메뉴 건너뛰기




Volumn 38, Issue 7, 2016, Pages 613-617

How and why multiple MCMs are loaded at origins of DNA replication

Author keywords

MCM; nucleosome; ORC; replication origin; replication timing

Indexed keywords

DNA; MINICHROMOSOME MAINTENANCE PROTEIN;

EID: 84976556231     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201600012     Document Type: Review
Times cited : (27)

References (50)
  • 2
    • 84865635928 scopus 로고    scopus 로고
    • Spatio-temporal organization of replication in bacteria and eukaryotes (nucleoids and nuclei)
    • Jackson D, Wang X, Rudner DZ. 2012. Spatio-temporal organization of replication in bacteria and eukaryotes (nucleoids and nuclei). Cold Spring Harb Perspect Biol 4: a010389.
    • (2012) Cold Spring Harb Perspect Biol , vol.4 , pp. 010389
    • Jackson, D.1    Wang, X.2    Rudner, D.Z.3
  • 3
    • 84887403791 scopus 로고    scopus 로고
    • Time to be versatile: regulation of the replication timing program in budding yeast
    • Yoshida K, Poveda A, Pasero P. 2013. Time to be versatile: regulation of the replication timing program in budding yeast. J Mol Biol 425: 4696–705.
    • (2013) J Mol Biol , vol.425 , pp. 4696-4705
    • Yoshida, K.1    Poveda, A.2    Pasero, P.3
  • 4
    • 84875615689 scopus 로고    scopus 로고
    • DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability
    • Donley N, Thayer MJ. 2013. DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. Semin Cancer Biol 23: 80–9.
    • (2013) Semin Cancer Biol , vol.23 , pp. 80-89
    • Donley, N.1    Thayer, M.J.2
  • 6
    • 71449107031 scopus 로고    scopus 로고
    • The Mcm complex: unwinding the mechanism of a replicative helicase
    • Bochman ML, Schwacha A. 2009. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 73: 652–83.
    • (2009) Microbiol Mol Biol Rev , vol.73 , pp. 652-683
    • Bochman, M.L.1    Schwacha, A.2
  • 7
    • 70350751416 scopus 로고    scopus 로고
    • Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing
    • Remus D, Beuron F, Tolun G, Griffith JD, et al. 2009. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139: 719–30.
    • (2009) Cell , vol.139 , pp. 719-730
    • Remus, D.1    Beuron, F.2    Tolun, G.3    Griffith, J.D.4
  • 8
    • 73949091058 scopus 로고    scopus 로고
    • A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication
    • Evrin C, Clarke P, Zech J, Lurz R, et al. 2009. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106: 20240–5.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 20240-20245
    • Evrin, C.1    Clarke, P.2    Zech, J.3    Lurz, R.4
  • 9
    • 79953220813 scopus 로고    scopus 로고
    • MCM2-7 form double hexamers at licensed origins in Xenopus egg extract
    • Gambus A, Khoudoli GA, Jones RC, Blow JJ. 2011. MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 286: 11855–64.
    • (2011) J Biol Chem , vol.286 , pp. 11855-11864
    • Gambus, A.1    Khoudoli, G.A.2    Jones, R.C.3    Blow, J.J.4
  • 10
    • 84939545029 scopus 로고    scopus 로고
    • Structure of the eukaryotic MCM complex at 3.8 A
    • Li N, Zhai Y, Zhang Y, Li W, et al. 2015. Structure of the eukaryotic MCM complex at 3.8 A. Nature 524: 186–91.
    • (2015) Nature , vol.524 , pp. 186-191
    • Li, N.1    Zhai, Y.2    Zhang, Y.3    Li, W.4
  • 11
    • 84893787250 scopus 로고    scopus 로고
    • Prereplication-complex formation: a molecular double take
    • Yardimci H, Walter JC. 2014. Prereplication-complex formation: a molecular double take?. Nat Struct Mol Biol 21: 20–5.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 20-25
    • Yardimci, H.1    Walter, J.C.2
  • 12
    • 0037031834 scopus 로고    scopus 로고
    • MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts
    • Edwards MC, Tutter AV, Cvetic C, Gilbert CH, et al. 2002. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem 277: 33049–57.
    • (2002) J Biol Chem , vol.277 , pp. 33049-33057
    • Edwards, M.C.1    Tutter, A.V.2    Cvetic, C.3    Gilbert, C.H.4
  • 13
    • 0037319618 scopus 로고    scopus 로고
    • Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem
    • Hyrien O, Marheineke K, Goldar A. 2003. Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays 25: 116–25.
    • (2003) Bioessays , vol.25 , pp. 116-125
    • Hyrien, O.1    Marheineke, K.2    Goldar, A.3
  • 14
    • 84902107009 scopus 로고    scopus 로고
    • The contribution of dormant origins to genome stability: from cell biology to human genetics
    • Alver RC, Chadha GS, Blow JJ. 2014. The contribution of dormant origins to genome stability: from cell biology to human genetics. DNA Repair (Amst) 19: 182–9.
    • (2014) DNA Repair (Amst) , vol.19 , pp. 182-189
    • Alver, R.C.1    Chadha, G.S.2    Blow, J.J.3
  • 15
    • 0142215475 scopus 로고    scopus 로고
    • Global analysis of protein expression in yeast
    • Ghaemmaghami S, Huh WK, Bower K, Howson RW, et al. 2003. Global analysis of protein expression in yeast. Nature 425: 737–41.
    • (2003) Nature , vol.425 , pp. 737-741
    • Ghaemmaghami, S.1    Huh, W.K.2    Bower, K.3    Howson, R.W.4
  • 17
    • 84922302149 scopus 로고    scopus 로고
    • MCM Paradox: abundance of eukaryotic replicative helicases and genomic integrity
    • Das M, Singh S, Pradhan S, Narayan G. 2014. MCM Paradox: abundance of eukaryotic replicative helicases and genomic integrity. Mol Biol Int 2014: 574850.
    • (2014) Mol Biol Int , vol.2014 , pp. 574850
    • Das, M.1    Singh, S.2    Pradhan, S.3    Narayan, G.4
  • 18
    • 33747432986 scopus 로고    scopus 로고
    • Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress
    • Woodward AM, Gohler T, Luciani MG, Oehlmann M, et al. 2006. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173: 673–83.
    • (2006) J Cell Biol , vol.173 , pp. 673-683
    • Woodward, A.M.1    Gohler, T.2    Luciani, M.G.3    Oehlmann, M.4
  • 19
    • 48249084972 scopus 로고    scopus 로고
    • Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication
    • Ibarra A, Schwob E, Mendez J. 2008. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci U S A 105: 8956–61.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 8956-8961
    • Ibarra, A.1    Schwob, E.2    Mendez, J.3
  • 20
    • 84876515294 scopus 로고    scopus 로고
    • Diminished origin-licensing capacity specifically sensitizes tumor cells to replication stress
    • Zimmerman KM, Jones RM, Petermann E, Jeggo PA. 2013. Diminished origin-licensing capacity specifically sensitizes tumor cells to replication stress. Mol Cancer Res 11: 370–80.
    • (2013) Mol Cancer Res , vol.11 , pp. 370-380
    • Zimmerman, K.M.1    Jones, R.M.2    Petermann, E.3    Jeggo, P.A.4
  • 21
    • 10944235448 scopus 로고    scopus 로고
    • ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication
    • Bowers JL, Randell JC, Chen S, Bell SP. 2004. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 16: 967–78.
    • (2004) Mol Cell , vol.16 , pp. 967-978
    • Bowers, J.L.1    Randell, J.C.2    Chen, S.3    Bell, S.P.4
  • 22
    • 84956605207 scopus 로고    scopus 로고
    • Replication timing is regulated by the number of MCMs loaded at origins
    • Das SP, Borrman T, Liu VW, Yang SC, et al. 2015. Replication timing is regulated by the number of MCMs loaded at origins. Genome Res 25: 1886–92.
    • (2015) Genome Res , vol.25 , pp. 1886-1892
    • Das, S.P.1    Borrman, T.2    Liu, V.W.3    Yang, S.C.4
  • 23
    • 77956253770 scopus 로고    scopus 로고
    • Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing
    • Yang SC, Rhind N, Bechhoefer J. 2010. Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol Syst Biol 6: 404.
    • (2010) Mol Syst Biol , vol.6 , pp. 404
    • Yang, S.C.1    Rhind, N.2    Bechhoefer, J.3
  • 24
    • 0028098812 scopus 로고
    • Two steps in the assembly of complexes at yeast replication origins in vivo
    • Diffley JF, Cocker JH, Dowell SJ, Rowley A. 1994. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78: 303–16.
    • (1994) Cell , vol.78 , pp. 303-316
    • Diffley, J.F.1    Cocker, J.H.2    Dowell, S.J.3    Rowley, A.4
  • 25
    • 0030030623 scopus 로고    scopus 로고
    • An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast
    • Cocker JH, Piatti S, Santocanale C, Nasmyth K, et al. 1996. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379: 180–2.
    • (1996) Nature , vol.379 , pp. 180-182
    • Cocker, J.H.1    Piatti, S.2    Santocanale, C.3    Nasmyth, K.4
  • 26
    • 0032110626 scopus 로고    scopus 로고
    • Nucleotide-dependent prereplicative complex assembly by Cdc6p, a homolog of eukaryotic and prokaryotic clamp-loaders
    • Perkins G, Diffley JF. 1998. Nucleotide-dependent prereplicative complex assembly by Cdc6p, a homolog of eukaryotic and prokaryotic clamp-loaders. Mol Cell 2: 23–32.
    • (1998) Mol Cell , vol.2 , pp. 23-32
    • Perkins, G.1    Diffley, J.F.2
  • 27
    • 0032472223 scopus 로고    scopus 로고
    • Discrete start sites for DNA synthesis in the yeast ARS1 origin
    • Bielinsky AK, Gerbi SA. 1998. Discrete start sites for DNA synthesis in the yeast ARS1 origin. Science 279: 95–8.
    • (1998) Science , vol.279 , pp. 95-98
    • Bielinsky, A.K.1    Gerbi, S.A.2
  • 28
    • 84928925884 scopus 로고    scopus 로고
    • Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly
    • Belsky JA, MacAlpine HK, Lubelsky Y, Hartemink AJ, et al. 2015. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes Dev 29: 212–24.
    • (2015) Genes Dev , vol.29 , pp. 212-224
    • Belsky, J.A.1    MacAlpine, H.K.2    Lubelsky, Y.3    Hartemink, A.J.4
  • 29
    • 84951276233 scopus 로고    scopus 로고
    • Post-licensing Specification of Eukaryotic Replication Origins by Facilitated Mcm2-7 Sliding along DNA
    • Gros J, Kumar C, Lynch G, Yadav T, et al. 2015. Post-licensing Specification of Eukaryotic Replication Origins by Facilitated Mcm2-7 Sliding along DNA. Mol Cell 60: 797–807.
    • (2015) Mol Cell , vol.60 , pp. 797-807
    • Gros, J.1    Kumar, C.2    Lynch, G.3    Yadav, T.4
  • 30
    • 33947137710 scopus 로고    scopus 로고
    • Dynamics of replication-independent histone turnover in budding yeast
    • Dion MF, Kaplan T, Kim M, Buratowski S, et al. 2007. Dynamics of replication-independent histone turnover in budding yeast. Science 315: 1405–8.
    • (2007) Science , vol.315 , pp. 1405-1408
    • Dion, M.F.1    Kaplan, T.2    Kim, M.3    Buratowski, S.4
  • 31
    • 77952996319 scopus 로고    scopus 로고
    • Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones
    • Deal RB, Henikoff JG, Henikoff S. 2010. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328: 1161–4.
    • (2010) Science , vol.328 , pp. 1161-1164
    • Deal, R.B.1    Henikoff, J.G.2    Henikoff, S.3
  • 32
    • 77950962157 scopus 로고    scopus 로고
    • Conserved nucleosome positioning defines replication origins
    • Eaton ML, Galani K, Kang S, Bell SP, et al. 2010. Conserved nucleosome positioning defines replication origins. Genes Dev 24: 748–53.
    • (2010) Genes Dev , vol.24 , pp. 748-753
    • Eaton, M.L.1    Galani, K.2    Kang, S.3    Bell, S.P.4
  • 33
    • 84884698163 scopus 로고    scopus 로고
    • A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast
    • Hoggard T, Shor E, Muller CA, Nieduszynski CA, et al. 2013. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 9: e1003798.
    • (2013) PLoS Genet , vol.9
    • Hoggard, T.1    Shor, E.2    Muller, C.A.3    Nieduszynski, C.A.4
  • 34
    • 84907910826 scopus 로고    scopus 로고
    • Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae
    • Soriano I, Morafraile EC, Vazquez E, Antequera F, et al. 2014. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae. BMC Genomics 15: 791.
    • (2014) BMC Genomics , vol.15 , pp. 791
    • Soriano, I.1    Morafraile, E.C.2    Vazquez, E.3    Antequera, F.4
  • 35
    • 84856281556 scopus 로고    scopus 로고
    • Rif1 is a global regulator of timing of replication origin firing in fission yeast
    • Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, et al. 2012. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 26: 137–50.
    • (2012) Genes Dev , vol.26 , pp. 137-150
    • Hayano, M.1    Kanoh, Y.2    Matsumoto, S.3    Renard-Guillet, C.4
  • 36
    • 79955957615 scopus 로고    scopus 로고
    • The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation
    • Lian HY, Robertson ED, Hiraga S, Alvino GM, et al. 2011. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell 22: 1753–65.
    • (2011) Mol Biol Cell , vol.22 , pp. 1753-1765
    • Lian, H.Y.1    Robertson, E.D.2    Hiraga, S.3    Alvino, G.M.4
  • 37
    • 2442660397 scopus 로고    scopus 로고
    • The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
    • Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. 2004. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol 24: 4769–80.
    • (2004) Mol Cell Biol , vol.24 , pp. 4769-4780
    • Aparicio, J.G.1    Viggiani, C.J.2    Gibson, D.G.3    Aparicio, O.M.4
  • 38
    • 84856103786 scopus 로고    scopus 로고
    • Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae
    • Knott SR, Peace JM, Ostrow AZ, Gan Y, et al. 2012. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 148: 99–111.
    • (2012) Cell , vol.148 , pp. 99-111
    • Knott, S.R.1    Peace, J.M.2    Ostrow, A.Z.3    Gan, Y.4
  • 39
    • 84856735748 scopus 로고    scopus 로고
    • The dynamics of replication licensing in live Caenorhabditis elegans embryos
    • Sonneville R, Querenet M, Craig A, Gartner A, et al. 2012. The dynamics of replication licensing in live Caenorhabditis elegans embryos. J Cell Biol 196: 233–46.
    • (2012) J Cell Biol , vol.196 , pp. 233-246
    • Sonneville, R.1    Querenet, M.2    Craig, A.3    Gartner, A.4
  • 40
    • 84863872155 scopus 로고    scopus 로고
    • Replication timing and its emergence from stochastic processes
    • Bechhoefer J, Rhind N. 2012. Replication timing and its emergence from stochastic processes. Trends Genet 28: 374–81.
    • (2012) Trends Genet , vol.28 , pp. 374-381
    • Bechhoefer, J.1    Rhind, N.2
  • 41
    • 77649233258 scopus 로고    scopus 로고
    • Reconciling stochastic origin firing with defined replication timing
    • Rhind N, Yang SC, Bechhoefer J. 2010. Reconciling stochastic origin firing with defined replication timing. Chromosome Res 18: 35–43.
    • (2010) Chromosome Res , vol.18 , pp. 35-43
    • Rhind, N.1    Yang, S.C.2    Bechhoefer, J.3
  • 42
    • 84868028972 scopus 로고    scopus 로고
    • Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
    • Marguerat S, Schmidt A, Codlin S, Chen W, et al. 2012. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151: 671–83.
    • (2012) Cell , vol.151 , pp. 671-683
    • Marguerat, S.1    Schmidt, A.2    Codlin, S.3    Chen, W.4
  • 43
    • 84859927986 scopus 로고    scopus 로고
    • Genome-wide identification and characterization of replication origins by deep sequencing
    • Xu J, Yanagisawa Y, Tsankov AM, Hart C, et al. 2012. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol 13: R27.
    • (2012) Genome Biol , vol.13 , pp. 27
    • Xu, J.1    Yanagisawa, Y.2    Tsankov, A.M.3    Hart, C.4
  • 44
    • 0034007256 scopus 로고    scopus 로고
    • Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase
    • van Steensel B, Henikoff S. 2000. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18: 424–8.
    • (2000) Nat Biotechnol , vol.18 , pp. 424-428
    • van Steensel, B.1    Henikoff, S.2
  • 45
    • 77951183112 scopus 로고    scopus 로고
    • Measurement of replication structures at the nanometer scale using super-resolution light microscopy
    • Baddeley D, Chagin VO, Schermelleh L, Martin S, et al. 2010. Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res 38: e8.
    • (2010) Nucleic Acids Res , vol.38
    • Baddeley, D.1    Chagin, V.O.2    Schermelleh, L.3    Martin, S.4
  • 46
    • 33745239698 scopus 로고    scopus 로고
    • Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories
    • Kitamura E, Blow JJ, Tanaka TU. 2006. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125: 1297–308.
    • (2006) Cell , vol.125 , pp. 1297-1308
    • Kitamura, E.1    Blow, J.J.2    Tanaka, T.U.3
  • 47
    • 77951537332 scopus 로고    scopus 로고
    • Stoichiometry and architecture of active DNA replication machinery in Escherichia coli
    • Reyes-Lamothe R, Sherratt DJ, Leake MC. 2010. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328: 498–501.
    • (2010) Science , vol.328 , pp. 498-501
    • Reyes-Lamothe, R.1    Sherratt, D.J.2    Leake, M.C.3
  • 48
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D, Mackenzie A, Donaldson A, Zegerman P. 2011. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30: 4805–14.
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 49
    • 84897581176 scopus 로고    scopus 로고
    • Total synthesis of a functional designer eukaryotic chromosome
    • Annaluru N, Muller H, Mitchell LA, Ramalingam S, et al. 2014. Total synthesis of a functional designer eukaryotic chromosome. Science 344: 55–8.
    • (2014) Science , vol.344 , pp. 55-58
    • Annaluru, N.1    Muller, H.2    Mitchell, L.A.3    Ramalingam, S.4
  • 50
    • 0035923508 scopus 로고    scopus 로고
    • The Schizosaccharomyces pombe origin recognition complex interacts with multiple AT-rich regions of the replication origin DNA by means of the AT-hook domains of the spOrc4 protein
    • Lee JK, Moon KY, Jiang Y, Hurwitz J. 2001. The Schizosaccharomyces pombe origin recognition complex interacts with multiple AT-rich regions of the replication origin DNA by means of the AT-hook domains of the spOrc4 protein. Proc Natl Acad Sci U S A 98: 13589–94.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 13589-13594
    • Lee, J.K.1    Moon, K.Y.2    Jiang, Y.3    Hurwitz, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.