메뉴 건너뛰기




Volumn 23, Issue 2, 2013, Pages 124-131

Genetic and epigenetic determinants of DNA replication origins, position and activation

Author keywords

[No Author keywords available]

Indexed keywords

CELL CYCLE; CELL DIFFERENTIATION; CELL NUCLEUS; CHROMATIN; DNA REPLICATION; DNA SYNTHESIS; EPIGENETICS; EUKARYOTIC CELL; GENE ACTIVATION; GENETIC ASSOCIATION; GENETICS; HISTONE MODIFICATION; HUMAN; NONHUMAN; NUCLEOSOME; PRIORITY JOURNAL; REGULATORY MECHANISM; REVIEW;

EID: 84877815977     PISSN: 0959437X     EISSN: 18790380     Source Type: Journal    
DOI: 10.1016/j.gde.2013.02.010     Document Type: Review
Times cited : (93)

References (87)
  • 2
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: many choices for appropriate answers
    • Mechali M. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 2010, 11:728-738.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 728-738
    • Mechali, M.1
  • 3
    • 70549085855 scopus 로고    scopus 로고
    • Eukaryotic DNA replication control: lock and load, then fire
    • Remus D., Diffley J.F.X. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 2009, 21:771-777.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 771-777
    • Remus, D.1    Diffley, J.F.X.2
  • 9
    • 76049105950 scopus 로고    scopus 로고
    • Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection
    • Karnani N., Taylor C.M., Malhotra A., Dutta A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol Biol Cell 2010, 21:393-404.
    • (2010) Mol Biol Cell , vol.21 , pp. 393-404
    • Karnani, N.1    Taylor, C.M.2    Malhotra, A.3    Dutta, A.4
  • 10
    • 79952270733 scopus 로고    scopus 로고
    • Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription
    • Mesner L.D., Valsakumar V., Karnani N., Dutta A., Hamlin J.L., Bekiranov S. Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription. Genome Res 2011, 21:377-389.
    • (2011) Genome Res , vol.21 , pp. 377-389
    • Mesner, L.D.1    Valsakumar, V.2    Karnani, N.3    Dutta, A.4    Hamlin, J.L.5    Bekiranov, S.6
  • 13
    • 84877841041 scopus 로고    scopus 로고
    • DNA Replication origins. In Cold Spring Harbor Perspectives in Biology. Edited by Bell S, Méchali M, DePamphilis M. CSH Press;in press
    • Leonard AC, Méchali M: DNA Replication origins. In Cold Spring Harbor Perspectives in Biology. Edited by Bell S, Méchali M, DePamphilis M. CSH Press; 2012, in press.
    • (2012)
    • Leonard, A.C.1    Méchali, M.2
  • 16
    • 78049415820 scopus 로고    scopus 로고
    • Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure
    • Berbenetz N.M., Nislow C., Brown G.W. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 2010, 6:e1001092.
    • (2010) PLoS Genet , vol.6
    • Berbenetz, N.M.1    Nislow, C.2    Brown, G.W.3
  • 17
    • 77950962157 scopus 로고    scopus 로고
    • Conserved nucleosome positioning defines replication origins
    • Eaton M.L., Galani K., Kang S., Bell S.P., Macalpine D.M. Conserved nucleosome positioning defines replication origins. Genes Dev 2010, 24:748-753.
    • (2010) Genes Dev , vol.24 , pp. 748-753
    • Eaton, M.L.1    Galani, K.2    Kang, S.3    Bell, S.P.4    Macalpine, D.M.5
  • 19
    • 84869792234 scopus 로고    scopus 로고
    • Differential chromatin structure encompassing replication origins in transformed and normal cells
    • Di Paola D., Rampakakis E., Chan M.K., Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012, 3:152-176.
    • (2012) Genes Cancer , vol.3 , pp. 152-176
    • Di Paola, D.1    Rampakakis, E.2    Chan, M.K.3    Zannis-Hadjopoulos, M.4
  • 20
    • 80555156654 scopus 로고    scopus 로고
    • Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization
    • Tsankov A., Yanagisawa Y., Rhind N., Regev A., Rando O.J. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res 2011, 21:1851-1862.
    • (2011) Genome Res , vol.21 , pp. 1851-1862
    • Tsankov, A.1    Yanagisawa, Y.2    Rhind, N.3    Regev, A.4    Rando, O.J.5
  • 22
    • 68149150830 scopus 로고    scopus 로고
    • H3.3/H2A.Z. double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions
    • Jin C., Zang C., Wei G., Cui K., Peng W., Zhao K., Felsenfeld G. H3.3/H2A.Z. double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat Genet 2009, 41:941-945.
    • (2009) Nat Genet , vol.41 , pp. 941-945
    • Jin, C.1    Zang, C.2    Wei, G.3    Cui, K.4    Peng, W.5    Zhao, K.6    Felsenfeld, G.7
  • 24
    • 75649109712 scopus 로고    scopus 로고
    • Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading
    • MacAlpine H.K., Gordân R., Powell S.K., Hartemink A.J., MacAlpine D.M. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 2010, 20:201-211.
    • (2010) Genome Res , vol.20 , pp. 201-211
    • MacAlpine, H.K.1    Gordân, R.2    Powell, S.K.3    Hartemink, A.J.4    MacAlpine, D.M.5
  • 25
    • 73649089696 scopus 로고    scopus 로고
    • HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin
    • Miotto B., Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 2010, 37:57-66.
    • (2010) Mol Cell , vol.37 , pp. 57-66
    • Miotto, B.1    Struhl, K.2
  • 26
    • 78149281634 scopus 로고    scopus 로고
    • The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells
    • Tardat M., Brustel J., Kirsh O., Lefevbre C., Callanan M., Sardet C., Julien E. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 2010, 12:1086-1093.
    • (2010) Nat Cell Biol , vol.12 , pp. 1086-1093
    • Tardat, M.1    Brustel, J.2    Kirsh, O.3    Lefevbre, C.4    Callanan, M.5    Sardet, C.6    Julien, E.7
  • 27
    • 80655125024 scopus 로고    scopus 로고
    • Chromatin remodeler sucrose nonfermenting 2 homolog (SNF2H) is recruited onto DNA replication origins through interaction with Cdc10 protein-dependent transcript 1 (Cdt1) and promotes pre-replication complex formation
    • Sugimoto N., Yugawa T., Iizuka M., Kiyono T., Fujita M. Chromatin remodeler sucrose nonfermenting 2 homolog (SNF2H) is recruited onto DNA replication origins through interaction with Cdc10 protein-dependent transcript 1 (Cdt1) and promotes pre-replication complex formation. J Biol Chem 2011, 286:39200-39210.
    • (2011) J Biol Chem , vol.286 , pp. 39200-39210
    • Sugimoto, N.1    Yugawa, T.2    Iizuka, M.3    Kiyono, T.4    Fujita, M.5
  • 29
    • 33751087739 scopus 로고    scopus 로고
    • The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo
    • Noguchi K., Vassilev A., Ghosh S., Yates J.L., DePamphilis M.L. The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo. EMBO J 2006, 25:5372-5382.
    • (2006) EMBO J , vol.25 , pp. 5372-5382
    • Noguchi, K.1    Vassilev, A.2    Ghosh, S.3    Yates, J.L.4    DePamphilis, M.L.5
  • 30
    • 77958481159 scopus 로고    scopus 로고
    • Nucleosome-interacting proteins regulated by DNA and histone methylation
    • Bartke T., Vermeulen M., Xhemalce B., Robson S.C., Mann M., Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 2010, 143:470-484.
    • (2010) Cell , vol.143 , pp. 470-484
    • Bartke, T.1    Vermeulen, M.2    Xhemalce, B.3    Robson, S.C.4    Mann, M.5    Kouzarides, T.6
  • 34
    • 77957011803 scopus 로고    scopus 로고
    • Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization
    • Prasanth S.G., Shen Z., Prasanth K.V., Stillman B. Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci U S A 2010, 107:15093-15098.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 15093-15098
    • Prasanth, S.G.1    Shen, Z.2    Prasanth, K.V.3    Stillman, B.4
  • 35
    • 78049441839 scopus 로고    scopus 로고
    • Preferential re-replication of Drosophila heterochromatin in the absence of geminin
    • Ding Q., MacAlpine D.M. Preferential re-replication of Drosophila heterochromatin in the absence of geminin. PLoS Genet 2010, 6.
    • (2010) PLoS Genet , vol.6
    • Ding, Q.1    MacAlpine, D.M.2
  • 36
    • 84855373452 scopus 로고    scopus 로고
    • Analysis of model replication origins in Drosophila reveals new aspects of the chromatin landscape and its relationship to origin activity and the prereplicative complex
    • Liu J., McConnell K., Dixon M., Calvi B.R. Analysis of model replication origins in Drosophila reveals new aspects of the chromatin landscape and its relationship to origin activity and the prereplicative complex. Mol Biol Cell 2012, 23:200-212.
    • (2012) Mol Biol Cell , vol.23 , pp. 200-212
    • Liu, J.1    McConnell, K.2    Dixon, M.3    Calvi, B.R.4
  • 38
    • 84867163924 scopus 로고    scopus 로고
    • DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae
    • Rizzardi L.F., Dorn E.S., Strahl B.D., Cook J.G. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae. Genetics 2012, 192:371-384.
    • (2012) Genetics , vol.192 , pp. 371-384
    • Rizzardi, L.F.1    Dorn, E.S.2    Strahl, B.D.3    Cook, J.G.4
  • 39
    • 33750438774 scopus 로고    scopus 로고
    • Genome-wide characterization of fission yeast DNA replication origins
    • Heichinger C., Penkett C.J., Bahler J., Nurse P. Genome-wide characterization of fission yeast DNA replication origins. EMBO J 2006, 25:5171-5179.
    • (2006) EMBO J , vol.25 , pp. 5171-5179
    • Heichinger, C.1    Penkett, C.J.2    Bahler, J.3    Nurse, P.4
  • 40
    • 0031265756 scopus 로고    scopus 로고
    • Replication profile of Saccharomyces cerevisiae chromosome VI
    • Friedman K.L., Brewer B.J., Fangman W.L. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 1997, 2:667-678.
    • (1997) Genes Cells , vol.2 , pp. 667-678
    • Friedman, K.L.1    Brewer, B.J.2    Fangman, W.L.3
  • 41
    • 84856239876 scopus 로고    scopus 로고
    • Optimal placement of origins for DNA replication
    • Karschau J., Blow J.J., de Moura A.P.S. Optimal placement of origins for DNA replication. Phys Rev Lett 2012, 108:058101.
    • (2012) Phys Rev Lett , vol.108 , pp. 058101
    • Karschau, J.1    Blow, J.J.2    de Moura, A.P.S.3
  • 42
    • 79961170861 scopus 로고    scopus 로고
    • How dormant origins promote complete genome replication
    • Blow J.J., Ge X.Q., Jackson D.A. How dormant origins promote complete genome replication. Trends Biochem Sci 2011, 36:405-414.
    • (2011) Trends Biochem Sci , vol.36 , pp. 405-414
    • Blow, J.J.1    Ge, X.Q.2    Jackson, D.A.3
  • 43
    • 0019998194 scopus 로고
    • A relationship between replicon size and supercoiled loop domains in the eukaryotic genome
    • Buongiorno-Nardelli M., Michelli G., Carri M.T., Marilley M. A relationship between replicon size and supercoiled loop domains in the eukaryotic genome. Nature 1982, 298:100-102.
    • (1982) Nature , vol.298 , pp. 100-102
    • Buongiorno-Nardelli, M.1    Michelli, G.2    Carri, M.T.3    Marilley, M.4
  • 44
    • 52949092763 scopus 로고    scopus 로고
    • Replication fork movement drives remodeling of chromatin loops and origin choice in mammalian cells
    • Courbet S., Gay S., Arnoult N., Wronka G., Anglana M., Brison O., Debatisse M. Replication fork movement drives remodeling of chromatin loops and origin choice in mammalian cells. Nature 2008, 455:557-560.
    • (2008) Nature , vol.455 , pp. 557-560
    • Courbet, S.1    Gay, S.2    Arnoult, N.3    Wronka, G.4    Anglana, M.5    Brison, O.6    Debatisse, M.7
  • 45
    • 28344440877 scopus 로고    scopus 로고
    • Mitotic remodeling of the replicon and chromosome structure
    • Lemaitre J.-M., Danis E., Pasero P., Vassetzky Y., Méchali M. Mitotic remodeling of the replicon and chromosome structure. Cell 2005, 123:787-801.
    • (2005) Cell , vol.123 , pp. 787-801
    • Lemaitre, J.-M.1    Danis, E.2    Pasero, P.3    Vassetzky, Y.4    Méchali, M.5
  • 48
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D., Mackenzie A., Donaldson A., Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 2011, 30:4805-4814.
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 49
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka S., Nakato R., Katou Y., Shirahige K., Araki H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 2011, 21:2055-2063.
    • (2011) Curr Biol , vol.21 , pp. 2055-2063
    • Tanaka, S.1    Nakato, R.2    Katou, Y.3    Shirahige, K.4    Araki, H.5
  • 54
    • 3242670803 scopus 로고    scopus 로고
    • ATR and ATM regulate the timing of DNA replication origin firing
    • Shechter D., Costanzo V., Gautier J. ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol 2004, 6:648-655.
    • (2004) Nat Cell Biol , vol.6 , pp. 648-655
    • Shechter, D.1    Costanzo, V.2    Gautier, J.3
  • 56
    • 79952902707 scopus 로고    scopus 로고
    • Defining the replication program through the chromatin landscape
    • Ding Q., MacAlpine D.M. Defining the replication program through the chromatin landscape. Crit Rev Biochem Mol Biol 2011, 46:165-179.
    • (2011) Crit Rev Biochem Mol Biol , vol.46 , pp. 165-179
    • Ding, Q.1    MacAlpine, D.M.2
  • 57
    • 79957564427 scopus 로고    scopus 로고
    • Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control
    • Dorn E.S., Cook J.G. Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control. Epigenetics 2011, 6:552-559.
    • (2011) Epigenetics , vol.6 , pp. 552-559
    • Dorn, E.S.1    Cook, J.G.2
  • 58
    • 80053391506 scopus 로고    scopus 로고
    • P53 and p16(INK4A) independant induction of sencescence by chromatin-dependent alteration of S-phase progression
    • Prieur A., Besnard E., Babled A., Lemaitre J.M. p53 and p16(INK4A) independant induction of sencescence by chromatin-dependent alteration of S-phase progression. Nat Commun 2011, 473.
    • (2011) Nat Commun , pp. 473
    • Prieur, A.1    Besnard, E.2    Babled, A.3    Lemaitre, J.M.4
  • 59
    • 65449160972 scopus 로고    scopus 로고
    • Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
    • Knott S.R., Viggiani C.J., Tavare S., Aparicio O.M. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 2009, 23:1077-1090.
    • (2009) Genes Dev , vol.23 , pp. 1077-1090
    • Knott, S.R.1    Viggiani, C.J.2    Tavare, S.3    Aparicio, O.M.4
  • 60
    • 0036791653 scopus 로고    scopus 로고
    • Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
    • Pasero P., Bensimon A., Schwob E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 2002, 16:2479-2484.
    • (2002) Genes Dev , vol.16 , pp. 2479-2484
    • Pasero, P.1    Bensimon, A.2    Schwob, E.3
  • 64
    • 84864527294 scopus 로고    scopus 로고
    • Chromatin-interaction compartment switch at developmentally regulated chromosomal domains reveals an unusual principle of chromatin folding
    • Takebayashi S.-I., Dileep V., Ryba T., Dennis J.H., Gilbert D.M. Chromatin-interaction compartment switch at developmentally regulated chromosomal domains reveals an unusual principle of chromatin folding. Proc Natl Acad Sci 2012, 109:12574-12579.
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 12574-12579
    • Takebayashi, S.-I.1    Dileep, V.2    Ryba, T.3    Dennis, J.H.4    Gilbert, D.M.5
  • 65
    • 83255189766 scopus 로고    scopus 로고
    • DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes
    • De S., Michor F. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat Biotechnol 2011, 29:1103-1108.
    • (2011) Nat Biotechnol , vol.29 , pp. 1103-1108
    • De, S.1    Michor, F.2
  • 66
    • 84861368093 scopus 로고    scopus 로고
    • On the assessment of statistical significance of three-dimensional colocalization of sets of genomic elements
    • Witten D.M., Noble W.S. On the assessment of statistical significance of three-dimensional colocalization of sets of genomic elements. Nucleic Acids Res 2012, 40:3849-3855.
    • (2012) Nucleic Acids Res , vol.40 , pp. 3849-3855
    • Witten, D.M.1    Noble, W.S.2
  • 67
    • 84863540362 scopus 로고    scopus 로고
    • Physical tethering and volume exclusion determine higher-order genome organization in budding yeast
    • Tjong H., Gong K., Chen L., Alber F. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res 2012, 22:1295-1305.
    • (2012) Genome Res , vol.22 , pp. 1295-1305
    • Tjong, H.1    Gong, K.2    Chen, L.3    Alber, F.4
  • 68
  • 70
    • 84863643914 scopus 로고    scopus 로고
    • Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae
    • Pohl T.J., Brewer B.J., Raghuraman M.K. Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae. PLoS Genet 2012, 8:e1002677.
    • (2012) PLoS Genet , vol.8
    • Pohl, T.J.1    Brewer, B.J.2    Raghuraman, M.K.3
  • 71
    • 79952451729 scopus 로고    scopus 로고
    • Regulation of DNA replication by chromatin structures: accessibility and recruitment
    • Hayashi M.T., Masukata H. Regulation of DNA replication by chromatin structures: accessibility and recruitment. Chromosoma 2011, 120:39-46.
    • (2011) Chromosoma , vol.120 , pp. 39-46
    • Hayashi, M.T.1    Masukata, H.2
  • 72
    • 79551547443 scopus 로고    scopus 로고
    • S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere
    • Li P.-C., Chretien L., Côté J., Kelly T.J., Forsburg S.L. S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere. Cell Cycle 2011, 10:323-336.
    • (2011) Cell Cycle , vol.10 , pp. 323-336
    • Li, P.-C.1    Chretien, L.2    Côté, J.3    Kelly, T.J.4    Forsburg, S.L.5
  • 77
    • 84866427034 scopus 로고    scopus 로고
    • Rif1 regulates the replication timing domains on the human genome
    • Yamazaki S., Ishii A., Kanoh Y., Oda M., Nishito Y., Masai H. Rif1 regulates the replication timing domains on the human genome. EMBO J 2012, 31:3667-3677.
    • (2012) EMBO J , vol.31 , pp. 3667-3677
    • Yamazaki, S.1    Ishii, A.2    Kanoh, Y.3    Oda, M.4    Nishito, Y.5    Masai, H.6
  • 79
    • 84864686940 scopus 로고    scopus 로고
    • Regulation of DNA replication timing on human chromosome by a cell-type specific DNA binding protein SATB1
    • Oda M., Kanoh Y., Watanabe Y., Masai H. Regulation of DNA replication timing on human chromosome by a cell-type specific DNA binding protein SATB1. PLoS ONE 2012, 7:e42375.
    • (2012) PLoS ONE , vol.7
    • Oda, M.1    Kanoh, Y.2    Watanabe, Y.3    Masai, H.4
  • 81
    • 79957509696 scopus 로고    scopus 로고
    • An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression
    • Stoffregen E.P., Donley N., Stauffer D., Smith L., Thayer M.J. An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression. Hum Mol Genet 2011, 20:2366-2378.
    • (2011) Hum Mol Genet , vol.20 , pp. 2366-2378
    • Stoffregen, E.P.1    Donley, N.2    Stauffer, D.3    Smith, L.4    Thayer, M.J.5
  • 82
    • 8544253252 scopus 로고    scopus 로고
    • Ionizing radiation induces frequent translocations with delayed replication and condensation
    • Breger K.S., Smith L., Turker M.S., Thayer M.J. Ionizing radiation induces frequent translocations with delayed replication and condensation. Cancer Res 2004, 64:8231-8238.
    • (2004) Cancer Res , vol.64 , pp. 8231-8238
    • Breger, K.S.1    Smith, L.2    Turker, M.S.3    Thayer, M.J.4
  • 83
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba T., Hiratani I., Lu J., Itoh M., Kulik M., Zhang J., Schulz T.C., Robins A.J., Dalton S., Gilbert D.M. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 2010, 20:761-770.
    • (2010) Genome Res , vol.20 , pp. 761-770
    • Ryba, T.1    Hiratani, I.2    Lu, J.3    Itoh, M.4    Kulik, M.5    Zhang, J.6    Schulz, T.C.7    Robins, A.J.8    Dalton, S.9    Gilbert, D.M.10
  • 84
    • 37349109667 scopus 로고    scopus 로고
    • A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders
    • Lee J.A., Carvalho C.M.B., Lupski J.R. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007, 131:1235-1247.
    • (2007) Cell , vol.131 , pp. 1235-1247
    • Lee, J.A.1    Carvalho, C.M.B.2    Lupski, J.R.3
  • 85
    • 84857216671 scopus 로고    scopus 로고
    • The mutational profile of the yeast genome is shaped by replication
    • Agier N., Fischer G. The mutational profile of the yeast genome is shaped by replication. Mol Biol Evol 2012, 29:905-913.
    • (2012) Mol Biol Evol , vol.29 , pp. 905-913
    • Agier, N.1    Fischer, G.2
  • 87
    • 84866067741 scopus 로고    scopus 로고
    • DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes
    • Woo Y.H., Li W.H. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat Commun 2012, 3:1004.
    • (2012) Nat Commun , vol.3 , pp. 1004
    • Woo, Y.H.1    Li, W.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.