메뉴 건너뛰기




Volumn 26, Issue 3, 2016, Pages 365-375

Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase

Author keywords

[No Author keywords available]

Indexed keywords

BROXURIDINE; CHECKPOINT KINASE 2; FKH1 PROTEIN; FKH2 PROTEIN; FORKHEAD TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG; CELL CYCLE PROTEIN; FKH1 PROTEIN, S CEREVISIAE; FKH2 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84960364560     PISSN: 10889051     EISSN: 15495469     Source Type: Journal    
DOI: 10.1101/gr.196857.115     Document Type: Article
Times cited : (33)

References (63)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 2
    • 84873044090 scopus 로고    scopus 로고
    • Location, location, location: It's all in the timing for replication origins
    • Aparicio OM. 2013. Location, location, location: It's all in the timing for replication origins. Genes Dev 27:117-128.
    • (2013) Genes Dev , vol.27 , pp. 117-128
    • Aparicio, O.M.1
  • 3
    • 84863872155 scopus 로고    scopus 로고
    • Replication timing and its emergence from stochastic processes
    • Bechhoefer J, Rhind N. 2012. Replication timing and its emergence from stochastic processes. Trends Genet 28:374-381.
    • (2012) Trends Genet , vol.28 , pp. 374-381
    • Bechhoefer, J.1    Rhind, N.2
  • 4
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad BM, Irizarry RA, Astrand M, Speed TP. 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185-193.
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 5
    • 39449139672 scopus 로고    scopus 로고
    • Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin
    • Casey L, Patterson EE, Muller U, Fox CA. 2008. Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin. Mol Biol Cell 19:608-622.
    • (2008) Mol Biol Cell , vol.19 , pp. 608-622
    • Casey, L.1    Patterson, E.E.2    Muller, U.3    Fox, C.A.4
  • 7
    • 33846576261 scopus 로고    scopus 로고
    • Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae
    • Chabes A, Stillman B. 2007. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci 104:1183-1188.
    • (2007) Proc Natl Acad Sci , vol.104 , pp. 1183-1188
    • Chabes, A.1    Stillman, B.2
  • 8
    • 84960414406 scopus 로고    scopus 로고
    • SnapShot: Origins of DNA replication
    • e411
    • Creager RL, Li Y, MacAlpine DM. 2015. SnapShot: origins of DNA replication. Cell 161:418-418 e411.
    • (2015) Cell , vol.161 , pp. 418
    • Creager, R.L.1    Li, Y.2    MacAlpine, D.M.3
  • 9
    • 0032530824 scopus 로고    scopus 로고
    • Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway
    • Desany BA, Alcasabas AA, Bachant JB, Elledge SJ. 1998. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev 12:2956-2970.
    • (1998) Genes Dev , vol.12 , pp. 2956-2970
    • Desany, B.A.1    Alcasabas, A.A.2    Bachant, J.B.3    Elledge, S.J.4
  • 10
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova DS, Gilbert DM. 1999. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4:983-993.
    • (1999) Mol Cell , vol.4 , pp. 983-993
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 11
    • 84883474046 scopus 로고    scopus 로고
    • A cost-effective method for high-throughput construction of Illumina sequencing libraries
    • 2013
    • Dunham JP, Friesen ML. 2013. A cost-effective method for high-throughput construction of Illumina sequencing libraries. Cold Spring Harb Protoc 2013:820-834.
    • (2013) Cold Spring Harb Protoc , pp. 820-834
    • Dunham, J.P.1    Friesen, M.L.2
  • 12
    • 0025756992 scopus 로고
    • A yeast origin of replication is activated late in S phase
    • Ferguson BM, Brewer BJ, Reynolds AE, Fangman WL. 1991. A yeast origin of replication is activated late in S phase. Cell 65:507-515.
    • (1991) Cell , vol.65 , pp. 507-515
    • Ferguson, B.M.1    Brewer, B.J.2    Reynolds, A.E.3    Fangman, W.L.4
  • 13
    • 0031265756 scopus 로고    scopus 로고
    • Replication profile of Saccharomyces cerevisiae chromosome VI
    • Friedman KL, Brewer BJ, Fangman WL. 1997. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2:667-678.
    • (1997) Genes Cells , vol.2 , pp. 667-678
    • Friedman, K.L.1    Brewer, B.J.2    Fangman, W.L.3
  • 14
    • 0021331633 scopus 로고
    • Copy number and the stability of 2-μm circlebased artificial plasmids of Saccharomyces cerevisiae
    • Futcher AB, Cox BS. 1984. Copy number and the stability of 2-μm circlebased artificial plasmids of Saccharomyces cerevisiae. J Bacteriol 157:283-290.
    • (1984) J Bacteriol , vol.157 , pp. 283-290
    • Futcher, A.B.1    Cox, B.S.2
  • 16
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31-34.
    • (2007) Nat Protoc , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 17
    • 77956879643 scopus 로고    scopus 로고
    • Evaluating genome-scale approaches to eukaryotic DNA replication
    • Gilbert DM. 2010. Evaluating genome-scale approaches to eukaryotic DNA replication. Nat Rev Genet 11:673-684.
    • (2010) Nat Rev Genet , vol.11 , pp. 673-684
    • Gilbert, D.M.1
  • 18
    • 84860548726 scopus 로고    scopus 로고
    • Mating-type genes and MAT switching in Saccharomyces cerevisiae
    • Haber JE. 2012. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191:33-64.
    • (2012) Genetics , vol.191 , pp. 33-64
    • Haber, J.E.1
  • 19
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
    • Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H. 2009. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 11:357-362.
    • (2009) Nat Cell Biol , vol.11 , pp. 357-362
    • Hayashi, M.T.1    Takahashi, T.S.2    Nakagawa, T.3    Nakayama, J.4    Masukata, H.5
  • 20
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2:accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36.
    • (2013) Genome Biol , vol.14 , pp. R36
    • Kim, D.1    Pertea, G.2    Trapnell, C.3    Pimentel, H.4    Kelley, R.5    Salzberg, S.L.6
  • 22
    • 0032535478 scopus 로고    scopus 로고
    • Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: Requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I
    • Kobayashi T, Heck DJ, Nomura M, Horiuchi T. 1998. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12:3821-3830.
    • (1998) Genes Dev , vol.12 , pp. 3821-3830
    • Kobayashi, T.1    Heck, D.J.2    Nomura, M.3    Horiuchi, T.4
  • 23
    • 84895538371 scopus 로고    scopus 로고
    • Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells
    • Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. 2014. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11:319-324.
    • (2014) Nat Methods , vol.11 , pp. 319-324
    • Kulak, N.A.1    Pichler, G.2    Paron, I.3    Nagaraj, N.4    Mann, M.5
  • 25
    • 77953954908 scopus 로고    scopus 로고
    • How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?
    • Labib K. 2010. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev 24:1208-1219.
    • (2010) Genes Dev , vol.24 , pp. 1208-1219
    • Labib, K.1
  • 26
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357-359.
    • (2012) Nat Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 28
    • 79551547443 scopus 로고    scopus 로고
    • S. Pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: Region specific effects and replication timing in the centromere
    • Li PC, Chretien L, Cote J, Kelly TJ, Forsburg SL. 2011. S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere. Cell Cycle 10:323-336.
    • (2011) Cell Cycle , vol.10 , pp. 323-336
    • Li, P.C.1    Chretien, L.2    Cote, J.3    Kelly, T.J.4    Forsburg, S.L.5
  • 29
    • 84884571721 scopus 로고    scopus 로고
    • Fkh1 and Fkh2 associate with Sir2 to control CLB2 transcription under normal and oxidative stress conditions
    • Linke C, Klipp E, Lehrach H, Barberis M, Krobitsch S. 2013. Fkh1 and Fkh2 associate with Sir2 to control CLB2 transcription under normal and oxidative stress conditions. Front Physiol 4:173.
    • (2013) Front Physiol , vol.4 , pp. 173
    • Linke, C.1    Klipp, E.2    Lehrach, H.3    Barberis, M.4    Krobitsch, S.5
  • 30
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D, Mackenzie A, Donaldson A, Zegerman P. 2011. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30:4805-4814.
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 33
    • 77955726795 scopus 로고    scopus 로고
    • Regulation of yeast forkhead transcription factors and FoxM1 by cyclin-dependent and polo-like kinases
    • Murakami H, Aiba H, Nakanishi M, Murakami-Tonami Y. 2010. Regulation of yeast forkhead transcription factors and FoxM1 by cyclin-dependent and polo-like kinases. Cell Cycle 9:3233-3242.
    • (2010) Cell Cycle , vol.9 , pp. 3233-3242
    • Murakami, H.1    Aiba, H.2    Nakanishi, M.3    Murakami-Tonami, Y.4
  • 35
    • 84895091924 scopus 로고    scopus 로고
    • Fkh1 and Fkh2 bind multiple chromosomal elements in the S. Cerevisiae genome with distinct specificities and cell cycle dynamics
    • Ostrow AZ, Nellimoottil T, Knott SR, Fox CA, Tavare S, Aparicio OM. 2014. Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. PLoS One 9:e87647.
    • (2014) PLoS One , vol.9 , pp. e87647
    • Ostrow, A.Z.1    Nellimoottil, T.2    Knott, S.R.3    Fox, C.A.4    Tavare, S.5    Aparicio, O.M.6
  • 37
    • 84902350415 scopus 로고    scopus 로고
    • Rif1 regulates initiation timing of late replication origins throughout the S. Cerevisiae genome
    • Peace JM, Ter-Zakarian A, Aparicio OM. 2014. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One 9:e98501.
    • (2014) PLoS One , vol.9 , pp. e98501
    • Peace, J.M.1    Ter-Zakarian, A.2    Aparicio, O.M.3
  • 38
    • 84859230772 scopus 로고    scopus 로고
    • The yeast forkhead transcription factors fkh1 and fkh2 regulate lifespan and stress response together with the anaphase-promoting complex
    • Postnikoff SD, Malo ME, Wong B, Harkness TA. 2012. The yeast forkhead transcription factors fkh1 and fkh2 regulate lifespan and stress response together with the anaphase-promoting complex. PLoS Genet 8:e1002583.
    • (2012) PLoS Genet , vol.8 , pp. e1002583
    • Postnikoff, S.D.1    Malo, M.E.2    Wong, B.3    Harkness, T.A.4
  • 39
    • 77951770756 scopus 로고    scopus 로고
    • BEDTools: A flexible suite of utilities for comparing genomic features
    • Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841-842.
    • (2010) Bioinformatics , vol.26 , pp. 841-842
    • Quinlan, A.R.1    Hall, I.M.2
  • 40
    • 0031005357 scopus 로고    scopus 로고
    • Cell cycle-dependent establishment of a late replication program
    • Raghuraman MK, Brewer BJ, Fangman WL. 1997. Cell cycle-dependent establishment of a late replication program. Science 276:806-809.
    • (1997) Science , vol.276 , pp. 806-809
    • Raghuraman, M.K.1    Brewer, B.J.2    Fangman, W.L.3
  • 43
    • 0033568196 scopus 로고    scopus 로고
    • Activation of dormant origins of DNA replication in budding yeast
    • Santocanale C, Sharma K, Diffley JF. 1999. Activation of dormant origins of DNA replication in budding yeast. Genes Dev 13:2360-2364.
    • (1999) Genes Dev , vol.13 , pp. 2360-2364
    • Santocanale, C.1    Sharma, K.2    Diffley, J.F.3
  • 44
    • 40549108563 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA replication
    • Sclafani RA, Holzen TM. 2007. Cell cycle regulation of DNA replication. Annu Rev Genet 41:237-280.
    • (2007) Annu Rev Genet , vol.41 , pp. 237-280
    • Sclafani, R.A.1    Holzen, T.M.2
  • 45
    • 0028966452 scopus 로고
    • Human SEC13Rp functionsin yeast and is located on transport vesicles budding from the endoplasmic reticulum
    • Shaywitz DA, Orci L, Ravazzola M, Swaroop A, Kaiser CA. 1995. Human SEC13Rp functionsin yeast and is located on transport vesicles budding from the endoplasmic reticulum. J Cell Biol 128:769-777.
    • (1995) J Cell Biol , vol.128 , pp. 769-777
    • Shaywitz, D.A.1    Orci, L.2    Ravazzola, M.3    Swaroop, A.4    Kaiser, C.A.5
  • 46
    • 34147194965 scopus 로고    scopus 로고
    • The Isw2 chromatin-remodeling ATPase cooperates with the Fkh2 transcription factor to repress transcription of the B-type cyclin gene CLB2
    • Sherriff JA, Kent NA, Mellor J. 2007. The Isw2 chromatin-remodeling ATPase cooperates with the Fkh2 transcription factor to repress transcription of the B-type cyclin gene CLB2. Mol Cell Biol 27:2848-2860.
    • (2007) Mol Cell Biol , vol.27 , pp. 2848-2860
    • Sherriff, J.A.1    Kent, N.A.2    Mellor, J.3
  • 47
    • 84907470240 scopus 로고    scopus 로고
    • Chromatin structure and replication origins: Determinants of chromosome replication and nuclear organization
    • Smith OK, Aladjem MI. 2014. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization. J Mol Biol 426:3330-3341.
    • (2014) J Mol Biol , vol.426 , pp. 3330-3341
    • Smith, O.K.1    Aladjem, M.I.2
  • 48
    • 84903169287 scopus 로고    scopus 로고
    • University of Cambridge, Cancer Research UK-Cambridge Institute
    • Stark R, Brown R. 2013. DiffBind: differential binding analysis of ChIP-Seq peak data. bioconductor.org, University of Cambridge, Cancer Research UK-Cambridge Institute. http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf.
    • (2013) DiffBind: Differential Binding Analysis of ChIP-seq Peak Data
    • Stark, R.1    Brown, R.2
  • 49
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. 2011. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21:2055-2063.
    • (2011) Curr Biol , vol.21 , pp. 2055-2063
    • Tanaka, S.1    Nakato, R.2    Katou, Y.3    Shirahige, K.4    Araki, H.5
  • 51
    • 36849091351 scopus 로고    scopus 로고
    • Activation of the G2/M-specific gene CLB2 requires multiple cell cycle signals
    • Veis J, Klug H, Koranda M, Ammerer G. 2007. Activation of the G2/M-specific gene CLB2 requires multiple cell cycle signals. Mol Cell Biol 27:8364-8373.
    • (2007) Mol Cell Biol , vol.27 , pp. 8364-8373
    • Veis, J.1    Klug, H.2    Koranda, M.3    Ammerer, G.4
  • 52
    • 33751578231 scopus 로고    scopus 로고
    • New vectors for simplified construction of BrdU-Incorporating strains of Saccharomyces cerevisiae
    • Viggiani CJ, Aparicio OM. 2006. New vectors for simplified construction of BrdU-Incorporating strains of Saccharomyces cerevisiae. Yeast 23:1045-1051.
    • (2006) Yeast , vol.23 , pp. 1045-1051
    • Viggiani, C.J.1    Aparicio, O.M.2
  • 53
    • 77956272541 scopus 로고    scopus 로고
    • Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae
    • Viggiani CJ, Knott SR, Aparicio OM. 2010. Genome-wide analysis of DNA synthesis by BrdU immunoprecipitation on tiling microarrays (BrdU-IP-chip) in Saccharomyces cerevisiae. Cold Spring Harb Protoc 2010: pdb. prot5385.
    • (2010) Cold Spring Harb Protoc , vol.2010
    • Viggiani, C.J.1    Knott, S.R.2    Aparicio, O.M.3
  • 55
    • 61349201535 scopus 로고    scopus 로고
    • Establishing the program of origin firing during S phase in fission yeast
    • Wu PY, Nurse P. 2009. Establishing the program of origin firing during S phase in fission yeast. Cell 136:852-864.
    • (2009) Cell , vol.136 , pp. 852-864
    • Wu, P.Y.1    Nurse, P.2
  • 57
    • 0031261584 scopus 로고    scopus 로고
    • The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI
    • Yamashita M, Hori Y, Shinomiya T, Obuse C, Tsurimoto T, Yoshikawa H, Shirahige K. 1997. The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells 2:655-665.
    • (1997) Genes Cells , vol.2 , pp. 655-665
    • Yamashita, M.1    Hori, Y.2    Shinomiya, T.3    Obuse, C.4    Tsurimoto, T.5    Yoshikawa, H.6    Shirahige, K.7
  • 58
    • 77956253770 scopus 로고    scopus 로고
    • Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing
    • Yang SC, Rhind N, Bechhoefer J. 2010. Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol Syst Biol 6:404.
    • (2010) Mol Syst Biol , vol.6 , pp. 404
    • Yang, S.C.1    Rhind, N.2    Bechhoefer, J.3
  • 60
    • 0018291839 scopus 로고
    • Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase
    • Zakian VA, Brewer BJ, Fangman WL. 1979. Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase. Cell 17:923-934.
    • (1979) Cell , vol.17 , pp. 923-934
    • Zakian, V.A.1    Brewer, B.J.2    Fangman, W.L.3
  • 61
    • 0037188889 scopus 로고    scopus 로고
    • Noc3p, a bHLH protein, plays an integral role in the initiation of DNA replication in budding yeast
    • Zhang Y, Yu Z, Fu X, Liang C. 2002. Noc3p, a bHLH protein, plays an integral role in the initiation of DNA replication in budding yeast. Cell 109:849-860.
    • (2002) Cell , vol.109 , pp. 849-860
    • Zhang, Y.1    Yu, Z.2    Fu, X.3    Liang, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.