메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage

Author keywords

[No Author keywords available]

Indexed keywords

DNA TOPOISOMERASE; DOUBLE STRANDED DNA; ENDONUCLEASE; ENDONUCLEASE MUS81; OKAZAKI FRAGMENT; SMALL INTERFERING RNA; UNCLASSIFIED DRUG; DNA BINDING PROTEIN; MUS81 PROTEIN, HUMAN; XERODERMA PIGMENTOSUM GROUP F PROTEIN;

EID: 84928019072     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms7746     Document Type: Article
Times cited : (51)

References (65)
  • 1
    • 0032497548 scopus 로고    scopus 로고
    • Regulation of DNA-replication origins during cell-cycle progression
    • Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 395, 618-621 (1998).
    • (1998) Nature , vol.395 , pp. 618-621
    • Shirahige, K.1
  • 2
    • 37249025795 scopus 로고    scopus 로고
    • Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
    • Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331-3341 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 3331-3341
    • Ge, X.Q.1    Jackson, D.A.2    Blow, J.J.3
  • 3
    • 34447565003 scopus 로고    scopus 로고
    • Replication in context: Dynamic regulation of DNA replication patterns in metazoans
    • Aladjem, M. I. Replication in context: Dynamic regulation of DNA replication patterns in metazoans. Nat. Rev. Genet. 8, 588-600 (2007).
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 588-600
    • Aladjem, M.I.1
  • 4
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333-374 (2002).
    • (2002) Annu. Rev. Biochem. , vol.71 , pp. 333-374
    • Bell, S.P.1    Dutta, A.2
  • 5
    • 0029670538 scopus 로고    scopus 로고
    • A distinct G1 step required to specify the Chinese hamster DHFR replication origin
    • Wu, J. R. & Gilbert, D. M. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science 271, 1270-1272 (1996).
    • (1996) Science , vol.271 , pp. 1270-1272
    • Wu, J.R.1    Gilbert, D.M.2
  • 6
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: Many choices for appropriate answers
    • Mechali, M. Eukaryotic DNA replication origins: Many choices for appropriate answers. Nat. Rev. Mol. Cell Biol. 11, 728-738 (2010).
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 728-738
    • Mechali, M.1
  • 7
    • 20344396122 scopus 로고    scopus 로고
    • Preventing re-replication of chromosomal DNA
    • Blow, J. J. & Dutta, A. Preventing re-replication of chromosomal DNA. Nat. Rev. Mol. Cell Biol. 6, 476-486 (2005).
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 476-486
    • Blow, J.J.1    Dutta, A.2
  • 8
    • 33947127410 scopus 로고    scopus 로고
    • Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells
    • Arias, E. E. & Walter, J. C. Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21, 497-518 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 497-518
    • Arias, E.E.1    Walter, J.C.2
  • 9
    • 33747432986 scopus 로고    scopus 로고
    • Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress
    • Woodward, A. M. et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673-683 (2006).
    • (2006) J. Cell Biol. , vol.173 , pp. 673-683
    • Woodward, A.M.1
  • 10
    • 3142768347 scopus 로고    scopus 로고
    • Chromatin regulates origin activity in Drosophila follicle cells
    • Aggarwal, B. D. & Calvi, B. R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430, 372-376 (2004).
    • (2004) Nature , vol.430 , pp. 372-376
    • Aggarwal, B.D.1    Calvi, B.R.2
  • 11
    • 4143082817 scopus 로고    scopus 로고
    • Specification of a DNA replication origin by a transcription complex
    • Danis, E. et al. Specification of a DNA replication origin by a transcription complex. Nat. Cell Biol. 6, 721-730 (2004).
    • (2004) Nat. Cell Biol. , vol.6 , pp. 721-730
    • Danis, E.1
  • 12
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B. J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223-1233 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewer, B.J.4    Grunstein, M.5
  • 13
    • 52949092763 scopus 로고    scopus 로고
    • Replication fork movement sets chromatin loop size and origin choice in mammalian cells
    • Courbet, S. et al. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455, 557-560 (2008).
    • (2008) Nature , vol.455 , pp. 557-560
    • Courbet, S.1
  • 14
    • 84864453016 scopus 로고    scopus 로고
    • Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment
    • Demczuk, A. et al. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol. 10, e1001360 (2012).
    • (2012) PLoS Biol. , vol.10 , pp. e1001360
    • Demczuk, A.1
  • 15
    • 34347240954 scopus 로고    scopus 로고
    • Replication origin plasticity Taylor-made: Inhibition vs recruitment of origins under conditions of replication stress
    • Gilbert, D. M. Replication origin plasticity, Taylor-made: Inhibition vs recruitment of origins under conditions of replication stress. Chromosome 116, 341-347 (2007).
    • (2007) Chromosome , vol.116 , pp. 341-347
    • Gilbert, D.M.1
  • 16
    • 0042743766 scopus 로고    scopus 로고
    • Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing
    • Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385-394 (2003).
    • (2003) Cell , vol.114 , pp. 385-394
    • Anglana, M.1    Apiou, F.2    Bensimon, A.3    Debatisse, M.4
  • 17
    • 55849133052 scopus 로고    scopus 로고
    • Remodeling of DNA replication structures by the branch point translocase FANCM
    • Gari, K., Decaillet, C., Delannoy, M., Wu, L. & Constantinou, A. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl Acad. Sci. USA 105, 16107-16112 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 16107-16112
    • Gari, K.1    Decaillet, C.2    Delannoy, M.3    Wu, L.4    Constantinou, A.5
  • 18
    • 64249120749 scopus 로고    scopus 로고
    • Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation
    • Doksani, Y., Bermejo, R., Fiorani, S., Haber, J. E. & Foiani, M. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 137, 247-258 (2009).
    • (2009) Cell , vol.137 , pp. 247-258
    • Doksani, Y.1    Bermejo, R.2    Fiorani, S.3    Haber, J.E.4    Foiani, M.5
  • 19
    • 0033568196 scopus 로고    scopus 로고
    • Activation of dormant origins of DNA replication in budding yeast
    • Santocanale, C., Sharma, K. & Diffley, J. F. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 13, 2360-2364 (1999).
    • (1999) Genes Dev. , vol.13 , pp. 2360-2364
    • Santocanale, C.1    Sharma, K.2    Diffley, J.F.3
  • 20
    • 77953634888 scopus 로고    scopus 로고
    • Does interference between replication and transcription contribute to genomic instability in cancer cells?
    • Tuduri, S., Crabbe, L., Tourriere, H., Coquelle, A. & Pasero, P. Does interference between replication and transcription contribute to genomic instability in cancer cells? Cell Cycle 9, 1886-1892 (2010).
    • (2010) Cell Cycle , vol.9 , pp. 1886-1892
    • Tuduri, S.1    Crabbe, L.2    Tourriere, H.3    Coquelle, A.4    Pasero, P.5
  • 21
    • 34347346075 scopus 로고    scopus 로고
    • Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements
    • Dershowitz, A. et al. Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements. Mol. Cell Biol. 27, 4652-4663 (2007).
    • (2007) Mol. Cell Biol. , vol.27 , pp. 4652-4663
    • Dershowitz, A.1
  • 22
    • 0037115462 scopus 로고    scopus 로고
    • ORC and the intra-S-phase checkpoint: A threshold regulates Rad53p activation in S phase
    • Shimada, K., Pasero, P. & Gasser, S. M. ORC and the intra-S-phase checkpoint: A threshold regulates Rad53p activation in S phase. Genes Dev. 16, 3236-3252 (2002).
    • (2002) Genes Dev. , vol.16 , pp. 3236-3252
    • Shimada, K.1    Pasero, P.2    Gasser, S.M.3
  • 23
    • 0038506001 scopus 로고    scopus 로고
    • Chromosome integrity in Saccharomyces cerevisiae: The interplay of DNA replication initiation factors, elongation factors, and origins
    • Huang, D. & Koshland, D. Chromosome integrity in Saccharomyces cerevisiae: The interplay of DNA replication initiation factors, elongation factors, and origins. Genes Dev. 17, 1741-1754 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 1741-1754
    • Huang, D.1    Koshland, D.2
  • 24
    • 0036278984 scopus 로고    scopus 로고
    • The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1)
    • Lengronne, A. & Schwob, E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol. Cell 9, 1067-1078 (2002).
    • (2002) Mol. Cell , vol.9 , pp. 1067-1078
    • Lengronne, A.1    Schwob, E.2
  • 25
    • 33750472654 scopus 로고    scopus 로고
    • Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision
    • Davidson, I. F., Li, A. & Blow, J. J. Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol. Cell 24, 433-443 (2006).
    • (2006) Mol. Cell , vol.24 , pp. 433-443
    • Davidson, I.F.1    Li, A.2    Blow, J.J.3
  • 26
    • 0037623356 scopus 로고    scopus 로고
    • A p53-dependent checkpoint pathway prevents rereplication
    • Vaziri, C. et al. A p53-dependent checkpoint pathway prevents rereplication. Mol. Cell 11, 997-1008 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 997-1008
    • Vaziri, C.1
  • 27
    • 79551661935 scopus 로고    scopus 로고
    • Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site
    • Letessier, A. et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470, 120-123 (2011).
    • (2011) Nature , vol.470 , pp. 120-123
    • Letessier, A.1
  • 28
    • 0037074013 scopus 로고    scopus 로고
    • ATR regulates fragile site stability
    • Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779-789 (2002).
    • (2002) Cell , vol.111 , pp. 779-789
    • Casper, A.M.1    Nghiem, P.2    Arlt, M.F.3    Glover, T.W.4
  • 29
    • 33847335907 scopus 로고    scopus 로고
    • DNA-PK is involved in repairing a transient surge of DNA breaks induced by deceleration of DNA replication
    • Shimura, T. et al. DNA-PK is involved in repairing a transient surge of DNA breaks induced by deceleration of DNA replication. J. Mol. Biol. 367, 665-680 (2007).
    • (2007) J. Mol. Biol. , vol.367 , pp. 665-680
    • Shimura, T.1
  • 30
    • 37349039649 scopus 로고    scopus 로고
    • Bloom's syndrome helicase and Mus81 are required to induce transient double-strand DNA breaks in response to DNA replication stress
    • Shimura, T. et al. Bloom's syndrome helicase and Mus81 are required to induce transient double-strand DNA breaks in response to DNA replication stress. J. Mol. Biol. 375, 1152-1164 (2008).
    • (2008) J. Mol. Biol. , vol.375 , pp. 1152-1164
    • Shimura, T.1
  • 31
    • 33644865206 scopus 로고    scopus 로고
    • Haploinsufficiency of the Mus81-Eme1 endonuclease activates the intra-S-phase and G2/M checkpoints and promotes rereplication in human cells
    • Hiyama, T. et al. Haploinsufficiency of the Mus81-Eme1 endonuclease activates the intra-S-phase and G2/M checkpoints and promotes rereplication in human cells. Nucleic Acids Res. 34, 880-892 (2006).
    • (2006) Nucleic Acids Res. , vol.34 , pp. 880-892
    • Hiyama, T.1
  • 32
    • 77953170728 scopus 로고    scopus 로고
    • Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage
    • Conti, C. et al. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer. Res. 70, 4470-4480 (2010).
    • (2010) Cancer. Res. , vol.70 , pp. 4470-4480
    • Conti, C.1
  • 33
    • 84862908473 scopus 로고    scopus 로고
    • Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes
    • Regairaz, M. et al. Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes. J. Cell Biol. 195, 739-749 (2011).
    • (2011) J. Cell Biol. , vol.195 , pp. 739-749
    • Regairaz, M.1
  • 34
    • 80555157584 scopus 로고    scopus 로고
    • Genome-wide depletion of replication initiation events in highly transcribed regions
    • Martin, M. M. et al. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res. 21, 1822-1832 (2011).
    • (2011) Genome Res. , vol.21 , pp. 1822-1832
    • Martin, M.M.1
  • 35
    • 67649641641 scopus 로고    scopus 로고
    • Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair
    • Munoz, I. M. et al. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol. Cell 35, 116-127 (2009).
    • (2009) Mol. Cell , vol.35 , pp. 116-127
    • Munoz, I.M.1
  • 36
    • 18244405819 scopus 로고    scopus 로고
    • Human Mus81-associated endonuclease cleaves Holliday junctions in vitro
    • Chen, X. B. et al. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol. Cell 8, 1117-1127 (2001).
    • (2001) Mol. Cell , vol.8 , pp. 1117-1127
    • Chen, X.B.1
  • 37
    • 33750206776 scopus 로고    scopus 로고
    • The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks
    • Hanada, K. et al. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 25, 4921-4932 (2006).
    • (2006) EMBO J , vol.25 , pp. 4921-4932
    • Hanada, K.1
  • 38
    • 34548763143 scopus 로고    scopus 로고
    • Nonclassic functions of human topoisomerase I: Genome-wide and pharmacologic analyses
    • Miao, Z. H. et al. Nonclassic functions of human topoisomerase I: Genome-wide and pharmacologic analyses. Cancer Res. 67, 8752-8761 (2007).
    • (2007) Cancer Res. , vol.67 , pp. 8752-8761
    • Miao, Z.H.1
  • 39
    • 84881439745 scopus 로고    scopus 로고
    • MUS81 promotes common fragile site expression
    • Ying, S. et al. MUS81 promotes common fragile site expression. Nat. Cell Biol. 15, 1001-1007 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1001-1007
    • Ying, S.1
  • 40
    • 84881471113 scopus 로고    scopus 로고
    • ERCC1and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis
    • Naim, V., Wilhelm, T., Debatisse, M. & Rosselli, F. ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat. Cell Biol. 15, 1008-1015 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1008-1015
    • Naim, V.1    Wilhelm, T.2    Debatisse, M.3    Rosselli, F.4
  • 41
    • 64549135730 scopus 로고    scopus 로고
    • A junction branch point adjacent to a DNA backbone nick directs substrate cleavage by Saccharomyces cerevisiae Mus81-Mms4
    • Ehmsen, K. T. & Heyer, W. D. A junction branch point adjacent to a DNA backbone nick directs substrate cleavage by Saccharomyces cerevisiae Mus81-Mms4. Nucleic Acids Res. 37, 2026-2036 (2009).
    • (2009) Nucleic Acids Res. , vol.37 , pp. 2026-2036
    • Ehmsen, K.T.1    Heyer, W.D.2
  • 42
    • 78649819004 scopus 로고    scopus 로고
    • Genetic and functional interactions between Mus81-Mms4 and Rad27
    • Kang, M. J. et al. Genetic and functional interactions between Mus81-Mms4 and Rad27. Nucleic Acids Res. 38, 7611-7625 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. 7611-7625
    • Kang, M.J.1
  • 43
    • 0033460329 scopus 로고    scopus 로고
    • The bromodeoxyuridine comet assay: Detection of maturation of recently replicated DNA in individual cells
    • McGlynn, A. P. et al. The bromodeoxyuridine comet assay: Detection of maturation of recently replicated DNA in individual cells. Cancer Res. 59, 5912-5916 (1999).
    • (1999) Cancer Res. , vol.59 , pp. 5912-5916
    • McGlynn, A.P.1
  • 44
    • 79956053314 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells
    • Zhang, Y. W. et al. Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Res. 39, 3607-3620 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. 3607-3620
    • Zhang, Y.W.1
  • 45
    • 43249128930 scopus 로고    scopus 로고
    • Mus81 is essential for sister chromatid recombination at broken replication forks
    • Roseaulin, L. et al. Mus81 is essential for sister chromatid recombination at broken replication forks. EMBO J 27, 1378-1387 (2008).
    • (2008) EMBO J , vol.27 , pp. 1378-1387
    • Roseaulin, L.1
  • 46
    • 77149135723 scopus 로고    scopus 로고
    • ATR activation and replication fork restart are defective in FANCM-deficient cells
    • Schwab, R. A., Blackford, A. N. & Niedzwiedz, W. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J 29, 806-818 (2010).
    • (2010) EMBO J , vol.29 , pp. 806-818
    • Schwab, R.A.1    Blackford, A.N.2    Niedzwiedz, W.3
  • 47
    • 65549118806 scopus 로고    scopus 로고
    • Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates
    • Matulova, P. et al. Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J. Biol. Chem. 284, 7733-7745 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 7733-7745
    • Matulova, P.1
  • 48
    • 84876333995 scopus 로고    scopus 로고
    • Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates
    • Neelsen, K. J., Zanini, I. M., Herrador, R. & Lopes, M. Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J. Cell Biol. 200, 699-708 (2013).
    • (2013) J. Cell Biol. , vol.200 , pp. 699-708
    • Neelsen, K.J.1    Zanini, I.M.2    Herrador, R.3    Lopes, M.4
  • 49
    • 3142544855 scopus 로고    scopus 로고
    • Control of replication origin density and firing time in Xenopus egg extracts: Role of a caffeine-sensitive ATR-dependent checkpoint
    • Marheineke, K. & Hyrien, O. Control of replication origin density and firing time in Xenopus egg extracts: Role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem. 279, 28071-28081 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 28071-28081
    • Marheineke, K.1    Hyrien, O.2
  • 50
    • 3242708425 scopus 로고    scopus 로고
    • Regulation of DNA replication by ATR: Signaling in response to DNA intermediates
    • Shechter, D., Costanzo, V. & Gautier, J. Regulation of DNA replication by ATR: Signaling in response to DNA intermediates. DNA Repair 3, 901-908 (2004).
    • (2004) DNA Repair , vol.3 , pp. 901-908
    • Shechter, D.1    Costanzo, V.2    Gautier, J.3
  • 51
    • 33645825609 scopus 로고    scopus 로고
    • Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase
    • Petermann, E. et al. Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol. Cell Biol. 26, 3319-3326 (2006).
    • (2006) Mol. Cell Biol. , vol.26 , pp. 3319-3326
    • Petermann, E.1
  • 52
    • 34547902426 scopus 로고    scopus 로고
    • The intra-Sphase checkpoint affects both DNA replication initiation and elongation: Single-cell and-DNA fiber analyses
    • Seiler, J. A., Conti, C., Syed, A., Aladjem, M. I. & Pommier, Y. The intra-Sphase checkpoint affects both DNA replication initiation and elongation: Single-cell and-DNA fiber analyses. Mol. Cell Biol. 27, 5806-5818 (2007).
    • (2007) Mol. Cell Biol. , vol.27 , pp. 5806-5818
    • Seiler, J.A.1    Conti, C.2    Syed, A.3    Aladjem, M.I.4    Pommier, Y.5
  • 53
    • 50649091874 scopus 로고    scopus 로고
    • Structural and functional relationships of the XPF/MUS81 family of proteins
    • Ciccia, A., McDonald, N. & West, S. C. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu. Rev. Biochem. 77, 259-287 (2008).
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 259-287
    • Ciccia, A.1    McDonald, N.2    West, S.C.3
  • 54
    • 84898965087 scopus 로고    scopus 로고
    • Substrate specificity of the MUS81-EME2 structure selective endonuclease
    • Pepe, A. & West, S. C. Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Res. 42, 3833-3845 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. 3833-3845
    • Pepe, A.1    West, S.C.2
  • 55
    • 84880882023 scopus 로고    scopus 로고
    • Structure-specific endonucleases xpf and mus81 play overlapping but essential roles in DNA repair by homologous recombination
    • Kikuchi, K. et al. Structure-specific endonucleases xpf and mus81 play overlapping but essential roles in DNA repair by homologous recombination. Cancer Res. 73, 4362-4371 (2013).
    • (2013) Cancer Res. , vol.73 , pp. 4362-4371
    • Kikuchi, K.1
  • 56
    • 84900816207 scopus 로고    scopus 로고
    • Roles of SLX1-SLX4 MUS81-EME1 and GEN1 in avoiding genome instability and mitotic catastrophe
    • Sarbajna, S., Davies, D. & West, S. C. Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes Dev. 28, 1124-1136 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 1124-1136
    • Sarbajna, S.1    Davies, D.2    West, S.C.3
  • 57
    • 0027613751 scopus 로고
    • Origins of DNA replication that function in eukaryotic cells
    • DePamphilis, M. L. Origins of DNA replication that function in eukaryotic cells. Curr. Opin. Cell Biol. 5, 434-441 (1993).
    • (1993) Curr. Opin. Cell Biol. , vol.5 , pp. 434-441
    • Depamphilis, M.L.1
  • 58
    • 33847221417 scopus 로고    scopus 로고
    • Functional interactions of DNA topoisomerases with a human replication origin
    • Abdurashidova, G. et al. Functional interactions of DNA topoisomerases with a human replication origin. EMBO J 26, 998-1009 (2007).
    • (2007) EMBO J , vol.26 , pp. 998-1009
    • Abdurashidova, G.1
  • 59
    • 48249084972 scopus 로고    scopus 로고
    • Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication
    • Ibarra, A., Schwob, E. & Mendez, J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl Acad. Sci. USA 105, 8956-8961 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 8956-8961
    • Ibarra, A.1    Schwob, E.2    Mendez, J.3
  • 60
    • 34547814092 scopus 로고    scopus 로고
    • Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells
    • Conti, C. et al. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell 18, 3059-3067 (2007).
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3059-3067
    • Conti, C.1
  • 61
    • 0034602707 scopus 로고    scopus 로고
    • Quantifying single gene copy number by measuring fluorescent probe lengths on combed genomic DNA
    • Herrick, J., Michalet, X., Conti, C., Schurra, C. & Bensimon, A. Quantifying single gene copy number by measuring fluorescent probe lengths on combed genomic DNA. Proc. Natl Acad. Sci. USA 97, 222-227 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 222-227
    • Herrick, J.1    Michalet, X.2    Conti, C.3    Schurra, C.4    Bensimon, A.5
  • 62
    • 84887408141 scopus 로고    scopus 로고
    • Replication dynamics: Biases and robustness of DNA fiber analysis
    • Techer, H. et al. Replication dynamics: Biases and robustness of DNA fiber analysis. J. Mol. Biol. 425, 4845-4855 (2013).
    • (2013) J. Mol. Biol. , vol.425 , pp. 4845-4855
    • Techer, H.1
  • 63
    • 79961130938 scopus 로고    scopus 로고
    • Prevention of transcriptional silencing by a replicator-binding complex consisting of SWI/SNF MeCP1, and hnRNP C1/C2
    • Huang, L. et al. Prevention of transcriptional silencing by a replicator-binding complex consisting of SWI/SNF, MeCP1, and hnRNP C1/C2. Mol. Cell Biol. 31, 3472-3484 (2011).
    • (2011) Mol. Cell Biol. , vol.31 , pp. 3472-3484
    • Huang, L.1
  • 64
    • 1842557591 scopus 로고    scopus 로고
    • The human beta-globin replication initiation region consists of two modular independent replicators
    • Wang, L. et al. The human beta-globin replication initiation region consists of two modular independent replicators. Mol. Cell Biol. 24, 3373-3386 (2004).
    • (2004) Mol. Cell Biol. , vol.24 , pp. 3373-3386
    • Wang, L.1
  • 65
    • 84949221539 scopus 로고    scopus 로고
    • Mapping replication origin sequences in eukaryotic chromosomes
    • Fu, H. et al. Mapping replication origin sequences in eukaryotic chromosomes. Curr. protoc. Cell Biol. 65, 22 20 21-22 20 17 (2014).
    • (2014) Curr. Protoc. Cell Biol. , vol.65 , pp. 222021-222017
    • Fu, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.