메뉴 건너뛰기




Volumn 9, Issue 9, 2013, Pages

A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast

Author keywords

[No Author keywords available]

Indexed keywords

DNA FRAGMENT;

EID: 84884698163     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1003798     Document Type: Article
Times cited : (41)

References (96)
  • 1
    • 14544277626 scopus 로고    scopus 로고
    • Origin recognition and the chromosome cycle
    • Stillman B, (2005) Origin recognition and the chromosome cycle. FEBS Lett 579: 877-884.
    • (2005) FEBS Lett , vol.579 , pp. 877-884
    • Stillman, B.1
  • 2
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell SP, Dutta A, (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71: 333-374.
    • (2002) Annu Rev Biochem , vol.71 , pp. 333-374
    • Bell, S.P.1    Dutta, A.2
  • 3
    • 40549108563 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA replication
    • Sclafani RA, Holzen TM, (2007) Cell cycle regulation of DNA replication. Annu Rev Genet 41: 237-280.
    • (2007) Annu Rev Genet , vol.41 , pp. 237-280
    • Sclafani, R.A.1    Holzen, T.M.2
  • 4
    • 70549085855 scopus 로고    scopus 로고
    • Eukaryotic DNA replication control: lock and load, then fire
    • Remus D, Diffley JF, (2009) Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 21: 771-777.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 771-777
    • Remus, D.1    Diffley, J.F.2
  • 5
    • 84861992434 scopus 로고    scopus 로고
    • Activation of the replicative DNA helicase: breaking up is hard to do
    • Boos D, Frigola J, Diffley JF, (2012) Activation of the replicative DNA helicase: breaking up is hard to do. Curr Opin Cell Biol 24: 423-430.
    • (2012) Curr Opin Cell Biol , vol.24 , pp. 423-430
    • Boos, D.1    Frigola, J.2    Diffley, J.F.3
  • 6
    • 70350746499 scopus 로고    scopus 로고
    • Putting two heads together to unwind DNA
    • Takara TJ, Bell SP, (2009) Putting two heads together to unwind DNA. Cell 139: 652-654.
    • (2009) Cell , vol.139 , pp. 652-654
    • Takara, T.J.1    Bell, S.P.2
  • 7
    • 83455213558 scopus 로고    scopus 로고
    • Building a double hexamer of DNA helicase at eukaryotic replication origins
    • Labib K, (2011) Building a double hexamer of DNA helicase at eukaryotic replication origins. EMBO J 30: 4853-4855.
    • (2011) EMBO J , vol.30 , pp. 4853-4855
    • Labib, K.1
  • 8
    • 81055138204 scopus 로고    scopus 로고
    • Quality control in the initiation of eukaryotic DNA replication
    • Diffley JF, (2011) Quality control in the initiation of eukaryotic DNA replication. Philos Trans R Soc Lond B Biol Sci 366: 3545-3553.
    • (2011) Philos Trans R Soc Lond B Biol Sci , vol.366 , pp. 3545-3553
    • Diffley, J.F.1
  • 10
    • 78650693977 scopus 로고    scopus 로고
    • The DNA damage response pathway contributes to the stability of chromosome III derivatives lacking efficient replicators
    • Theis JF, Irene C, Dershowitz A, Brost RL, Tobin ML, et al. (2010) The DNA damage response pathway contributes to the stability of chromosome III derivatives lacking efficient replicators. PLoS Genet 6: e1001227.
    • (2010) PLoS Genet , vol.6
    • Theis, J.F.1    Irene, C.2    Dershowitz, A.3    Brost, R.L.4    Tobin, M.L.5
  • 11
    • 79951970806 scopus 로고    scopus 로고
    • Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression
    • Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, et al. (2011) Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 41: 543-553.
    • (2011) Mol Cell , vol.41 , pp. 543-553
    • Kawabata, T.1    Luebben, S.W.2    Yamaguchi, S.3    Ilves, I.4    Matise, I.5
  • 12
    • 48249084972 scopus 로고    scopus 로고
    • Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication
    • Ibarra A, Schwob E, Mendez J, (2008) Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci U S A 105: 8956-8961.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 8956-8961
    • Ibarra, A.1    Schwob, E.2    Mendez, J.3
  • 13
    • 37249025795 scopus 로고    scopus 로고
    • Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
    • Ge XQ, Jackson DA, Blow JJ, (2007) Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21: 3331-3341.
    • (2007) Genes Dev , vol.21 , pp. 3331-3341
    • Ge, X.Q.1    Jackson, D.A.2    Blow, J.J.3
  • 16
    • 77149156025 scopus 로고    scopus 로고
    • Spatiotemporal regulation of DNA replication in the human genome and its association with genomic instability and disease
    • Watanabe Y, Maekawa M, (2010) Spatiotemporal regulation of DNA replication in the human genome and its association with genomic instability and disease. Curr Med Chem 17: 222-233.
    • (2010) Curr Med Chem , vol.17 , pp. 222-233
    • Watanabe, Y.1    Maekawa, M.2
  • 17
    • 0035818495 scopus 로고    scopus 로고
    • Delayed replication timing leads to delayed mitotic chromosome condensation and chromosomal instability of chromosome translocations
    • Smith L, Plug A, Thayer M, (2001) Delayed replication timing leads to delayed mitotic chromosome condensation and chromosomal instability of chromosome translocations. Proc Natl Acad Sci U S A 98: 13300-13305.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 13300-13305
    • Smith, L.1    Plug, A.2    Thayer, M.3
  • 18
    • 84864321476 scopus 로고    scopus 로고
    • Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of Trypanosoma brucei
    • Tiengwe C, Marcello L, Farr H, Dickens N, Kelly S, et al. (2012) Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of Trypanosoma brucei. Cell Rep 2: 185-197.
    • (2012) Cell Rep , vol.2 , pp. 185-197
    • Tiengwe, C.1    Marcello, L.2    Farr, H.3    Dickens, N.4    Kelly, S.5
  • 19
    • 84867182048 scopus 로고    scopus 로고
    • Conservation of replication timing reveals global and local regulation of replication origin activity
    • Muller CA, Nieduszynski CA, (2012) Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res 22: 1953-1962.
    • (2012) Genome Res , vol.22 , pp. 1953-1962
    • Muller, C.A.1    Nieduszynski, C.A.2
  • 21
    • 77957337127 scopus 로고    scopus 로고
    • Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase
    • Koren A, Tsai HJ, Tirosh I, Burrack LS, Barkai N, et al. (2010) Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet 6: e1001068.
    • (2010) PLoS Genet , vol.6
    • Koren, A.1    Tsai, H.J.2    Tirosh, I.3    Burrack, L.S.4    Barkai, N.5
  • 22
    • 84856103786 scopus 로고    scopus 로고
    • Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae
    • Knott SR, Peace JM, Ostrow AZ, Gan Y, Rex AE, et al. (2012) Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 148: 99-111.
    • (2012) Cell , vol.148 , pp. 99-111
    • Knott, S.R.1    Peace, J.M.2    Ostrow, A.Z.3    Gan, Y.4    Rex, A.E.5
  • 23
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D, Mackenzie A, Donaldson A, Zegerman P, (2011) Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30: 4805-4814.
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 24
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H, (2011) Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21: 2055-2063.
    • (2011) Curr Biol , vol.21 , pp. 2055-2063
    • Tanaka, S.1    Nakato, R.2    Katou, Y.3    Shirahige, K.4    Araki, H.5
  • 25
    • 84863643914 scopus 로고    scopus 로고
    • Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae
    • Pohl TJ, Brewer BJ, Raghuraman MK, (2012) Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae. PLoS Genet 8: e1002677.
    • (2012) PLoS Genet , vol.8
    • Pohl, T.J.1    Brewer, B.J.2    Raghuraman, M.K.3
  • 26
    • 84873405188 scopus 로고    scopus 로고
    • Chromatin-dependent and -independent regulation of DNA replication origin activation in budding yeast
    • Looke M, Kristjuhan K, Varv S, Kristjuhan A, (2013) Chromatin-dependent and-independent regulation of DNA replication origin activation in budding yeast. EMBO Rep 14: 191-198.
    • (2013) EMBO Rep , vol.14 , pp. 191-198
    • Looke, M.1    Kristjuhan, K.2    Varv, S.3    Kristjuhan, A.4
  • 27
    • 84878877755 scopus 로고    scopus 로고
    • Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment
    • Natsume T, Muller CA, Katou Y, Retkute R, Gierlinski M, et al. (2013) Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol Cell 50: 661-674.
    • (2013) Mol Cell , vol.50 , pp. 661-674
    • Natsume, T.1    Muller, C.A.2    Katou, Y.3    Retkute, R.4    Gierlinski, M.5
  • 28
    • 65449160972 scopus 로고    scopus 로고
    • Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
    • Knott SR, Viggiani CJ, Tavare S, Aparicio OM, (2009) Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 23: 1077-1090.
    • (2009) Genes Dev , vol.23 , pp. 1077-1090
    • Knott, S.R.1    Viggiani, C.J.2    Tavare, S.3    Aparicio, O.M.4
  • 30
    • 61849083545 scopus 로고    scopus 로고
    • The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae
    • McCune HJ, Danielson LS, Alvino GM, Collingwood D, Delrow JJ, et al. (2008) The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae. Genetics 180: 1833-1847.
    • (2008) Genetics , vol.180 , pp. 1833-1847
    • McCune, H.J.1    Danielson, L.S.2    Alvino, G.M.3    Collingwood, D.4    Delrow, J.J.5
  • 31
    • 0029781449 scopus 로고    scopus 로고
    • Multiple determinants controlling activation of yeast replication origins late in S phase
    • Friedman KL, Diller JD, Ferguson BM, Nyland SV, Brewer BJ, et al. (1996) Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev 10: 1595-1607.
    • (1996) Genes Dev , vol.10 , pp. 1595-1607
    • Friedman, K.L.1    Diller, J.D.2    Ferguson, B.M.3    Nyland, S.V.4    Brewer, B.J.5
  • 32
    • 0026571672 scopus 로고
    • A position effect on the time of replication origin activation in yeast
    • Ferguson BM, Fangman WL, (1992) A position effect on the time of replication origin activation in yeast. Cell 68: 333-339.
    • (1992) Cell , vol.68 , pp. 333-339
    • Ferguson, B.M.1    Fangman, W.L.2
  • 33
    • 0033556028 scopus 로고    scopus 로고
    • Telomeric chromatin modulates replication timing near chromosome ends
    • Stevenson JB, Gottschling DE, (1999) Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev 13: 146-151.
    • (1999) Genes Dev , vol.13 , pp. 146-151
    • Stevenson, J.B.1    Gottschling, D.E.2
  • 34
    • 84855373452 scopus 로고    scopus 로고
    • Analysis of model replication origins in Drosophila reveals new aspects of the chromatin landscape and its relationship to origin activity and the prereplicative complex
    • Liu J, McConnell K, Dixon M, Calvi BR, (2012) Analysis of model replication origins in Drosophila reveals new aspects of the chromatin landscape and its relationship to origin activity and the prereplicative complex. Mol Biol Cell 23: 200-212.
    • (2012) Mol Biol Cell , vol.23 , pp. 200-212
    • Liu, J.1    McConnell, K.2    Dixon, M.3    Calvi, B.R.4
  • 35
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M, (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10: 1223-1233.
    • (2002) Mol Cell , vol.10 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewer, B.J.4    Grunstein, M.5
  • 36
    • 3142768347 scopus 로고    scopus 로고
    • Chromatin regulates origin activity in Drosophila follicle cells
    • Aggarwal BD, Calvi BR, (2004) Chromatin regulates origin activity in Drosophila follicle cells. Nature 430: 372-376.
    • (2004) Nature , vol.430 , pp. 372-376
    • Aggarwal, B.D.1    Calvi, B.R.2
  • 37
    • 84856981150 scopus 로고    scopus 로고
    • Replication timing: the early bird catches the worm
    • Douglas ME, Diffley JF, (2012) Replication timing: the early bird catches the worm. Curr Biol 22: R81-82.
    • (2012) Curr Biol , vol.22
    • Douglas, M.E.1    Diffley, J.F.2
  • 38
    • 33746101049 scopus 로고    scopus 로고
    • Genome-wide identification of replication origins in yeast by comparative genomics
    • Nieduszynski CA, Knox Y, Donaldson AD, (2006) Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev 20: 1874-1879.
    • (2006) Genes Dev , vol.20 , pp. 1874-1879
    • Nieduszynski, C.A.1    Knox, Y.2    Donaldson, A.D.3
  • 39
    • 4344644552 scopus 로고    scopus 로고
    • Mapping subunit location on the Saccharomyces cerevisiae origin recognition complex free and bound to DNA using a novel nanoscale biopointer
    • Chastain PD 2nd, Bowers JL, Lee DG, Bell SP, Griffith JD, (2004) Mapping subunit location on the Saccharomyces cerevisiae origin recognition complex free and bound to DNA using a novel nanoscale biopointer. J Biol Chem 279: 36354-36362.
    • (2004) J Biol Chem , vol.279 , pp. 36354-36362
    • Chastain 2nd, P.D.1    Bowers, J.L.2    Lee, D.G.3    Bell, S.P.4    Griffith, J.D.5
  • 40
    • 61349201535 scopus 로고    scopus 로고
    • Establishing the program of origin firing during S phase in fission Yeast
    • Wu PY, Nurse P, (2009) Establishing the program of origin firing during S phase in fission Yeast. Cell 136: 852-864.
    • (2009) Cell , vol.136 , pp. 852-864
    • Wu, P.Y.1    Nurse, P.2
  • 41
    • 0041624276 scopus 로고    scopus 로고
    • Differential DNA affinity specifies roles for the origin recognition complex in budding yeast heterochromatin
    • Palacios DeBeer MA, Muller U, Fox CA, (2003) Differential DNA affinity specifies roles for the origin recognition complex in budding yeast heterochromatin. Genes Dev 17: 1817-1822.
    • (2003) Genes Dev , vol.17 , pp. 1817-1822
    • Palacios DeBeer, M.A.1    Muller, U.2    Fox, C.A.3
  • 42
    • 15744376691 scopus 로고    scopus 로고
    • Toward biochemical understanding of a transcriptionally silenced chromosomal domain in Saccharomyces cerevisiae
    • Fox CA, McConnell KH, (2005) Toward biochemical understanding of a transcriptionally silenced chromosomal domain in Saccharomyces cerevisiae. J Biol Chem 280: 8629-8632.
    • (2005) J Biol Chem , vol.280 , pp. 8629-8632
    • Fox, C.A.1    McConnell, K.H.2
  • 43
    • 77954526472 scopus 로고    scopus 로고
    • The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin
    • Muller P, Park S, Shor E, Huebert DJ, Warren CL, et al. (2010) The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin. Genes Dev 24: 1418-1433.
    • (2010) Genes Dev , vol.24 , pp. 1418-1433
    • Muller, P.1    Park, S.2    Shor, E.3    Huebert, D.J.4    Warren, C.L.5
  • 44
  • 45
    • 78049415820 scopus 로고    scopus 로고
    • Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure
    • Berbenetz NM, Nislow C, Brown GW, (2010) Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6.
    • (2010) PLoS Genet , vol.6
    • Berbenetz, N.M.1    Nislow, C.2    Brown, G.W.3
  • 46
    • 33751087739 scopus 로고    scopus 로고
    • The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo
    • Noguchi K, Vassilev A, Ghosh S, Yates JL, DePamphilis ML, (2006) The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo. Embo J 25: 5372-5382.
    • (2006) Embo J , vol.25 , pp. 5372-5382
    • Noguchi, K.1    Vassilev, A.2    Ghosh, S.3    Yates, J.L.4    DePamphilis, M.L.5
  • 47
    • 84862818911 scopus 로고    scopus 로고
    • The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome
    • Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, et al. (2012) The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature.
    • (2012) Nature
    • Kuo, A.J.1    Song, J.2    Cheung, P.3    Ishibe-Murakami, S.4    Yamazoe, S.5
  • 48
    • 49449103939 scopus 로고    scopus 로고
    • Analysis of chromosome III replicators reveals an unusual structure for the ARS318 silencer origin and a conserved WTW sequence within the origin recognition complex binding site
    • Chang F, Theis JF, Miller J, Nieduszynski CA, Newlon CS, et al. (2008) Analysis of chromosome III replicators reveals an unusual structure for the ARS318 silencer origin and a conserved WTW sequence within the origin recognition complex binding site. Mol Cell Biol 28: 5071-5081.
    • (2008) Mol Cell Biol , vol.28 , pp. 5071-5081
    • Chang, F.1    Theis, J.F.2    Miller, J.3    Nieduszynski, C.A.4    Newlon, C.S.5
  • 49
    • 0030924440 scopus 로고    scopus 로고
    • The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence
    • Theis JF, Newlon CS, (1997) The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence. Proc Natl Acad Sci U S A 94: 10786-10791.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 10786-10791
    • Theis, J.F.1    Newlon, C.S.2
  • 50
    • 80055087240 scopus 로고    scopus 로고
    • High-resolution analysis of four efficient yeast replication origins reveals new insights into the ORC and putative MCM binding elements
    • Chang F, May CD, Hoggard T, Miller J, Fox CA, et al. (2011) High-resolution analysis of four efficient yeast replication origins reveals new insights into the ORC and putative MCM binding elements. Nucleic Acids Res 39: 6523-6535.
    • (2011) Nucleic Acids Res , vol.39 , pp. 6523-6535
    • Chang, F.1    May, C.D.2    Hoggard, T.3    Miller, J.4    Fox, C.A.5
  • 51
    • 74249093900 scopus 로고    scopus 로고
    • The origin recognition complex interacts with a subset of metabolic genes tightly linked to origins of replication
    • Shor E, Warren CL, Tietjen J, Hou Z, Muller U, et al. (2009) The origin recognition complex interacts with a subset of metabolic genes tightly linked to origins of replication. PLoS Genet 5: e1000755.
    • (2009) PLoS Genet , vol.5
    • Shor, E.1    Warren, C.L.2    Tietjen, J.3    Hou, Z.4    Muller, U.5
  • 52
    • 0037115462 scopus 로고    scopus 로고
    • ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase
    • Shimada K, Pasero P, Gasser SM, (2002) ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev 16: 3236-3252.
    • (2002) Genes Dev , vol.16 , pp. 3236-3252
    • Shimada, K.1    Pasero, P.2    Gasser, S.M.3
  • 54
    • 17844364938 scopus 로고    scopus 로고
    • The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription
    • Nieduszynski CA, Blow JJ, Donaldson AD, (2005) The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription. Nucleic Acids Res 33: 2410-2420.
    • (2005) Nucleic Acids Res , vol.33 , pp. 2410-2420
    • Nieduszynski, C.A.1    Blow, J.J.2    Donaldson, A.D.3
  • 55
    • 33749411934 scopus 로고    scopus 로고
    • Genome-wide hierarchy of replication origin usage in Saccharomyces cerevisiae
    • Donato JJ, Chung SC, Tye BK, (2006) Genome-wide hierarchy of replication origin usage in Saccharomyces cerevisiae. PLoS Genet 2: e141.
    • (2006) PLoS Genet , vol.2
    • Donato, J.J.1    Chung, S.C.2    Tye, B.K.3
  • 56
    • 23744505997 scopus 로고    scopus 로고
    • Control of replication initiation and heterochromatin formation in Saccharomyces cerevisiae by a regulator of meiotic gene expression
    • Irlbacher H, Franke J, Manke T, Vingron M, Ehrenhofer-Murray AE, (2005) Control of replication initiation and heterochromatin formation in Saccharomyces cerevisiae by a regulator of meiotic gene expression. Genes Dev 19: 1811-1822.
    • (2005) Genes Dev , vol.19 , pp. 1811-1822
    • Irlbacher, H.1    Franke, J.2    Manke, T.3    Vingron, M.4    Ehrenhofer-Murray, A.E.5
  • 57
    • 56749105947 scopus 로고    scopus 로고
    • Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase
    • Weber JM, Irlbacher H, Ehrenhofer-Murray AE, (2008) Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase. BMC Mol Biol 9: 100.
    • (2008) BMC Mol Biol , vol.9 , pp. 100
    • Weber, J.M.1    Irlbacher, H.2    Ehrenhofer-Murray, A.E.3
  • 58
    • 21744442744 scopus 로고    scopus 로고
    • Sum1p, the origin recognition complex, and the spreading of a promoter-specific repressor in Saccharomyces cerevisiae
    • Lynch PJ, Fraser HB, Sevastopoulos E, Rine J, Rusche LN, (2005) Sum1p, the origin recognition complex, and the spreading of a promoter-specific repressor in Saccharomyces cerevisiae. Mol Cell Biol 25: 5920-5932.
    • (2005) Mol Cell Biol , vol.25 , pp. 5920-5932
    • Lynch, P.J.1    Fraser, H.B.2    Sevastopoulos, E.3    Rine, J.4    Rusche, L.N.5
  • 59
    • 34748826166 scopus 로고    scopus 로고
    • A high-resolution atlas of nucleosome occupancy in yeast
    • Lee W, Tillo D, Bray N, Morse RH, Davis RW, et al. (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39: 1235-1244.
    • (2007) Nat Genet , vol.39 , pp. 1235-1244
    • Lee, W.1    Tillo, D.2    Bray, N.3    Morse, R.H.4    Davis, R.W.5
  • 60
    • 37349033583 scopus 로고    scopus 로고
    • Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly
    • Onishi M, Liou GG, Buchberger JR, Walz T, Moazed D, (2007) Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Mol Cell 28: 1015-1028.
    • (2007) Mol Cell , vol.28 , pp. 1015-1028
    • Onishi, M.1    Liou, G.G.2    Buchberger, J.R.3    Walz, T.4    Moazed, D.5
  • 61
    • 81555212272 scopus 로고    scopus 로고
    • Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution
    • Armache KJ, Garlick JD, Canzio D, Narlikar GJ, Kingston RE, Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution. Science 334: 977-982.
    • Science , vol.334 , pp. 977-982
    • Armache, K.J.1    Garlick, J.D.2    Canzio, D.3    Narlikar, G.J.4    Kingston, R.E.5
  • 63
    • 33646743733 scopus 로고    scopus 로고
    • Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in Saccharomyces cerevisiae
    • Gibson DG, Bell SP, Aparicio OM, (2006) Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in Saccharomyces cerevisiae. Genes Cells 11: 557-573.
    • (2006) Genes Cells , vol.11 , pp. 557-573
    • Gibson, D.G.1    Bell, S.P.2    Aparicio, O.M.3
  • 64
    • 0036668464 scopus 로고    scopus 로고
    • Mapping of early firing origins on a replication profile of budding yeast
    • Yabuki N, Terashima H, Kitada K, (2002) Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7: 781-789.
    • (2002) Genes Cells , vol.7 , pp. 781-789
    • Yabuki, N.1    Terashima, H.2    Kitada, K.3
  • 65
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C, Diffley JF, (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395: 615-618.
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.2
  • 66
    • 33645152790 scopus 로고    scopus 로고
    • Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication
    • Feng W, Collingwood D, Boeck ME, Fox LA, Alvino GM, et al. (2006) Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol 8: 148-155.
    • (2006) Nat Cell Biol , vol.8 , pp. 148-155
    • Feng, W.1    Collingwood, D.2    Boeck, M.E.3    Fox, L.A.4    Alvino, G.M.5
  • 67
    • 78549290265 scopus 로고    scopus 로고
    • Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response
    • Crabbe L, Thomas A, Pantesco V, De Vos J, Pasero P, et al. (2010) Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat Struct Mol Biol 17: 1391-1397.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1391-1397
    • Crabbe, L.1    Thomas, A.2    Pantesco, V.3    De Vos, J.4    Pasero, P.5
  • 69
    • 0027744166 scopus 로고
    • Yeast origin recognition complex functions in transcription silencing and DNA replication
    • Bell SP, Kobayashi R, Stillman B, (1993) Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262: 1844-1849.
    • (1993) Science , vol.262 , pp. 1844-1849
    • Bell, S.P.1    Kobayashi, R.2    Stillman, B.3
  • 70
    • 77953132992 scopus 로고    scopus 로고
    • Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair
    • Heidinger-Pauli JM, Mert O, Davenport C, Guacci V, Koshland D, Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr Biol 20: 957-963.
    • Curr Biol , vol.20 , pp. 957-963
    • Heidinger-Pauli, J.M.1    Mert, O.2    Davenport, C.3    Guacci, V.4    Koshland, D.5
  • 71
    • 0035430416 scopus 로고    scopus 로고
    • DNA replication origins: from sequence specificity to epigenetics
    • Mechali M, (2001) DNA replication origins: from sequence specificity to epigenetics. Nat Rev Genet 2: 640-645.
    • (2001) Nat Rev Genet , vol.2 , pp. 640-645
    • Mechali, M.1
  • 72
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: many choices for appropriate answers
    • Mechali M, (2010) Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11: 728-738.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 728-738
    • Mechali, M.1
  • 73
    • 34447565003 scopus 로고    scopus 로고
    • Replication in context: dynamic regulation of DNA replication patterns in metazoans
    • Aladjem MI, (2007) Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 8: 588-600.
    • (2007) Nat Rev Genet , vol.8 , pp. 588-600
    • Aladjem, M.I.1
  • 74
    • 0031002795 scopus 로고    scopus 로고
    • Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex
    • Klemm RD, Austin RJ, Bell SP, (1997) Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell 88: 493-502.
    • (1997) Cell , vol.88 , pp. 493-502
    • Klemm, R.D.1    Austin, R.J.2    Bell, S.P.3
  • 75
    • 29544435484 scopus 로고    scopus 로고
    • Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase
    • Randell JC, Bowers JL, Rodriguez HK, Bell SP, (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 21: 29-39.
    • (2006) Mol Cell , vol.21 , pp. 29-39
    • Randell, J.C.1    Bowers, J.L.2    Rodriguez, H.K.3    Bell, S.P.4
  • 76
    • 29544446184 scopus 로고    scopus 로고
    • ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA
    • Speck C, Chen Z, Li H, Stillman B, (2005) ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol 12: 965-971.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 965-971
    • Speck, C.1    Chen, Z.2    Li, H.3    Stillman, B.4
  • 77
    • 0029048775 scopus 로고
    • ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome
    • Liang C, Weinreich M, Stillman B, (1995) ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell 81: 667-676.
    • (1995) Cell , vol.81 , pp. 667-676
    • Liang, C.1    Weinreich, M.2    Stillman, B.3
  • 78
    • 10944235448 scopus 로고    scopus 로고
    • ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication
    • Bowers JL, Randell JC, Chen S, Bell SP, (2004) ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 16: 967-978.
    • (2004) Mol Cell , vol.16 , pp. 967-978
    • Bowers, J.L.1    Randell, J.C.2    Chen, S.3    Bell, S.P.4
  • 79
    • 0031005357 scopus 로고    scopus 로고
    • Cell cycle-dependent establishment of a late replication program
    • Raghuraman MK, Brewer BJ, Fangman WL, (1997) Cell cycle-dependent establishment of a late replication program. Science 276: 806-809.
    • (1997) Science , vol.276 , pp. 806-809
    • Raghuraman, M.K.1    Brewer, B.J.2    Fangman, W.L.3
  • 80
    • 77951246258 scopus 로고    scopus 로고
    • Dynamics of pre-replicative complex assembly
    • Tsakraklides V, Bell SP, (2010) Dynamics of pre-replicative complex assembly. J Biol Chem 285: 9437-9443.
    • (2010) J Biol Chem , vol.285 , pp. 9437-9443
    • Tsakraklides, V.1    Bell, S.P.2
  • 81
    • 0036208817 scopus 로고    scopus 로고
    • Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication
    • Mendez J, Zou-Yang XH, Kim SY, Hidaka M, Tansey WP, et al. (2002) Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell 9: 481-491.
    • (2002) Mol Cell , vol.9 , pp. 481-491
    • Mendez, J.1    Zou-Yang, X.H.2    Kim, S.Y.3    Hidaka, M.4    Tansey, W.P.5
  • 82
    • 77649233258 scopus 로고    scopus 로고
    • Reconciling stochastic origin firing with defined replication timing
    • Rhind N, Yang SC, Bechhoefer J, (2010) Reconciling stochastic origin firing with defined replication timing. Chromosome Res 18: 35-43.
    • (2010) Chromosome Res , vol.18 , pp. 35-43
    • Rhind, N.1    Yang, S.C.2    Bechhoefer, J.3
  • 83
    • 77956253770 scopus 로고    scopus 로고
    • Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing
    • Yang SC, Rhind N, Bechhoefer J, (2010) Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol Syst Biol 6: 404.
    • (2010) Mol Syst Biol , vol.6 , pp. 404
    • Yang, S.C.1    Rhind, N.2    Bechhoefer, J.3
  • 84
    • 80052919408 scopus 로고    scopus 로고
    • Mutation rates across budding yeast chromosome VI are correlated with replication timing
    • Lang GI, Murray AW, (2011) Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol 3: 799-811.
    • (2011) Genome Biol Evol , vol.3 , pp. 799-811
    • Lang, G.I.1    Murray, A.W.2
  • 86
    • 77950661675 scopus 로고    scopus 로고
    • Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes
    • Chen CL, Rappailles A, Duquenne L, Huvet M, Guilbaud G, et al. (2010) Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res 20: 447-457.
    • (2010) Genome Res , vol.20 , pp. 447-457
    • Chen, C.L.1    Rappailles, A.2    Duquenne, L.3    Huvet, M.4    Guilbaud, G.5
  • 87
    • 31344436263 scopus 로고    scopus 로고
    • ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data
    • Buck MJ, Nobel AB, Lieb JD, (2005) ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data. Genome Biol 6: R97.
    • (2005) Genome Biol , vol.6
    • Buck, M.J.1    Nobel, A.B.2    Lieb, J.D.3
  • 88
    • 77951042893 scopus 로고    scopus 로고
    • MochiView: versatile software for genome browsing and DNA motif analysis
    • Homann OR, Johnson AD, (2010) MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8: 49.
    • (2010) BMC Biol , vol.8 , pp. 49
    • Homann, O.R.1    Johnson, A.D.2
  • 89
    • 0028365292 scopus 로고
    • Replicator dominance in a eukaryotic chromosome
    • Marahrens Y, Stillman B, (1994) Replicator dominance in a eukaryotic chromosome. Embo J 13: 3395-3400.
    • (1994) Embo J , vol.13 , pp. 3395-3400
    • Marahrens, Y.1    Stillman, B.2
  • 90
    • 63849315606 scopus 로고    scopus 로고
    • High-resolution DNA-binding specificity analysis of yeast transcription factors
    • Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, et al. (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19: 556-566.
    • (2009) Genome Res , vol.19 , pp. 556-566
    • Zhu, C.1    Byers, K.J.2    McCord, R.P.3    Shi, Z.4    Berger, M.F.5
  • 91
    • 0027261235 scopus 로고
    • Location and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae
    • Shirahige K, Iwasaki T, Rashid MB, Ogasawara N, Yoshikawa H, (1993) Location and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol 13: 5043-5056.
    • (1993) Mol Cell Biol , vol.13 , pp. 5043-5056
    • Shirahige, K.1    Iwasaki, T.2    Rashid, M.B.3    Ogasawara, N.4    Yoshikawa, H.5
  • 92
    • 34547236841 scopus 로고    scopus 로고
    • Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae
    • Xu W, Aparicio JG, Aparicio OM, Tavare S, (2006) Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 7: 276.
    • (2006) BMC Genomics , vol.7 , pp. 276
    • Xu, W.1    Aparicio, J.G.2    Aparicio, O.M.3    Tavare, S.4
  • 93
    • 0021705184 scopus 로고
    • Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae
    • Celniker SE, Sweder K, Srienc F, Bailey JE, Campbell JL, (1984) Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol Cell Biol 4: 2455-2466.
    • (1984) Mol Cell Biol , vol.4 , pp. 2455-2466
    • Celniker, S.E.1    Sweder, K.2    Srienc, F.3    Bailey, J.E.4    Campbell, J.L.5
  • 94
    • 3042717854 scopus 로고    scopus 로고
    • Prediction of Saccharomyces cerevisiae replication origins
    • Breier AM, Chatterji S, Cozzarelli NR, (2004) Prediction of Saccharomyces cerevisiae replication origins. Genome Biol 5: R22.
    • (2004) Genome Biol , vol.5
    • Breier, A.M.1    Chatterji, S.2    Cozzarelli, N.R.3
  • 95
    • 0027433603 scopus 로고
    • A DNA unwinding element and an ARS consensus comprise a replication origin within a yeast chromosome
    • Huang RY, Kowalski D, (1993) A DNA unwinding element and an ARS consensus comprise a replication origin within a yeast chromosome. EMBO J 12: 4521-4531.
    • (1993) EMBO J , vol.12 , pp. 4521-4531
    • Huang, R.Y.1    Kowalski, D.2
  • 96
    • 0029865352 scopus 로고    scopus 로고
    • Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome
    • Huang RY, Kowalski D, (1996) Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome. Nucleic Acids Res 24: 816-823.
    • (1996) Nucleic Acids Res , vol.24 , pp. 816-823
    • Huang, R.Y.1    Kowalski, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.