DNA replication origin organization and defines origin classes
    • Cayrou, C. et al. The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res. 25, 1873-1885 (2015).
    • (2015) Genome Res , vol.25 , pp. 1873-1885
    • Cayrou, C.1
  • 25
    • 84963988156 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect-part III
    • Rivera-Mulia, J. C. & Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect-part III. Curr. Opin. Cell Biol. 40, 168-178 (2016).
    • (2016) Curr. Opin. Cell Biol , vol.40 , pp. 168-178
    • Rivera-Mulia, J.C.1    Gilbert, D.M.2
  • 26
    • 84983283330 scopus 로고    scopus 로고
    • DNA replication origins-where do we begin?
    • Prioleau, M. N. & MacAlpine, D. M. DNA replication origins-where do we begin? Genes Dev. 30, 1683-1697 (2016).
    • (2016) Genes Dev , vol.30 , pp. 1683-1697
    • Prioleau, M.N.1    MacAlpine, D.M.2
  • 28
    • 84901605710 scopus 로고    scopus 로고
    • Temporal and spatial regulation of eukaryotic DNA replication: From regulated initiation to genome-scale timing program
    • Renard-Guillet, C., Kanoh, Y., Shirahige, K. & Masai, H. Temporal and spatial regulation of eukaryotic DNA replication: from regulated initiation to genome-scale timing program. Semin. Cell Dev. Biol. 30, 110-120 (2014).
    • (2014) Semin. Cell Dev. Biol , vol.30 , pp. 110-120
    • Renard-Guillet, C.1    Kanoh, Y.2    Shirahige, K.3    Masai, H.4
  • 29
    • 79551581102 scopus 로고    scopus 로고
    • Chromatin signatures of the Drosophila replication program
    • Eaton, M. L. et al. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164-174 (2011).
    • (2011) Genome Res , vol.21 , pp. 164-174
    • Eaton, M.L.1
  • 31
    • 0017679506 scopus 로고
    • Cloning and mapping of the replication origin of Escherichia coli
    • Yasuda, S. & Hirota, Y. Cloning and mapping of the replication origin of Escherichia coli. Proc. Natl Acad. Sci. USA 74, 5458-5462 (1977).
    • (1977) Proc. Natl Acad. Sci. USA , vol.74 , pp. 5458-5462
    • Yasuda, S.1    Hirota, Y.2
  • 32
    • 0017327255 scopus 로고
    • Bidirection replication from a unique origin in a mini-F plasmid
    • Eichenlaub, R., Figurski, D. & Helinski, D. R. Bidirection replication from a unique origin in a mini-F plasmid. Proc. Natl Acad. Sci. USA 74, 1138-1141 (1977).
    • (1977) Proc. Natl Acad. Sci. USA , vol.74 , pp. 1138-1141
    • Eichenlaub, R.1    Figurski, D.2    Helinski, D.R.3
  • 33
    • 0018449422 scopus 로고
    • High-frequency transformation of yeast: Autonomous replication of hybrid DNA molecules
    • Struhl, K., Stinchcomb, D. T., Scherer, S. & Davis, R. W. High-frequency transformation of yeast: Autonomous replication of hybrid DNA molecules. Proc. Natl Acad. Sci. USA 76, 1035-1039 (1979).
    • (1979) Proc. Natl Acad. Sci. USA , vol.76 , pp. 1035-1039
    • Struhl, K.1    Stinchcomb, D.T.2    Scherer, S.3    Davis, R.W.4
  • 34
    • 0032516695 scopus 로고    scopus 로고
    • Genetic dissection of a mammalian replicator in the human β-globin locus
    • Aladjem, M. I., Rodewald, L. W., Kolman, J. L. & Wahl, G. M. Genetic dissection of a mammalian replicator in the human β-globin locus. Science 281, 1005-1009 (1998).
    • (1998) Science , vol.281 , pp. 1005-1009
    • Aladjem, M.I.1    Rodewald, L.W.2    Kolman, J.L.3    Wahl, G.M.4
  • 35
    • 2942628210 scopus 로고    scopus 로고
    • Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin
    • Altman, A. L. & Fanning, E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol. Cell. Biol. 24, 4138-4150 (2004).
    • (2004) Mol. Cell. Biol , vol.24 , pp. 4138-4150
    • Altman, A.L.1    Fanning, E.2
  • 36
    • 0037371705 scopus 로고    scopus 로고
    • Multiple functional elements comprise a mammalian chromosomal replicator
    • Liu, G., Malott, M. & Leffak, M. Multiple functional elements comprise a mammalian chromosomal replicator. Mol. Cell. Biol. 23, 1832-1842 (2003).
    • (2003) Mol. Cell. Biol , vol.23 , pp. 1832-1842
    • Liu, G.1    Malott, M.2    Leffak, M.3
  • 37
    • 12144287048 scopus 로고    scopus 로고
    • Modular structure of the human lamin B2 replicator
    • Paixao, S. et al. Modular structure of the human lamin B2 replicator. Mol. Cell. Biol. 24, 2958-2967 (2004).
    • (2004) Mol. Cell. Biol , vol.24 , pp. 2958-2967
    • Paixao, S.1
  • 38
    • 70549085855 scopus 로고    scopus 로고
    • Eukaryotic DNA replication control: Lock and load, then fire
    • Remus, D. & Diffley, J. F. Eukaryotic DNA replication control: lock and load, then fire. Curr. Opin. Cell Biol. 21, 771-777 (2009).
    • (2009) Curr. Opin. Cell Biol , vol.21 , pp. 771-777
    • Remus, D.1    Diffley, J.F.2
  • 39
    • 33751061774 scopus 로고    scopus 로고
    • The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast
    • Bolon, Y. T. & Bielinsky, A. K. The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast. Nucleic Acids Res. 34, 5069-5080 (2006).
    • (2006) Nucleic Acids Res , vol.34 , pp. 5069-5080
    • Bolon, Y.T.1    Bielinsky, A.K.2
  • 40
    • 1842509904 scopus 로고    scopus 로고
    • DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding
    • Remus, D., Beall, E. L. & Botchan, M. R. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J. 23, 897-907 (2004).
    • (2004) EMBO J , vol.23 , pp. 897-907
    • Remus, D.1    Beall, E.L.2    Botchan, M.R.3
  • 41
    • 84976556231 scopus 로고    scopus 로고
    • How and why multiple MCMs are loaded at origins of DNA replication
    • Das, S. P. & Rhind, N. How and why multiple MCMs are loaded at origins of DNA replication. Bioessays 38, 613-617 (2016).
    • (2016) Bioessays , vol.38 , pp. 613-617
    • Das, S.P.1    Rhind, N.2
  • 42
    • 34247868009 scopus 로고    scopus 로고
    • Dissection of mammalian replicators by a novel plasmid stability assay
    • Hashizume, T. & Shimizu, N. Dissection of mammalian replicators by a novel plasmid stability assay. J. Cell. Biochem. 101, 552-565 (2007).
    • (2007) J. Cell. Biochem , vol.101 , pp. 552-565
    • Hashizume, T.1    Shimizu, N.2
  • 43
    • 74049163810 scopus 로고    scopus 로고
    • Decreased replication origin activity in temporal transition regions
    • Guan, Z. et al. Decreased replication origin activity in temporal transition regions. J. Cell Biol. 187, 623-635 (2009).
    • (2009) J. Cell Biol , vol.187 , pp. 623-635
    • Guan, Z.1
  • 44
    • 84924565490 scopus 로고    scopus 로고
    • The hunt for origins of DNA replication in multicellular eukaryotes
    • Urban, J. M., Foulk, M. S., Casella, C. & Gerbi, S. A. The hunt for origins of DNA replication in multicellular eukaryotes. F1000Prime Rep. 7, 30 (2015).
    • (2015) F1000Prime Rep , vol.7 , pp. 30
    • Urban, J.M.1    Foulk, M.S.2    Casella, C.3    Gerbi, S.A.4
  • 45
    • 84921799659 scopus 로고    scopus 로고
    • Peaks cloaked in the mist: The landscape of mammalian replication origins
    • Hyrien, O. Peaks cloaked in the mist: The landscape of mammalian replication origins. J. Cell Biol. 208, 147-160 (2015).
    • (2015) J. Cell Biol , vol.208 , pp. 147-160
    • Hyrien, O.1
  • 46
    • 84954054852 scopus 로고    scopus 로고
    • Replication landscape of the human genome
    • Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016).
    • (2016) Nat. Commun , vol.7 , pp. 10208
    • Petryk, N.1
  • 47
    • 20144364292 scopus 로고    scopus 로고
    • Prevalence of quadruplexes in the human genome
    • Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908-2916 (2005).
    • (2005) Nucleic Acids Res , vol.33 , pp. 2908-2916
    • Huppert, J.L.1    Balasubramanian, S.2
  • 48
    • 84969508591 scopus 로고    scopus 로고
    • Distinct epigenetic features of differentiation-regulated replication origins
    • Smith, O. K. et al. Distinct epigenetic features of differentiation-regulated replication origins. Epigenetics Chromatin 9, 18 (2016).
    • (2016) Epigenetics Chromatin , vol.9 , pp. 18
    • Smith, O.K.1
  • 49
    • 84904170685 scopus 로고    scopus 로고
    • Epigenetic landscape for initiation of DNA replication
    • Sherstyuk, V. V., Shevchenko, A. I. & Zakian, S. M. Epigenetic landscape for initiation of DNA replication. Chromosoma 123, 183-199 (2014).
    • (2014) Chromosoma , vol.123 , pp. 183-199
    • Sherstyuk, V.V.1    Shevchenko, A.I.2    Zakian, S.M.3
  • 50
    • 84948071666 scopus 로고    scopus 로고
    • Rif1 binds to G quadruplexes and suppresses replication over long distances
    • Kanoh, Y. et al. Rif1 binds to G quadruplexes and suppresses replication over long distances. Nat. Struct. Mol. Biol. 22, 889-897 (2015).
    • (2015) Nat. Struct. Mol. Biol , vol.22 , pp. 889-897
    • Kanoh, Y.1
  • 51
    • 84880518655 scopus 로고    scopus 로고
    • Activation of a human chromosomal replication origin by protein tethering
    • Chen, X., Liu, G. & Leffak, M. Activation of a human chromosomal replication origin by protein tethering. Nucleic Acids Res. 41, 6460-6474 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. 6460-6474
    • Chen, X.1    Liu, G.2    Leffak, M.3
  • 52
    • 33646546043 scopus 로고    scopus 로고
    • Preventing gene silencing with human replicators
    • Fu, H. et al. Preventing gene silencing with human replicators. Nat. Biotechnol. 24, 572-576 (2006).
    • (2006) Nat. Biotechnol , vol.24 , pp. 572-576
    • Fu, H.1
  • 53
    • 84861889894 scopus 로고    scopus 로고
    • The chromatin backdrop of DNA replication: Lessons from genetics and genome-scale analyses
    • Conner, A. L. & Aladjem, M. I. The chromatin backdrop of DNA replication: lessons from genetics and genome-scale analyses. Biochim. Biophys. Acta 1819, 794-801 (2012).
    • (2012) Biochim. Biophys. Acta , vol.1819 , pp. 794-801
    • Conner, A.L.1    Aladjem, M.I.2
  • 54
    • 79961130938 scopus 로고    scopus 로고
    • Prevention of transcriptional silencing by a replicator-binding complex consisting of SWI/SNF
    • Huang, L. et al. Prevention of transcriptional silencing by a replicator-binding complex consisting of SWI/SNF, MeCP1 and hnRNP C1/C2. Mol. Cell. Biol. 31, 3472-3484 (2011).
    • (2011) MeCP1 and HnRNP C1/C2. Mol. Cell. Biol , vol.31 , pp. 3472-3484
    • Huang, L.1
  • 55
    • 84891803192 scopus 로고    scopus 로고
    • Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes
    • Majocchi, S., Aritonovska, E. & Mermod, N. Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes. Nucleic Acids Res. 42, 193-204 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. 193-204
    • Majocchi, S.1    Aritonovska, E.2    Mermod, N.3
  • 56
    • 84936777038 scopus 로고    scopus 로고
    • A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells
    • Muller-Kuller, U. et al. A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Res. 43, 1577-1592 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. 1577-1592
    • Muller-Kuller, U.1
  • 57
    • 84907470240 scopus 로고    scopus 로고
    • Chromatin structure and replication origins: Determinants of chromosome replication and nuclear organization
    • Smith, O. K. & Aladjem, M. I. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization. J. Mol. Biol. 426, 3330-3341 (2014).
    • (2014) J. Mol. Biol , Issue.426 , pp. 3330-3341
    • Smith, O.K.1    Aladjem, M.I.2
  • 58
    • 84879610545 scopus 로고    scopus 로고
    • Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle
    • Fu, H. et al. Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet. 9, e1003542 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1003542
    • Fu, H.1
  • 59
    • 76049105950 scopus 로고    scopus 로고
    • Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection
    • Karnani, N., Taylor, C. M., Malhotra, A. & Dutta, A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol. Biol. Cell 21, 393-404 (2010).
    • (2010) Mol. Biol. Cell , vol.21 , pp. 393-404
    • Karnani, N.1    Taylor, C.M.2    Malhotra, A.3    Dutta, A.4
  • 60
    • 84955380263 scopus 로고    scopus 로고
    • BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation
    • Feng, Y. et al. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J. 35, 176-192 (2016).
    • (2016) EMBO J , vol.35 , pp. 176-192
    • Feng, Y.1
  • 61
    • 84960156863 scopus 로고    scopus 로고
    • Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations
    • Goldar, A. et al. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations. Sci. Rep. 6, 22469 (2016).
    • (2016) Sci. Rep , vol.6 , pp. 22469
    • Goldar, A.1
  • 62
    • 84901599268 scopus 로고    scopus 로고
    • The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells
    • Picard, F. et al. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet. 10, e1004282 (2014).
    • (2014) PLoS Genet , vol.10 , pp. e1004282
    • Picard, F.1
  • 63
    • 84904247695 scopus 로고    scopus 로고
    • DNA replication and transcription programs respond to the same chromatin cues
    • Lubelsky, Y. et al. DNA replication and transcription programs respond to the same chromatin cues. Genome Res. 24, 1102-1114 (2014).
    • (2014) Genome Res , vol.24 , pp. 1102-1114
    • Lubelsky, Y.1
  • 64
    • 78149281634 scopus 로고    scopus 로고
    • The histone H4 lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells
    • Tardat, M. et al. The histone H4 lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat. Cell Biol. 12, 1086-1093 (2010).
    • (2010) Nat. Cell Biol , vol.12 , pp. 1086-1093
    • Tardat, M.1
  • 65
    • 84862818911 scopus 로고    scopus 로고
    • The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome
    • Kuo, A. J. et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 484, 115-119 (2012).
    • (2012) Nature , vol.484 , pp. 115-119
    • Kuo, A.J.1
  • 66
    • 31344462362 scopus 로고    scopus 로고
    • Regulation of replication licensing by acetyltransferase Hbo1
    • Iizuka, M., Matsui, T., Takisawa, H. & Smith, M. M. Regulation of replication licensing by acetyltransferase Hbo1. Mol. Cell. Biol. 26, 1098-1108 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 1098-1108
    • Iizuka, M.1    Matsui, T.2    Takisawa, H.3    Smith, M.M.4
  • 67
    • 84866485157 scopus 로고    scopus 로고
    • The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells
    • McConnell, K. H., Dixon, M. & Calvi, B. R. The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells. Development 139, 3880-3890 (2012).
    • (2012) Development , vol.139 , pp. 3880-3890
    • McConnell, K.H.1    Dixon, M.2    Calvi, B.R.3
  • 68
    • 84988430440 scopus 로고    scopus 로고
    • Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila
    • Li, Y., Armstrong, R. L., Duronio, R. J. & MacAlpine, D. M. Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila. Nucleic Acids Res. 44, 7204-7218 (2016).
    • (2016) Nucleic Acids Res , vol.44 , pp. 7204-7218
    • Li, Y.1    Armstrong, R.L.2    Duronio, R.J.3    MacAlpine, D.M.4
  • 69
    • 84864587822 scopus 로고    scopus 로고
    • DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis
    • Stroud, H. et al. DNA methyltransferases are required to induce heterochromatic re-replication in Arabidopsis. PLoS Genet. 8, e1002808 (2012).
    • (2012) PLoS Genet , vol.8 , pp. e1002808
    • Stroud, H.1
  • 70
    • 0028971217 scopus 로고
    • Participation of the human β-globin locus control region in initiation of DNA replication
    • Aladjem, M. I. et al. Participation of the human β-globin locus control region in initiation of DNA replication. Science 270, 815-819 (1995).
    • (1995) Science , vol.270 , pp. 815-819
    • Aladjem, M.I.1
  • 71
    • 0032245260 scopus 로고    scopus 로고
    • Distal sequences, but not ori-β/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin
    • Kalejta, R. F. et al. Distal sequences, but not ori-β/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Mol. Cell 2, 797-806 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 797-806
    • Kalejta, R.F.1
  • 72
    • 33645962818 scopus 로고    scopus 로고
    • Replication initiation from a novel origin identified in the Th2 cytokine cluster locus requires a distant conserved noncoding sequence
    • Hayashida, T. et al. Replication initiation from a novel origin identified in the Th2 cytokine cluster locus requires a distant conserved noncoding sequence. J. Immunol. 176, 5446-5454 (2006).
    • (2006) J. Immunol , vol.176 , pp. 5446-5454
    • Hayashida, T.1
  • 73
    • 78650186593 scopus 로고    scopus 로고
    • Cohesin organizes chromatin loops at DNA replication factories
    • Guillou, E. et al. Cohesin organizes chromatin loops at DNA replication factories. Genes Dev. 24, 2812-2822 (2010).
    • (2010) Genes Dev , vol.24 , pp. 2812-2822
    • Guillou, E.1
  • 74
    • 84957436525 scopus 로고    scopus 로고
    • Nuclear architecture organized by Rif1 underpins the replication-Timing program
    • Foti, R. et al. Nuclear architecture organized by Rif1 underpins the replication-Timing program. Mol. Cell 61, 260-273 (2016).
    • (2016) Mol. Cell , vol.61 , pp. 260-273
    • Foti, R.1
  • 75
    • 84893920696 scopus 로고    scopus 로고
    • Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex
    • Hiraga, S. et al. Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 28, 372-383 (2014).
    • (2014) Genes Dev , vol.28 , pp. 372-383
    • Hiraga, S.1
  • 76
    • 84884698163 scopus 로고    scopus 로고
    • A link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast
    • Hoggard, T., Shor, E., Muller, C. A., Nieduszynski, C. A. & Fox, C. A. A link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet. 9, e1003798 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1003798
    • Hoggard, T.1    Shor, E.2    Muller, C.A.3    Nieduszynski, C.A.4    Fox, C.A.5
  • 77
    • 17844364938 scopus 로고    scopus 로고
    • The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription
    • Nieduszynski, C. A., Blow, J. J. & Donaldson, A. D. The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription. Nucleic Acids Res. 33, 2410-2420 (2005).
    • (2005) Nucleic Acids Res , vol.33 , pp. 2410-2420
    • Nieduszynski, C.A.1    Blow, J.J.2    Donaldson, A.D.3
  • 78
    • 33646501007 scopus 로고    scopus 로고
    • Regulating the licensing of DNA replication origins in metazoa
    • DePamphilis, M. L. et al. Regulating the licensing of DNA replication origins in metazoa. Curr. Opin. Cell Biol. 18, 231-239 (2006).
    • (2006) Curr. Opin. Cell Biol , vol.18 , pp. 231-239
    • DePamphilis, M.L.1
  • 79
    • 75649092667 scopus 로고    scopus 로고
    • Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis
    • Hiratani, I. et al. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 20, 155-169 (2010).
    • (2010) Genome Res , vol.20 , pp. 155-169
    • Hiratani, I.1
  • 80
    • 0042743766 scopus 로고    scopus 로고
    • Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing
    • Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385-394 (2003).
    • (2003) Cell , vol.114 , pp. 385-394
    • Anglana, M.1    Apiou, F.2    Bensimon, A.3    Debatisse, M.4
  • 82
    • 84892178896 scopus 로고    scopus 로고
    • The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem cells
    • Gerhardt, J. et al. The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem cells. Mol. Cell 53, 19-31 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 19-31
    • Gerhardt, J.1
  • 83
    • 84928019072 scopus 로고    scopus 로고
    • The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage
    • Fu, H. et al. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage. Nat. Commun. 6, 6746 (2015).
    • (2015) Nat. Commun , vol.6 , pp. 6746
    • Fu, H.1
  • 84
    • 84922089150 scopus 로고    scopus 로고
    • Interplay between genetic and epigenetic factors governs common fragile site instability in cancer
    • Ozeri-Galai, E., Tur-Sinai, M., Bester, A. C. & Kerem, B. Interplay between genetic and epigenetic factors governs common fragile site instability in cancer. Cell. Mol. Life Sci. 71, 4495-4506 (2014).
    • (2014) Cell. Mol. Life Sci , vol.71 , pp. 4495-4506
    • Ozeri-Galai, E.1    Tur-Sinai, M.2    Bester, A.C.3    Kerem, B.4
  • 85
    • 2342618937 scopus 로고    scopus 로고
    • Replication origins: Why do we need so many?
    • Bielinsky, A. K. Replication origins: why do we need so many? Cell Cycle 2, 307-309 (2003).
    • (2003) Cell Cycle , vol.2 , pp. 307-309
    • Bielinsky, A.K.1
  • 86
    • 79961170861 scopus 로고    scopus 로고
    • How dormant origins promote complete genome replication
    • Blow, J. J., Ge, X. Q. & Jackson, D. A. How dormant origins promote complete genome replication. Trends Biochem. Sci. 36, 405-414 (2011).
    • (2011) Trends Biochem. Sci , Issue.36 , pp. 405-414
    • Blow, J.J.1    Ge, X.Q.2    Jackson, D.A.3
  • 87
    • 77953170728 scopus 로고    scopus 로고
    • Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage
    • Conti, C. et al. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res. 70, 4470-4480 (2010).
    • (2010) Cancer Res , vol.70 , pp. 4470-4480
    • Conti, C.1
  • 88
    • 84928209773 scopus 로고    scopus 로고
    • ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress
    • Chen, Y. H. et al. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol. Cell 58, 323-338 (2015).
    • (2015) Mol. Cell , vol.58 , pp. 323-338
    • Chen, Y.H.1
  • 89
    • 84862908473 scopus 로고    scopus 로고
    • Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes
    • Regairaz, M. et al. Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes. J. Cell Biol. 195, 739-749 (2011).
    • (2011) J. Cell Biol , vol.195 , pp. 739-749
    • Regairaz, M.1
  • 90
    • 0033043743 scopus 로고    scopus 로고
    • Replication origins in metazoan chromosomes: Fact or fiction?
    • DePamphilis, M. L. Replication origins in metazoan chromosomes: fact or fiction? Bioessays 21, 5-16 (1999).
    • (1999) Bioessays , vol.21 , pp. 5-16
    • DePamphilis, M.L.1
  • 91
    • 84924388069 scopus 로고    scopus 로고
    • ASAR15, a cis-Acting locus that controls chromosome-wide replication timing and stability of human chromosome 15
    • Donley, N., Smith, L. & Thayer, M. J. ASAR15, a cis-Acting locus that controls chromosome-wide replication timing and stability of human chromosome 15. PLoS Genet. 11, e1004923 (2015).
    • (2015) PLoS Genet , vol.11 , pp. e1004923
    • Donley, N.1    Smith, L.2    Thayer, M.J.3
  • 92
    • 84921601128 scopus 로고    scopus 로고
    • Possible role of H1 histone in replication timing
    • Flickinger, R. A. Possible role of H1 histone in replication timing. Dev. Growth Differ. 57, 1-9 (2015).
    • (2015) Dev. Growth Differ , vol.57 , pp. 1-9
    • Flickinger, R.A.1
  • 93
    • 77649236880 scopus 로고    scopus 로고
    • Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-Approaches
    • Schepers, A. & Papior, P. Why are we where we are? Understanding replication origins and initiation sites in eukaryotes using ChIP-Approaches. Chromosome Res. 18, 63-77 (2010).
    • (2010) Chromosome Res , vol.18 , pp. 63-77
    • Schepers, A.1    Papior, P.2
  • 94
    • 0026508417 scopus 로고
    • A yeast chromosomal origin of DNA replication defined by multiple functional elements
    • Marahrens, Y. & Stillman, B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255, 817-823 (1992).
    • (1992) Science , vol.255 , pp. 817-823
    • Marahrens, Y.1    Stillman, B.2
  • 95
    • 84856103786 scopus 로고    scopus 로고
    • Forkhead transcription factors establish origin timing and long-range clustering in S. Cerevisiae
    • Knott, S. R. et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 148, 99-111 (2012).
    • (2012) Cell , vol.148 , pp. 99-111
    • Knott, S.R.1
  • 96
    • 84960364560 scopus 로고    scopus 로고
    • Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase
    • Peace, J. M., Villwock, S. K., Zeytounian, J. L., Gan, Y. & Aparicio, O. M. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase. Genome Res. 26, 365-375 (2016).
    • (2016) Genome Res , vol.26 , pp. 365-375
    • Peace, J.M.1    Villwock, S.K.2    Zeytounian, J.L.3    Gan, Y.4    Aparicio, O.M.5
  • 97
    • 59649112122 scopus 로고    scopus 로고
    • Differential targeting of tetrahymena orc to ribosomal DNA and non-rDNA replication origins
    • Donti, T. R., Datta, S., Sandoval, P. Y. & Kapler, G. M. Differential targeting of Tetrahymena ORC to ribosomal DNA and non-rDNA replication origins. EMBO J. 28, 223-233 (2009).
    • (2009) EMBO J , vol.28 , pp. 223-233
    • Donti, T.R.1    Datta, S.2    Sandoval, P.Y.3    Kapler, G.M.4
  • 98
    • 0026769936 scopus 로고
    • Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins
    • Chiang, C. M. et al. Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc. Natl Acad. Sci. USA 89, 5799-5803 (1992).
    • (1992) Proc. Natl Acad. Sci. USA , vol.89 , pp. 5799-5803
    • Chiang, C.M.1
  • 99
    • 0035881485 scopus 로고    scopus 로고
    • Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus
    • Schepers, A. et al. Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J. 20, 4588-4602 (2001).
    • (2001) EMBO J , vol.20 , pp. 4588-4602
    • Schepers, A.1
  • 100
    • 0142028836 scopus 로고    scopus 로고
    • Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of oriP plasmids but is insufficient for transcription activation by Epstein-Barr nuclear antigen 1
    • Sears, J., Kolman, J., Wahl, G. M. & Aiyar, A. Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of oriP plasmids but is insufficient for transcription activation by Epstein-Barr nuclear antigen 1. J. Virol. 77, 11767-11780 (2003).
    • (2003) J. Virol , vol.77 , pp. 11767-11780
    • Sears, J.1    Kolman, J.2    Wahl, G.M.3    Aiyar, A.4
  • 101
    • 0030048803 scopus 로고    scopus 로고
    • Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator
    • Piirsoo, M., Ustav, E., Mandel, T., Stenlund, A. & Ustav, M. Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator. EMBO J. 15, 1-11 (1996).
    • (1996) EMBO J , vol.15 , pp. 1-11
    • Piirsoo, M.1    Ustav, E.2    Mandel, T.3    Stenlund, A.4    Ustav, M.5
  • 102
    • 33746191826 scopus 로고    scopus 로고
    • Brd4 is required for E2-mediated transcriptional activation but not genome partitioning of all papillomaviruses
    • McPhillips, M. G., Oliveira, J. G., Spindler, J. E., Mitra, R. & McBride, A. A. Brd4 is required for E2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J. Virol. 80, 9530-9543 (2006).
    • (2006) J. Virol , vol.80 , pp. 9530-9543
    • McPhillips, M.G.1    Oliveira, J.G.2    Spindler, J.E.3    Mitra, R.4    McBride, A.A.5
  • 103
    • 21644441975 scopus 로고    scopus 로고
    • Interaction of bovine papillomavirus E2 protein with Brd4 stabilizes its association with chromatin
    • McPhillips, M. G., Ozato, K. & McBride, A. A. Interaction of bovine papillomavirus E2 protein with Brd4 stabilizes its association with chromatin. J. Virol. 79, 8920-8932 (2005).
    • (2005) J. Virol , vol.79 , pp. 8920-8932
    • McPhillips, M.G.1    Ozato, K.2    McBride, A.A.3
  • 104
    • 33845629295 scopus 로고    scopus 로고
    • ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance
    • Parish, J. L., Bean, A. M., Park, R. B. & Androphy, E. J. ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol. Cell 24, 867-876 (2006).
    • (2006) Mol. Cell , vol.24 , pp. 867-876
    • Parish, J.L.1    Bean, A.M.2    Park, R.B.3    Androphy, E.J.4
  • 105
    • 0035092886 scopus 로고    scopus 로고
    • DNA replication control through interaction of E2F-RB and the origin recognition complex
    • Bosco, G., Du, W. & Orr-Weaver, T. L. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat. Cell Biol. 3, 289-295 (2001).
    • (2001) Nat. Cell Biol , vol.3 , pp. 289-295
    • Bosco, G.1    Du, W.2    Orr-Weaver, T.L.3
  • 106
    • 0347457073 scopus 로고    scopus 로고
    • Role for a Drosophila Myb-containing protein complex in site-specific DNA replication
    • Beall, E. L. et al. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420, 833-837 (2002).
    • (2002) Nature , vol.420 , pp. 833-837
    • Beall, E.L.1
  • 107
    • 3142768347 scopus 로고    scopus 로고
    • Chromatin regulates origin activity in Drosophila follicle cells
    • Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372-376 (2004).
    • (2004) Nature , vol.430 , pp. 372-376
    • Aggarwal, B.D.1    Calvi, B.R.2
  • 108
    • 33745807643 scopus 로고    scopus 로고
    • Differential binding of replication proteins across the human c-myc replicator
    • Ghosh, M. et al. Differential binding of replication proteins across the human c-myc replicator. Mol. Cell. Biol. 26, 5270-5283 (2006).
    • (2006) Mol. Cell. Biol , vol.26 , pp. 5270-5283
    • Ghosh, M.1
  • 109
    • 77749323402 scopus 로고    scopus 로고
    • The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation
    • Chowdhury, A. et al. The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation. Mol. Cell. Biol. 30, 1495-1507 (2010).
    • (2010) Mol. Cell. Biol , vol.30 , pp. 1495-1507
    • Chowdhury, A.1
  • 110
    • 77749330814 scopus 로고    scopus 로고
    • Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation
    • Thangavel, S. et al. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol. Cell. Biol. 30, 1382-1396 (2010).
    • (2010) Mol. Cell. Biol , vol.30 , pp. 1382-1396
    • Thangavel, S.1
  • 111
    • 84928170561 scopus 로고    scopus 로고
    • RecQL4 is required for the association of Mcm10 and Ctf4 with replication origins in human cells
    • Im, J. S. et al. RecQL4 is required for the association of Mcm10 and Ctf4 with replication origins in human cells. Cell Cycle 14, 1001-1009 (2015).
    • (2015) Cell Cycle , vol.14 , pp. 1001-1009
    • Im, J.S.1
  • 112
    • 53549122748 scopus 로고    scopus 로고
    • HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1
    • Miotto, B. & Struhl, K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 22, 2633-2638 (2008).
    • (2008) Genes Dev , vol.22 , pp. 2633-2638
    • Miotto, B.1    Struhl, K.2
  • 113
    • 73649089696 scopus 로고    scopus 로고
    • HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by geminin
    • Miotto, B. & Struhl, K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by geminin. Mol. Cell 37, 57-66 (2010).
    • (2010) Mol. Cell , vol.37 , pp. 57-66
    • Miotto, B.1    Struhl, K.2
  • 114
    • 80053130580 scopus 로고    scopus 로고
    • JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress
    • Miotto, B. & Struhl, K. JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress. Mol. Cell 44, 62-71 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 62-71
    • Miotto, B.1    Struhl, K.2
  • 115
    • 84976345852 scopus 로고    scopus 로고
    • A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells
    • Zhang, Y. et al. A replicator-specific binding protein essential for site-specific initiation of DNA replication in mammalian cells. Nat. Commun. 7, 11748 (2016).
    • (2016) Nat. Commun , vol.7 , pp. 11748
    • Zhang, Y.1
  • 117
    • 84942155704 scopus 로고    scopus 로고
    • Cdt1-binding protein GRWD1 is a novel histone-binding protein that facilitates MCM loading through its influence on chromatin architecture
    • Sugimoto, N. et al. Cdt1-binding protein GRWD1 is a novel histone-binding protein that facilitates MCM loading through its influence on chromatin architecture. Nucleic Acids Res. 43, 5898-5911 (2015).
    • (2015) Nucleic Acids Res , vol.43 , pp. 5898-5911
    • Sugimoto, N.1
  • 118
    • 33747873322 scopus 로고    scopus 로고
    • A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1
    • Jin, J., Arias, E. E., Chen, J., Harper, J. W. & Walter, J. C. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709-721 (2006).
    • (2006) Mol. Cell , vol.23 , pp. 709-721
    • Jin, J.1    Arias, E.E.2    Chen, J.3    Harper, J.W.4    Walter, J.C.5
  • 119
    • 33750509178 scopus 로고    scopus 로고
    • CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation
    • Higa, L. A. et al. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat. Cell Biol. 8, 1277-1283 (2006).
    • (2006) Nat. Cell Biol , vol.8 , pp. 1277-1283
    • Higa, L.A.1
  • 120
    • 59449090734 scopus 로고    scopus 로고
    • The homeotic protein HOXC13 is a member of human DNA replication complexes
    • Comelli, L. et al. The homeotic protein HOXC13 is a member of human DNA replication complexes. Cell Cycle 8, 454-459 (2009).
    • (2009) Cell Cycle , vol.8 , pp. 454-459
    • Comelli, L.1
  • 121
    • 70350539314 scopus 로고    scopus 로고
    • HOXD13 binds DNA replication origins to promote origin licensing and is inhibited by geminin
    • Salsi, V. et al. HOXD13 binds DNA replication origins to promote origin licensing and is inhibited by geminin. Mol. Cell. Biol. 29, 5775-5788 (2009).
    • (2009) Mol. Cell. Biol , vol.29 , pp. 5775-5788
    • Salsi, V.1
  • 122
    • 84884759957 scopus 로고    scopus 로고
    • How is epigenetic information maintained through DNA replication?
    • Budhavarapu, V. N., Chavez, M. & Tyler, J. K. How is epigenetic information maintained through DNA replication? Epigenetics Chromatin 6, 32 (2013).
    • (2013) Epigenetics Chromatin , vol.6 , pp. 32
    • Budhavarapu, V.N.1    Chavez, M.2    Tyler, J.K.3
  • 123
    • 84864453016 scopus 로고    scopus 로고
    • Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment
    • Demczuk, A. et al. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol. 10, e1001360 (2012).
    • (2012) PLoS Biol , vol.10 , pp. e1001360
    • Demczuk, A.1
  • 124
    • 84911478082 scopus 로고    scopus 로고
    • Genetic variation in human DNA replication timing
    • Koren, A. et al. Genetic variation in human DNA replication timing. Cell 159, 1015-1026 (2014).
    • (2014) Cell , vol.159 , pp. 1015-1026
    • Koren, A.1
  • 125
    • 84901611545 scopus 로고    scopus 로고
    • Allele-specific genome-wide profiling in human primary erythroblasts reveal replication program organization
    • Mukhopadhyay, R. et al. Allele-specific genome-wide profiling in human primary erythroblasts reveal replication program organization. PLoS Genet. 10, e1004319 (2014).
    • (2014) PLoS Genet , vol.10 , pp. e1004319
    • Mukhopadhyay, R.1
  • 126
    • 79551547443 scopus 로고    scopus 로고
    • Pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: Region specific effects and replication timing in the centromere
    • Li, P. C., Chretien, L., , Cote, J., , Kelly, T. J. & Forsburg, S. L. S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere. Cell Cycle. 10, 323-336 (2011).
    • (2011) Cell Cycle , vol.10 , pp. 323-336
    • Li, P.C.1    Chretien, L.2    Cote, J.3    Kelly, T.J.4    Forsburg, S.L.S.5
  • 127
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-Type locus
    • Hayashi, M. T., Takahashi, T. S., Nakagawa, T., Nakayama, J. & Masukata, H. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-Type locus. Nat. Cell Biol. 11, 357-362 (2009).
    • (2009) Nat. Cell Biol , vol.11 , pp. 357-362
    • Hayashi, M.T.1    Takahashi, T.S.2    Nakagawa, T.3    Nakayama, J.4    Masukata, H.5
  • 128
    • 84866479376 scopus 로고    scopus 로고
    • Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast
    • Tazumi, A. et al. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev. 26, 2050-2062 (2012).
    • (2012) Genes Dev , vol.26 , pp. 2050-2062
    • Tazumi, A.1
  • 129
    • 84974678290 scopus 로고    scopus 로고
    • Taz1-shelterin promotes facultative heterochromatin assembly at chromosome-internal sites containing late replication origins
    • Zofall, M., Smith, D. R., Mizuguchi, T., Dhakshnamoorthy, J. & Grewal, S. I. Taz1-shelterin promotes facultative heterochromatin assembly at chromosome-internal sites containing late replication origins. Mol. Cell 62, 862-874 (2016).
    • (2016) Mol. Cell , vol.62 , pp. 862-874
    • Zofall, M.1    Smith, D.R.2    Mizuguchi, T.3    Dhakshnamoorthy, J.4    Grewal, S.I.5
  • 130
    • 84955461919 scopus 로고    scopus 로고
    • Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing
    • Tashiro, S. et al. Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing. Nat. Commun. 7, 10393 (2016).
    • (2016) Nat. Commun , vol.7 , pp. 10393
    • Tashiro, S.1
  • 131
    • 77953004689 scopus 로고    scopus 로고
    • Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome
    • Schwaiger, M., Kohler, H., Oakeley, E. J., Stadler, M. B. & Schubeler, D. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 20, 771-780 (2010)
    • (2010) Genome Res , vol.20 , pp. 771-780
    • Schwaiger, M.1    Kohler, H.2    Oakeley, E.J.3    Stadler, M.B.4    Schubeler, D.5
  • 132
    • 84929145918 scopus 로고    scopus 로고
    • The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine methyltransferases on chromatin
    • Giri, S. et al. The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine methyltransferases on chromatin. eLife 4, e06496 (2015).
    • (2015) ELife , vol.4 , pp. e06496
    • Giri, S.1
  • 133
    • 84866427034 scopus 로고    scopus 로고
    • Rif1 regulates the replication timing domains on the human genome
    • Yamazaki, S. et al. Rif1 regulates the replication timing domains on the human genome. EMBO J. 31, 3667-3677 (2012).
    • (2012) EMBO J , vol.31 , pp. 3667-3677
    • Yamazaki, S.1
  • 135
    • 84971264708 scopus 로고    scopus 로고
    • The mutation spectrum in genomic late replication domains shapes mammalian GC content
    • Kenigsberg, E. et al. The mutation spectrum in genomic late replication domains shapes mammalian GC content. Nucleic Acids Res. 44, 4222-4232 (2016).
    • (2016) Nucleic Acids Res , vol.44 , pp. 4222-4232
    • Kenigsberg, E.1
  • 136
    • 83255189766 scopus 로고    scopus 로고
    • DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes
    • De, S. & Michor, F. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat. Biotechnol. 29, 1103-1108 (2011).
    • (2011) Nat. Biotechnol , vol.29 , pp. 1103-1108
    • De, S.1    Michor, F.2
  • 137
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba, T. et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761-770 (2011).
    • (2011) Genome Res , vol.20 , pp. 761-770
    • Ryba, T.1
  • 138
    • 65449142884 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect-part II
    • Hiratani, I., Takebayashi, S., Lu, J. & Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect-part II. Curr. Opin. Genet. Dev. 19, 142-149 (2009).
    • (2009) Curr. Opin. Genet. Dev , vol.19 , pp. 142-149
    • Hiratani, I.1    Takebayashi, S.2    Lu, J.3    Gilbert, D.M.4
  • 139
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe, E. et al. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 6, e1001011 (2010).
    • (2010) PLoS Genet , vol.6 , pp. e1001011
    • Yaffe, E.1
  • 140
    • 84865175192 scopus 로고    scopus 로고
    • Mammalian chromosomes contain cis-Acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes
    • Thayer, M. J. Mammalian chromosomes contain cis-Acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes. Bioessays 34, 760-770 (2012).
    • (2012) Bioessays , vol.34 , pp. 760-770
    • Thayer, M.J.1
  • 141
    • 70349897734 scopus 로고    scopus 로고
    • Temporal regulation of DNA replication in mammalian cells
    • Mendez, J. Temporal regulation of DNA replication in mammalian cells. Crit. Rev. Biochem. Mol. Biol. 44, 343-351 (2009).
    • (2009) Crit. Rev. Biochem. Mol. Biol , vol.44 , pp. 343-351
    • Mendez, J.1
  • 142
    • 0029670538 scopus 로고    scopus 로고
    • A distinct G1 step required to specify the Chinese hamster DHFR replication origin
    • Wu, J. R. & Gilbert, D. M. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science 271, 1270-1272 (1996).
    • (1996) Science , vol.271 , pp. 1270-1272
    • Wu, J.R.1    Gilbert, D.M.2
  • 143
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero, D., Mackenzie, A., Donaldson, A. & Zegerman, P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 30, 4805-4814 (2011).
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 144
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka, S., Nakato, R., Katou, Y., Shirahige, K. & Araki, H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr. Biol. 21, 2055-2063 (2011).
    • (2011) Curr. Biol , vol.21 , pp. 2055-2063
    • Tanaka, S.1    Nakato, R.2    Katou, Y.3    Shirahige, K.4    Araki, H.5
  • 145
    • 84966454878 scopus 로고    scopus 로고
    • Nongenetic functions of the genome
    • Bustin, M. & Misteli, T. Nongenetic functions of the genome. Science 352, aad6933 (2016).
    • (2016) Science , vol.352 , pp. aad6933
    • Bustin, M.1    Misteli, T.2
  • 146
    • 27944452746 scopus 로고    scopus 로고
    • Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
    • Norio, P. et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell 20, 575-587 (2005).
    • (2005) Mol. Cell , vol.20 , pp. 575-587
    • Norio, P.1
  • 147
    • 79951970806 scopus 로고    scopus 로고
    • Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression
    • Kawabata, T. et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol. Cell 41, 543-553 (2011).
    • (2011) Mol. Cell , vol.41 , pp. 543-553
    • Kawabata, T.1
  • 148
    • 84901293712 scopus 로고    scopus 로고
    • A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression
    • Luebben, S. W., Kawabata, T., Johnson, C. S., O'Sullivan, M. G. & Shima, N. A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression. Nucleic Acids Res. 42, 5605-5615 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. 5605-5615
    • Luebben, S.W.1    Kawabata, T.2    Johnson, C.S.3    O'Sullivan, M.G.4    Shima, N.5
  • 149
    • 0032497548 scopus 로고    scopus 로고
    • Regulation of DNA-replication origins during cell-cycle progression
    • Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 395, 618-621 (1998).
    • (1998) Nature , vol.395 , pp. 618-621
    • Shirahige, K.1
  • 150
    • 34547902426 scopus 로고    scopus 로고
    • The intra-S-phase checkpoint affects both DNA replication initiation and elongation: Single-cell and-DNA fiber analyses
    • Seiler, J. A., Conti, C., Syed, A., Aladjem, M. I. & Pommier, Y. The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and-DNA fiber analyses. Mol. Cell. Biol. 27, 5806-5818 (2007).
    • (2007) Mol. Cell. Biol , vol.27 , pp. 5806-5818
    • Seiler, J.A.1    Conti, C.2    Syed, A.3    Aladjem, M.I.4    Pommier, Y.5
  • 151
    • 84881471113 scopus 로고    scopus 로고
    • ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis
    • Naim, V., Wilhelm, T., Debatisse, M. & Rosselli, F. ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat. Cell Biol. 15, 1008-1015 (2013).
    • (2013) Nat. Cell Biol , vol.15 , pp. 1008-1015
    • Naim, V.1    Wilhelm, T.2    Debatisse, M.3    Rosselli, F.4
  • 152
    • 70449522304 scopus 로고    scopus 로고
    • Topoisomerase i suppresses genomic instability by preventing interference between replication and transcription
    • Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference betweenreplication and transcription. Nat. Cell Biol. 11, 1315-1324 (2009).
    • (2009) Nat. Cell Biol , vol.11 , pp. 1315-1324
    • Tuduri, S.1
  • 153
    • 52949092763 scopus 로고    scopus 로고
    • Replication fork movement sets chromatin loop size and origin choice in mammalian cells
    • Courbet, S. et al. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455, 557-560 (2008).
    • (2008) Nature , vol.455 , pp. 557-560
    • Courbet, S.1
  • 154
    • 37249025795 scopus 로고    scopus 로고
    • Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
    • Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331-3341 (2007).
    • (2007) Genes Dev , vol.21 , pp. 3331-3341
    • Ge, X.Q.1    Jackson, D.A.2    Blow, J.J.3
  • 155
    • 84906846861 scopus 로고    scopus 로고
    • Cis-Acting DNA sequence at a replication origin promotes repeat expansion to fragile X full mutation
    • Gerhardt, J. et al. Cis-Acting DNA sequence at a replication origin promotes repeat expansion to fragile X full mutation. J. Cell Biol. 206, 599-607 (2014).
    • (2014) J. Cell Biol , vol.206 , pp. 599-607
    • Gerhardt, J.1
  • 156
    • 34347346075 scopus 로고    scopus 로고
    • Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements
    • Dershowitz, A. et al. Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements. Mol. Cell. Biol. 27, 4652-4663 (2007).
    • (2007) Mol. Cell. Biol , vol.27 , pp. 4652-4663
    • Dershowitz, A.1
  • 157
    • 0037115462 scopus 로고    scopus 로고
    • ORC and the intra-S-phase checkpoint: A threshold regulates Rad53p activation in S phase
    • Shimada, K., Pasero, P. & Gasser, S. M. ORC and the intra-S-phase checkpoint: A threshold regulates Rad53p activation in S phase. Genes Dev. 16, 3236-3252 (2002).
    • (2002) Genes Dev , vol.16 , pp. 3236-3252
    • Shimada, K.1    Pasero, P.2    Gasser, S.M.3
  • 158
    • 79551661935 scopus 로고    scopus 로고
    • Cell-Type-specific replication initiation programs set fragility of the FRA3B fragile site
    • Letessier, A. et al. Cell-Type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470, 120-123 (2011).
    • (2011) Nature , vol.470 , pp. 120-123
    • Letessier, A.1
  • 159
    • 0037074013 scopus 로고    scopus 로고
    • ATR regulates fragile site stability
    • Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779-789 (2002).
    • (2002) Cell , vol.111 , pp. 779-789
    • Casper, A.M.1    Nghiem, P.2    Arlt, M.F.3    Glover, T.W.4
  • 160
    • 84912016575 scopus 로고    scopus 로고
    • Replication fork recovery and regulation of common fragile sites stability
    • Franchitto, A. & Pichierri, P. Replication fork recovery and regulation of common fragile sites stability. Cell. Mol. Life Sci. 71, 4507-4517 (2014).
    • (2014) Cell. Mol. Life Sci , vol.71 , pp. 4507-4517
    • Franchitto, A.1    Pichierri, P.2
  • 161
    • 84880784164 scopus 로고    scopus 로고
    • Stepwise activation of the ATR signaling pathway upon increasing replication stress impacts fragile site integrity
    • Koundrioukoff, S. et al. Stepwise activation of the ATR signaling pathway upon increasing replication stress impacts fragile site integrity. PLoS Genet. 9, e1003643 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1003643
    • Koundrioukoff, S.1
  • 162
    • 84873310832 scopus 로고    scopus 로고
    • Identification of early replicating fragile sites that contribute to genome instability
    • Barlow, J. H. et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620-632 (2013).
    • (2013) Cell , vol.152 , pp. 620-632
    • Barlow, J.H.1
  • 163
    • 40449120350 scopus 로고    scopus 로고
    • An oncogene-induced DNA damage model for cancer development
    • Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355 (2008).
    • (2008) Science , vol.319 , pp. 1352-1355
    • Halazonetis, T.D.1    Gorgoulis, V.G.2    Bartek, J.3
  • 164
    • 79953198187 scopus 로고    scopus 로고
    • Mutations in the pre-replication complex cause Meier-Gorlin syndrome
    • Bicknell, L. S. et al. Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat. Genet. 43, 356-359 (2011).
    • (2011) Nat. Genet , vol.43 , pp. 356-359
    • Bicknell, L.S.1
  • 165
    • 34547232986 scopus 로고    scopus 로고
    • Non-Transcriptional control of DNA replication by c-Myc
    • Dominguez-Sola, D. et al. Non-Transcriptional control of DNA replication by c-Myc. Nature 448, 445-451 (2007).
    • (2007) Nature , vol.448 , pp. 445-451
    • Dominguez-Sola, D.1
  • 166
    • 84881480253 scopus 로고    scopus 로고
    • Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress
    • Jones, R. M. et al. Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress. Oncogene 32, 3744-3753 (2013).
    • (2013) Oncogene , vol.32 , pp. 3744-3753
    • Jones, R.M.1
  • 167
    • 0037623356 scopus 로고    scopus 로고
    • A p53-dependent checkpoint pathway prevents rereplication
    • Vaziri, C. et al. A p53-dependent checkpoint pathway prevents rereplication. Mol. Cell 11, 997-1008 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 997-1008
    • Vaziri, C.1
  • 169
    • 84960367701 scopus 로고    scopus 로고
    • Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression
    • Sheu, Y. J., Kinney, J. B. & Stillman, B. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression. Genome Res. 26, 315-330 (2016).
    • (2016) Genome Res , vol.26 , pp. 315-330
    • Sheu, Y.J.1    Kinney, J.B.2    Stillman, B.3
  • 170
    • 34247606471 scopus 로고    scopus 로고
    • Cdc45-MCM-GINS, a new power player for DNA replication
    • Aparicio, T., Ibarra, A. & Mendez, J. Cdc45-MCM-GINS, a new power player for DNA replication. Cell Div. 1, 18 (2006).
    • (2006) Cell Div , vol.1 , pp. 18
    • Aparicio, T.1    Ibarra, A.2    Mendez, J.3
  • 171
    • 84867112038 scopus 로고    scopus 로고
    • The Octet eight protein kinases that control mammalian DNA replication
    • Depamphilis, M. L., de Renty, C. M., Ullah, Z. & Lee, C. Y. "The Octet": eight protein kinases that control mammalian DNA replication. Front. Physiol. 3, 368 (2012).
    • (2012) Front. Physiol , vol.3 , pp. 368
    • Depamphilis, M.L.1    De Renty, C.M.2    Ullah, Z.3    Lee, C.Y.4
  • 172
    • 84874695795 scopus 로고    scopus 로고
    • Helicase activation and establishment of replication forks at chromosomal origins of replication
    • Tanaka, S. & Araki, H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb. Perspect. Biol. 5, a010371 (2013).
    • (2013) Cold Spring Harb. Perspect. Biol , vol.5 , pp. a010371
    • Tanaka, S.1    Araki, H.2
  • 173
    • 84924744474 scopus 로고    scopus 로고
    • Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation
    • Sansam, C. G., Goins, D., Siefert, J. C., Clowdus, E. A. & Sansam, C. L. Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation. Genes Dev. 29, 555-566 (2015).
    • (2015) Genes Dev , vol.29 , pp. 555-566
    • Sansam, C.G.1    Goins, D.2    Siefert, J.C.3    Clowdus, E.A.4    Sansam, C.L.5
  • 174
    • 84877974933 scopus 로고    scopus 로고
    • Identification of a heteromeric complex that promotes DNA replication origin firing in human cells
    • Boos, D., Yekezare, M. & Diffley, J. F. Identification of a heteromeric complex that promotes DNA replication origin firing in human cells. Science 340, 981-984 (2013).
    • (2013) Science , vol.340 , pp. 981-984
    • Boos, D.1    Yekezare, M.2    Diffley, J.F.3
  • 176
    • 84919833329 scopus 로고    scopus 로고
    • Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation
    • Gao, Y. et al. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation. J. Biol. Chem. 289, 35987-36000 (2014).
    • (2014) J. Biol. Chem , vol.289 , pp. 35987-36000
    • Gao, Y.1
  • 177
    • 84956600520 scopus 로고    scopus 로고
    • The LMO2 oncogene regulates DNA replication in hematopoietic cells
    • Sincennes, M. C. et al. The LMO2 oncogene regulates DNA replication in hematopoietic cells. Proc. Natl Acad. Sci. USA 113, 1393-1398 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 1393-1398
    • Sincennes, M.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.