메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages 17-43

CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation

Author keywords

chromosome conformation capture; cohesin; CTCF; gene regulation; genome folding; loop extrusion; TAD

Indexed keywords

COHESIN; TRANSCRIPTION FACTOR CTCF; CCCTC-BINDING FACTOR; CELL CYCLE PROTEIN; NONHISTONE PROTEIN; REPRESSOR PROTEIN;

EID: 84984905591     PISSN: 15278204     EISSN: 1545293X     Source Type: Book Series    
DOI: 10.1146/annurev-genom-083115-022339     Document Type: Review
Times cited : (363)

References (160)
  • 1
    • 84871208196 scopus 로고    scopus 로고
    • Self-organization of domain structures by DNA-loop-extruding enzymes
    • Alipour E, Marko JF. 2012. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40:11202-12
    • (2012) Nucleic Acids Res , vol.40 , pp. 11202-11212
    • Alipour, E.1    Marko, J.F.2
  • 2
    • 84947750566 scopus 로고    scopus 로고
    • Transcription of mammalian cis-regulatory elements is restrained by actively enforced early termination
    • Austenaa LM, Barozzi I, Simonatto M, Masella S, Della Chiara G, et al. 2015. Transcription of mammalian cis-regulatory elements is restrained by actively enforced early termination. Mol. Cell 60:460-74
    • (2015) Mol. Cell , vol.60 , pp. 460-474
    • Austenaa, L.M.1    Barozzi, I.2    Simonatto, M.3    Masella, S.4    Della Chiara, G.5
  • 3
    • 84939154060 scopus 로고    scopus 로고
    • Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach
    • Battulin N, Fishman VS, Mazur AM, Pomaznoy M, Khabarova AA, et al. 2015. Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach. Genome Biol. 16:77
    • (2015) Genome Biol , vol.16 , pp. 77
    • Battulin, N.1    Fishman, V.S.2    Mazur, A.M.3    Pomaznoy, M.4    Khabarova, A.A.5
  • 4
    • 78650994865 scopus 로고    scopus 로고
    • The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules
    • Bàu D, Sanyal A, Lajoie BR, Capriotti E, Byron M, et al. 2011. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol. 18:107-14
    • (2011) Nat. Struct. Mol. Biol , vol.18 , pp. 107-114
    • Bàu, D.1    Sanyal, A.2    Lajoie, B.R.3    Capriotti, E.4    Byron, M.5
  • 5
    • 0034713375 scopus 로고    scopus 로고
    • Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene
    • Bell AC, Felsenfeld G. 2000. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482-85
    • (2000) Nature , vol.405 , pp. 482-485
    • Bell, A.C.1    Felsenfeld, G.2
  • 6
    • 0033529654 scopus 로고    scopus 로고
    • The protein CTCF is required for the enhancer blocking activity of vertebrate insulators
    • Bell AC, West AG, Felsenfeld G. 1999. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98:387-96
    • (1999) Cell , vol.98 , pp. 387-396
    • Bell, A.C.1    West, A.G.2    Felsenfeld, G.3
  • 7
    • 84944219958 scopus 로고    scopus 로고
    • New roles for DNA cytosine modification, eRNA, anchors, and superanchors in developing B cell progenitors
    • Benner C, Isoda T, Murre C. 2015. New roles for DNA cytosine modification, eRNA, anchors, and superanchors in developing B cell progenitors. PNAS 112:12776-81
    • (2015) PNAS , vol.112 , pp. 12776-12781
    • Benner, C.1    Isoda, T.2    Murre, C.3
  • 8
    • 84872373720 scopus 로고    scopus 로고
    • The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites
    • Beygo J, Citro V, Sparago A, De Crescenzo A, Cerrato F, et al. 2013. The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Hum. Mol. Genet. 22:544-57
    • (2013) Hum. Mol. Genet , vol.22 , pp. 544-557
    • Beygo, J.1    Citro, V.2    Sparago, A.3    De Crescenzo, A.4    Cerrato, F.5
  • 9
    • 84875190221 scopus 로고    scopus 로고
    • Genome architecture: Domain organization of interphase chromosomes
    • Bickmore WA, van Steensel B. 2013. Genome architecture: domain organization of interphase chromosomes. Cell 152:1270-84
    • (2013) Cell , vol.152 , pp. 1270-1284
    • Bickmore, W.A.1    Van Steensel, B.2
  • 10
    • 42649100978 scopus 로고    scopus 로고
    • SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    • Blewitt ME, Gendrel AV, Pang Z, Sparrow DB, Whitelaw N, et al. 2008. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat. Genet. 40:663-69
    • (2008) Nat. Genet , vol.40 , pp. 663-669
    • Blewitt, M.E.1    Gendrel, A.V.2    Pang, Z.3    Sparrow, D.B.4    Whitelaw, N.5
  • 11
    • 0031029141 scopus 로고    scopus 로고
    • Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF
    • Burcin M, Arnold R, Lutz M, Kaiser B, Runge D, et al. 1997. Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF. Mol. Cell. Biol. 17:1281-88
    • (1997) Mol. Cell. Biol , vol.17 , pp. 1281-1288
    • Burcin, M.1    Arnold, R.2    Lutz, M.3    Kaiser, B.4    Runge, D.5
  • 12
    • 84870009618 scopus 로고    scopus 로고
    • Site-specific silencing of regulatory elements as a mechanism of X inactivation
    • Calabrese JM, Sun W, Song L, Mugford JW, Williams L, et al. 2012. Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151:951-63
    • (2012) Cell , vol.151 , pp. 951-963
    • Calabrese, J.M.1    Sun, W.2    Song, L.3    Mugford, J.W.4    Williams, L.5
  • 13
    • 84866412836 scopus 로고    scopus 로고
    • Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells
    • Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, et al. 2012. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 31:3678-90
    • (2012) EMBO J , vol.31 , pp. 3678-3690
    • Cornacchia, D.1    Dileep, V.2    Quivy, J.P.3    Foti, R.4    Tili, F.5
  • 15
    • 60149095014 scopus 로고    scopus 로고
    • Global analysis of the insulator binding proteinCTCFin chromatin barrier regions reveals demarcation of active and repressive domains
    • Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K. 2009. Global analysis of the insulator binding proteinCTCFin chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19:24-32
    • (2009) Genome Res , vol.19 , pp. 24-32
    • Cuddapah, S.1    Jothi, R.2    Schones, D.E.3    Roh, T.Y.4    Cui, K.5    Zhao, K.6
  • 16
    • 84886853624 scopus 로고    scopus 로고
    • Topology of mammalian developmental enhancers and their regulatory landscapes
    • de Laat W, Duboule D. 2013. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502:499-506
    • (2013) Nature , vol.502 , pp. 499-506
    • De Laat, W.1    Duboule, D.2
  • 17
    • 84884134904 scopus 로고    scopus 로고
    • The pluripotent genome in three dimensions is shaped around pluripotency factors
    • de Wit E, Bouwman BA, Zhu Y, Klous P, Splinter E, et al. 2013. The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501:227-31
    • (2013) Nature , vol.501 , pp. 227-231
    • De Wit, E.1    Bouwman, B.A.2    Zhu, Y.3    Klous, P.4    Splinter, E.5
  • 19
    • 84988931974 scopus 로고    scopus 로고
    • Two ways to fold the genome during the cell cycle: Insights obtained with chromosome conformation capture
    • Dekker J. 2014. Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenetics Chromatin 7:25
    • (2014) Epigenetics Chromatin , vol.7 , pp. 25
    • Dekker, J.1
  • 20
    • 84943358862 scopus 로고    scopus 로고
    • Structural and functional diversity of Topologically Associating Domains
    • Dekker J, Heard E. 2015. Structural and functional diversity of Topologically Associating Domains. FEBS Lett. 589:2877-84
    • (2015) FEBS Lett , vol.589 , pp. 2877-2884
    • Dekker, J.1    Heard, E.2
  • 21
    • 84861964135 scopus 로고    scopus 로고
    • Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor
    • Deng W, Lee J, Wang H, Miller J, Reik A, et al. 2012. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149:1233-44
    • (2012) Cell , vol.149 , pp. 1233-1244
    • Deng, W.1    Lee, J.2    Wang, H.3    Miller, J.4    Reik, A.5
  • 22
    • 84939483651 scopus 로고    scopus 로고
    • Bipartite structure of the inactive mouse X chromosome
    • Deng X, Ma W, Ramani V, Hill A, Yang F, et al. 2015. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 16:152
    • (2015) Genome Biol , vol.16 , pp. 152
    • Deng, X.1    Ma, W.2    Ramani, V.3    Hill, A.4    Yang, F.5
  • 23
    • 85027929606 scopus 로고    scopus 로고
    • Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization
    • Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W, et al. 2013. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13:602-16
    • (2013) Cell Stem Cell , vol.13 , pp. 602-616
    • Denholtz, M.1    Bonora, G.2    Chronis, C.3    Splinter, E.4    De Laat, W.5
  • 24
    • 84938893979 scopus 로고    scopus 로고
    • Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program
    • Dileep V, Ay F, Sima J, Vera DL, Noble WS, Gilbert DM. 2015. Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program. Genome Res. 25:1104-13
    • (2015) Genome Res , vol.25 , pp. 1104-1113
    • Dileep, V.1    Ay, F.2    Sima, J.3    Vera, D.L.4    Noble, W.S.5    Gilbert, D.M.6
  • 25
    • 84923366733 scopus 로고    scopus 로고
    • Chromatin architecture reorganization during stem cell differentiation
    • Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, et al. 2015. Chromatin architecture reorganization during stem cell differentiation. Nature 518:331-36
    • (2015) Nature , vol.518 , pp. 331-336
    • Dixon, J.R.1    Jung, I.2    Selvaraj, S.3    Shen, Y.4    Antosiewicz-Bourget, J.E.5
  • 26
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376-80
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1    Selvaraj, S.2    Yue, F.3    Kim, A.4    Li, Y.5
  • 27
    • 84940942139 scopus 로고    scopus 로고
    • Orientation-specific joining of AIDinitiated DNA breaks promotes antibody class switching
    • Dong J, Panchakshari RA, Zhang T, Zhang Y, Hu J, et al. 2015. Orientation-specific joining of AIDinitiated DNA breaks promotes antibody class switching. Nature 525:134-39
    • (2015) Nature , vol.525 , pp. 134-139
    • Dong, J.1    Panchakshari, R.A.2    Zhang, T.3    Zhang, Y.4    Hu, J.5
  • 28
    • 84879208137 scopus 로고    scopus 로고
    • Cohesin at active genes: A unifying theme for cohesin and gene expression from model organisms to humans
    • Dorsett D, Merkenschlager M. 2013. Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Curr. Opin. Cell Biol. 25:327-33
    • (2013) Curr. Opin. Cell Biol , vol.25 , pp. 327-333
    • Dorsett, D.1    Merkenschlager, M.2
  • 29
    • 84888134367 scopus 로고    scopus 로고
    • Multiple structural maintenance of chromosome complexes at transcriptional regulatory elements
    • Dowen JM, Bilodeau S, Orlando DA, Hübner MR, Abraham BJ, et al. 2013. Multiple structural maintenance of chromosome complexes at transcriptional regulatory elements. Stem Cell Rep. 1:371-78
    • (2013) Stem Cell Rep , vol.1 , pp. 371-378
    • Dowen, J.M.1    Bilodeau, S.2    Orlando, D.A.3    Hübner, M.R.4    Abraham, B.J.5
  • 30
    • 84916880365 scopus 로고    scopus 로고
    • Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes
    • Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, et al. 2014. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159:374-87
    • (2014) Cell , vol.159 , pp. 374-387
    • Dowen, J.M.1    Fan, Z.P.2    Hnisz, D.3    Ren, G.4    Abraham, B.J.5
  • 31
    • 84908333387 scopus 로고    scopus 로고
    • Chromatin loops as allosteric modulators of enhancer-promoter interactions
    • Doyle B, Fudenberg G, Imakaev M, Mirny LA. 2014. Chromatin loops as allosteric modulators of enhancer-promoter interactions. PLOS Comput. Biol. 10:e1003867
    • (2014) PLOS Comput. Biol , vol.10
    • Doyle, B.1    Fudenberg, G.2    Imakaev, M.3    Mirny, L.A.4
  • 32
    • 84946208311 scopus 로고    scopus 로고
    • Stable chromosome condensation revealed by chromosome conformation capture
    • Eagen KP, Hartl TA, Kornberg RD. 2015. Stable chromosome condensation revealed by chromosome conformation capture. Cell 163:934-46
    • (2015) Cell , vol.163 , pp. 934-946
    • Eagen, K.P.1    Hartl, T.A.2    Kornberg, R.D.3
  • 33
    • 84879642373 scopus 로고    scopus 로고
    • TheXist lncRNAexploits three-dimensional genome architecture to spread across the X chromosome
    • Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, et al. 2013. TheXist lncRNAexploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973
    • (2013) Science , vol.341
    • Engreitz, J.M.1    Pandya-Jones, A.2    McDonel, P.3    Shishkin, A.4    Sirokman, K.5
  • 34
    • 84946811459 scopus 로고    scopus 로고
    • Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states
    • Fabre PJ, Benke A, Joye E, Nguyen Huynh TH, Manley S, Duboule D. 2015. Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states. PNAS 112:13964-69
    • (2015) PNAS , vol.112 , pp. 13964-13969
    • Fabre, P.J.1    Benke, A.2    Joye, E.3    Nguyen Huynh, T.H.4    Manley, S.5    Duboule, D.6
  • 35
    • 84868325694 scopus 로고    scopus 로고
    • Cohesin regulates tissue-specific expression by stabilising highly occupied cis-regulatory modules
    • Faure AJ, Schmidt D, Watt S, Schwalie PC, Wilson MD, et al. 2012. Cohesin regulates tissue-specific expression by stabilising highly occupied cis-regulatory modules. Genome Res. 22:2163-75
    • (2012) Genome Res , vol.22 , pp. 2163-2175
    • Faure, A.J.1    Schmidt, D.2    Watt, S.3    Schwalie, P.C.4    Wilson, M.D.5
  • 36
    • 0347986844 scopus 로고    scopus 로고
    • Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting
    • Fedoriw AM, Stein P, Svoboda P, Schultz RM, Bartolomei MS. 2004. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303:238-40
    • (2004) Science , vol.303 , pp. 238-240
    • Fedoriw, A.M.1    Stein, P.2    Svoboda, P.3    Schultz, R.M.4    Bartolomei, M.S.5
  • 37
    • 84892690160 scopus 로고    scopus 로고
    • Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions
    • Feldmann A, Ivanek R, Murr R, Gaidatzis D, Burger L, Schübeler D. 2013. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLOS Genet. 9:e1003994
    • (2013) PLOS Genet , vol.9
    • Feldmann, A.1    Ivanek, R.2    Murr, R.3    Gaidatzis, D.4    Burger, L.5    Schübeler, D.6
  • 40
    • 84957436525 scopus 로고    scopus 로고
    • Nuclear architecture organized by Rif1 underpins the replication-timing program
    • Foti R, Gnan S, Cornacchia D, Dileep V, Bulut-Karslioglu A, et al. 2016. Nuclear architecture organized by Rif1 underpins the replication-timing program. Mol. Cell 61:260-73
    • (2016) Mol. Cell , vol.61 , pp. 260-273
    • Foti, R.1    Gnan, S.2    Cornacchia, D.3    Dileep, V.4    Bulut-Karslioglu, A.5
  • 42
    • 84860381688 scopus 로고    scopus 로고
    • Higher-order chromatin structure: Bridging physics and biology
    • Fudenberg G, Mirny LA. 2012. Higher-order chromatin structure: bridging physics and biology. Curr. Opin. Genet. Dev. 22:115-24
    • (2012) Curr. Opin. Genet. Dev , vol.22 , pp. 115-124
    • Fudenberg, G.1    Mirny, L.A.2
  • 43
    • 33746486793 scopus 로고    scopus 로고
    • Live-cell imaging reveals a stable cohesinchromatin interaction after but not before DNA replication
    • Gerlich D, Koch B, Dupeux F, Peters JM, Ellenberg J. 2006. Live-cell imaging reveals a stable cohesinchromatin interaction after but not before DNA replication. Curr. Biol. 16:1571-78
    • (2006) Curr. Biol , vol.16 , pp. 1571-1578
    • Gerlich, D.1    Koch, B.2    Dupeux, F.3    Peters, J.M.4    Ellenberg, J.5
  • 44
    • 84876838711 scopus 로고    scopus 로고
    • The hierarchy of the 3D genome
    • Gibcus JH, Dekker J. 2013. The hierarchy of the 3D genome. Mol. Cell 49:773-82
    • (2013) Mol. Cell , vol.49 , pp. 773-782
    • Gibcus, J.H.1    Dekker, J.2
  • 46
    • 84900297485 scopus 로고    scopus 로고
    • Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription
    • Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F, et al. 2014. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950-63
    • (2014) Cell , vol.157 , pp. 950-963
    • Giorgetti, L.1    Galupa, R.2    Nora, E.P.3    Piolot, T.4    Lam, F.5
  • 47
    • 34250172721 scopus 로고    scopus 로고
    • The three-dimensional structure of human interphase chromosomes is related to the transcriptome map
    • Goetze S, Mateos-Langerak J, Gierman HJ, deLeeuw W, Giromus O, et al. 2007. The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol. Cell. Biol. 2:4475-87
    • (2007) Mol. Cell. Biol , vol.2 , pp. 4475-4487
    • Goetze, S.1    Mateos-Langerak, J.2    Gierman, H.J.3    DeLeeuw, W.4    Giromus, O.5
  • 48
    • 84935924135 scopus 로고    scopus 로고
    • Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders
    • Gómez-Marín C, Tena JJ, Acemal RD, Lopez-Mayorga M, Naranjo S, et al. 2015. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. PNAS 112:7542-47
    • (2015) PNAS , vol.112 , pp. 7542-7547
    • Gómez-Marín, C.1    Tena, J.J.2    Acemal, R.D.3    Lopez-Mayorga, M.4    Naranjo, S.5
  • 49
    • 84898494315 scopus 로고    scopus 로고
    • A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia
    • Gröschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BA, et al. 2014. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157:369-81
    • (2014) Cell , vol.157 , pp. 369-381
    • Gröschel, S.1    Sanders, M.A.2    Hoogenboezem, R.3    De Wit, E.4    Bouwman, B.A.5
  • 50
    • 84910095543 scopus 로고    scopus 로고
    • Multilayer chromosome organization through DNA bending, bridging and extrusion
    • Gruber S. 2014. Multilayer chromosome organization through DNA bending, bridging and extrusion. Curr. Opin. Microbiol. 22:102-10
    • (2014) Curr. Opin. Microbiol , vol.22 , pp. 102-110
    • Gruber, S.1
  • 51
    • 40749094018 scopus 로고    scopus 로고
    • Cohesin complex promotes transcriptional termination between convergent genes in S
    • Gullerova M, Proudfoot NJ. 2008. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132:983-95
    • (2008) Pombe. Cell , vol.132 , pp. 983-995
    • Gullerova, M.1    Proudfoot, N.J.2
  • 52
    • 80053130223 scopus 로고    scopus 로고
    • CTCF-binding elements mediate control of V(D)J recombination
    • Guo C, Yoon HS, Franklin A, Jain S, Ebert A, et al. 2011. CTCF-binding elements mediate control of V(D)J recombination. Nature 477:424-30
    • (2011) Nature , vol.477 , pp. 424-430
    • Guo, C.1    Yoon, H.S.2    Franklin, A.3    Jain, S.4    Ebert, A.5
  • 53
    • 84939246295 scopus 로고    scopus 로고
    • CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function
    • Guo Y, Xu Q, Canzio D, Shou J, Li J, et al. 2015. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162:900-10
    • (2015) Cell , vol.162 , pp. 900-910
    • Guo, Y.1    Xu, Q.2    Canzio, D.3    Shou, J.4    Li, J.5
  • 54
    • 67650997080 scopus 로고    scopus 로고
    • Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus
    • Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, et al. 2009. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460:410-13
    • (2009) Nature , vol.460 , pp. 410-413
    • Hadjur, S.1    Williams, L.M.2    Ryan, N.K.3    Cobb, B.S.4    Sexton, T.5
  • 55
    • 79959699992 scopus 로고    scopus 로고
    • CTCF-mediated functional chromatin interactome in pluripotent cells
    • Handoko L, Xu H, Li G, Ngan CY, Chew E, et al. 2011. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. 43:630-38
    • (2011) Nat. Genet , vol.43 , pp. 630-638
    • Handoko, L.1    Xu, H.2    Li, G.3    Ngan, C.Y.4    Chew, E.5
  • 57
    • 84867912686 scopus 로고    scopus 로고
    • The chromatin insulator CTCF and the emergence of metazoan diversity
    • Heger P, Marin B, Bartkuhn M, Schierenberg E, Wiehe T. 2012. The chromatin insulator CTCF and the emergence of metazoan diversity. PNAS 109:17507-12
    • (2012) PNAS , vol.109 , pp. 17507-17512
    • Heger, P.1    Marin, B.2    Bartkuhn, M.3    Schierenberg, E.4    Wiehe, T.5
  • 59
    • 84960171833 scopus 로고    scopus 로고
    • Activation of proto-oncogenes by disruption of chromosome neighborhoods
    • Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, et al. 2016. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351:1454-58
    • (2016) Science , vol.351 , pp. 1454-1458
    • Hnisz, D.1    Weintraub, A.S.2    Day, D.S.3    Valton, A.L.4    Bak, R.O.5
  • 60
    • 84946200292 scopus 로고    scopus 로고
    • Chromosomal loop domains direct the recombination of antigen receptor genes
    • Hu J, Zhang Y, Zhao L, Frock RL, Du Z, et al. 2015. Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 163:947-59
    • (2015) Cell , vol.163 , pp. 947-959
    • Hu, J.1    Zhang, Y.2    Zhao, L.3    Frock, R.L.4    Du, Z.5
  • 61
    • 84895832107 scopus 로고    scopus 로고
    • Analysis of hundreds of cisregulatory landscapes at high resolution in a single, high-throughput experiment
    • Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, et al. 2014. Analysis of hundreds of cisregulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46:205-12
    • (2014) Nat. Genet , vol.46 , pp. 205-212
    • Hughes, J.R.1    Roberts, N.2    McGowan, S.3    Hay, D.4    Giannoulatou, E.5
  • 62
    • 84943198135 scopus 로고    scopus 로고
    • Modeling chromosomes: Beyond pretty pictures
    • Imakaev MV, Fudenberg G, Mirny LA. 2015. Modeling chromosomes: beyond pretty pictures. FEBS Lett. 589:3031-36
    • (2015) FEBS Lett , vol.589 , pp. 3031-3036
    • Imakaev, M.V.1    Fudenberg, G.2    Mirny, L.A.3
  • 63
    • 84927711843 scopus 로고    scopus 로고
    • Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin
    • Ing-Simmons E, Seitan VC, Faure AJ, Flicek P, Carroll T, et al. 2015. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Res. 25:504-13
    • (2015) Genome Res , vol.25 , pp. 504-513
    • Ing-Simmons, E.1    Seitan, V.C.2    Faure, A.J.3    Flicek, P.4    Carroll, T.5
  • 64
    • 84887620842 scopus 로고    scopus 로고
    • A high-resolution map of the three-dimensional chromatin interactome in human cells
    • Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, et al. 2013. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503:290-94
    • (2013) Nature , vol.503 , pp. 290-294
    • Jin, F.1    Li, Y.2    Dixon, J.R.3    Selvaraj, S.4    Ye, Z.5
  • 65
    • 77957139539 scopus 로고    scopus 로고
    • Mediator and cohesin connect gene expression and chromatin architecture
    • Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, et al. 2010. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430-35
    • (2010) Nature , vol.467 , pp. 430-435
    • Kagey, M.H.1    Newman, J.J.2    Bilodeau, S.3    Zhan, Y.4    Orlando, D.A.5
  • 66
    • 0034644120 scopus 로고    scopus 로고
    • Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive
    • Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi CF, et al. 2000. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10:853-56
    • (2000) Curr. Biol , vol.10 , pp. 853-856
    • Kanduri, C.1    Pant, V.2    Loukinov, D.3    Pugacheva, E.4    Qi, C.F.5
  • 67
    • 84933278077 scopus 로고    scopus 로고
    • CTCF/cohesin-binding sites are frequently mutated in cancer
    • Katainen R, Dave K, Pitkänen E, Palin K, Kivioja T, et al. 2015. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47:818-21
    • (2015) Nat. Genet , vol.47 , pp. 818-821
    • Katainen, R.1    Dave, K.2    Pitkänen, E.3    Palin, K.4    Kivioja, T.5
  • 68
    • 84901285464 scopus 로고    scopus 로고
    • CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer
    • Kemp CJ, Moore JM, Moser R, Bernard B, Teater M, et al. 2014. CTCF haploinsufficiency destabilizes DNA methylation and predisposes to cancer. Cell Rep. 7:1020-29
    • (2014) Cell Rep , vol.7 , pp. 1020-1029
    • Kemp, C.J.1    Moore, J.M.2    Moser, R.3    Bernard, B.4    Teater, M.5
  • 69
    • 0027362621 scopus 로고
    • CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms
    • Klenova EM, Nicolas RH, Paterson HF, Carne AF, Heath CM, et al. 1993. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms. Mol. Cell. Biol. 13:7612-24
    • (1993) Mol. Cell. Biol , vol.13 , pp. 7612-7624
    • Klenova, E.M.1    Nicolas, R.H.2    Paterson, H.F.3    Carne, A.F.4    Heath, C.M.5
  • 70
    • 84921539874 scopus 로고    scopus 로고
    • Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF
    • Kung JT, Kesner B, An JY, Ahn JY, Cifuentes-Rojas C, et al. 2015. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol. Cell 57:361-75
    • (2015) Mol. Cell , vol.57 , pp. 361-375
    • Kung, J.T.1    Kesner, B.2    An, J.Y.3    Ahn, J.Y.4    Cifuentes-Rojas, C.5
  • 72
    • 84907512608 scopus 로고    scopus 로고
    • Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation
    • Le Dily F, Baù D, Pohl A, Vicent GP, Soronellas D, et al. 2014. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 28:2151-62
    • (2014) Genes Dev , vol.28 , pp. 2151-2162
    • Le Dily, F.1    Baù, D.2    Pohl, A.3    Vicent, G.P.4    Soronellas, D.5
  • 73
    • 3242880374 scopus 로고    scopus 로고
    • Cohesin relocation from sites of chromosomal loading to places of convergent transcription
    • Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, et al. 2004. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573-78
    • (2004) Nature , vol.430 , pp. 573-578
    • Lengronne, A.1    Katou, Y.2    Mori, S.3    Yokobayashi, S.4    Kelly, G.P.5
  • 74
    • 84893945960 scopus 로고    scopus 로고
    • RecA bundles mediate homology pairing between distant sisters during DNA break repair
    • Lesterlin C, Ball G, Schermelleh L, Sherratt DJ. 2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506:249-53
    • (2014) Nature , vol.506 , pp. 249-253
    • Lesterlin, C.1    Ball, G.2    Schermelleh, L.3    Sherratt, D.J.4
  • 75
    • 84862908850 scopus 로고    scopus 로고
    • Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
    • Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, et al. 2012. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148:84-98
    • (2012) Cell , vol.148 , pp. 84-98
    • Li, G.1    Ruan, X.2    Auerbach, R.K.3    Sandhu, K.S.4    Zheng, M.5
  • 76
    • 84928206081 scopus 로고    scopus 로고
    • Widespread rearrangement of 3Dchromatin organization underlies Polycomb-mediated stress-induced silencing
    • Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ, et al. 2015. Widespread rearrangement of 3Dchromatin organization underlies Polycomb-mediated stress-induced silencing. Mol. Cell 58:216-31
    • (2015) Mol. Cell , vol.58 , pp. 216-231
    • Li, L.1    Lyu, X.2    Hou, C.3    Takenaka, N.4    Nguyen, H.Q.5
  • 77
    • 84879695128 scopus 로고    scopus 로고
    • Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation
    • Li W, Notani D, Ma Q, Tanasa B, Nunez E, et al. 2013. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516-20
    • (2013) Nature , vol.498 , pp. 516-520
    • Li, W.1    Notani, D.2    Ma, Q.3    Tanasa, B.4    Nunez, E.5
  • 78
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289-93
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1    Van Berkum, N.L.2    Williams, L.3    Imakaev, M.4    Ragoczy, T.5
  • 79
    • 33645814398 scopus 로고    scopus 로고
    • CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1
    • Ling JQ, Li T, Hu JF, Vu TH, Chen HL, et al. 2006. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312:269-72
    • (2006) Science , vol.312 , pp. 269-272
    • Ling, J.Q.1    Li, T.2    Hu, J.F.3    Vu, T.H.4    Chen, H.L.5
  • 80
    • 84922068409 scopus 로고    scopus 로고
    • The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions
    • Lopez-Serra L, Kelly G, Patel H, Stewart A, Uhlmann F. 2014. The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat. Genet. 46:1147-51
    • (2014) Nat. Genet , vol.46 , pp. 1147-1151
    • Lopez-Serra, L.1    Kelly, G.2    Patel, H.3    Stewart, A.4    Uhlmann, F.5
  • 81
    • 84901419546 scopus 로고    scopus 로고
    • Cohesin in cancer: Chromosome segregation and beyond
    • Losada A. 2014. Cohesin in cancer: chromosome segregation and beyond. Nat. Rev. Cancer 14:389-93
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 389-393
    • Losada, A.1
  • 82
    • 84930091577 scopus 로고    scopus 로고
    • Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions
    • Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, et al. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012-25
    • (2015) Cell , vol.161 , pp. 1012-1025
    • Lupianez, D.G.1    Kraft, K.2    Heinrich, V.3    Krawitz, P.4    Brancati, F.5
  • 83
    • 78650270810 scopus 로고    scopus 로고
    • The CTCF insulator protein forms an unusual DNA structure
    • MacPherson MJ, Sadowski PD. 2010. The CTCF insulator protein forms an unusual DNA structure. BMC Mol. Biol. 11:101
    • (2010) BMC Mol. Biol , vol.11 , pp. 101
    • MacPherson, M.J.1    Sadowski, P.D.2
  • 84
    • 37249041657 scopus 로고    scopus 로고
    • RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination
    • Matthews AG, Kuo AJ, Ramón-Maiques S, Han S, Champagne KS, et al. 2007. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450:1106-10
    • (2007) Nature , vol.450 , pp. 1106-1110
    • Matthews, A.G.1    Kuo, A.J.2    Ramón-Maiques, S.3    Han, S.4    Champagne, K.S.5
  • 85
    • 84941021874 scopus 로고    scopus 로고
    • Role of DNA methylation in modulating transcription factor occupancy
    • Maurano MT, Wang H, John S, Shafer A, Canfield T, et al. 2015. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 12:1184-95
    • (2015) Cell Rep , vol.12 , pp. 1184-1195
    • Maurano, M.T.1    Wang, H.2    John, S.3    Shafer, A.4    Canfield, T.5
  • 86
    • 84951983365 scopus 로고    scopus 로고
    • Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation
    • Mazumdar C, Shen Y, Xavy S, Zhao F, Reinisch A, et al. 2015. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell 17:675-88
    • (2015) Cell Stem Cell , vol.17 , pp. 675-688
    • Mazumdar, C.1    Shen, Y.2    Xavy, S.3    Zhao, F.4    Reinisch, A.5
  • 87
    • 84873349707 scopus 로고    scopus 로고
    • Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome
    • McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y, et al. 2013. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res. 23:260-69
    • (2013) Genome Res , vol.23 , pp. 260-269
    • McCord, R.P.1    Nazario-Toole, A.2    Zhang, H.3    Chines, P.S.4    Zhan, Y.5
  • 88
    • 84875127327 scopus 로고    scopus 로고
    • CTCF and cohesin: Linking gene regulatory elements with their targets
    • Merkenschlager M, Odom DT. 2013. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 152:1285-97
    • (2013) Cell , vol.152 , pp. 1285-1297
    • Merkenschlager, M.1    Odom, D.T.2
  • 89
    • 84930092058 scopus 로고    scopus 로고
    • Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C
    • Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, et al. 2015. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47:598-606
    • (2015) Nat. Genet , vol.47 , pp. 598-606
    • Mifsud, B.1    Tavares-Cadete, F.2    Young, A.N.3    Sugar, R.4    Schoenfelder, S.5
  • 90
    • 84937960975 scopus 로고    scopus 로고
    • A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation
    • Minajigi A, Froberg JE, Wei C, Sunwoo H, Kesner B, et al. 2015. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349:aab2276
    • (2015) Science , vol.349 , pp. aab2276
    • Minajigi, A.1    Froberg, J.E.2    Wei, C.3    Sunwoo, H.4    Kesner, B.5
  • 91
    • 65649123756 scopus 로고    scopus 로고
    • Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster
    • Mishiro T, Ishihara K, Hino S, Tsutsumi S, Aburatani H, et al. 2009. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J. 28:1234-45
    • (2009) EMBO J , vol.28 , pp. 1234-1245
    • Mishiro, T.1    Ishihara, K.2    Hino, S.3    Tsutsumi, S.4    Aburatani, H.5
  • 92
    • 84923169410 scopus 로고    scopus 로고
    • Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S pombe
    • Mizuguchi T, Fudenberg G, Mehta S, Belton JM, Taneja N, et al. 2014. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516:432-35
    • (2014) Nature , vol.516 , pp. 432-435
    • Mizuguchi, T.1    Fudenberg, G.2    Mehta, S.3    Belton, J.M.4    Taneja, N.5
  • 93
    • 84952061852 scopus 로고    scopus 로고
    • Cohesin loss alters adult hematopoietic stem cell homeostasis, leading tomyeloproliferative neoplasms
    • Mullenders J, Aranda-Orgilles B, Lhoumaud P, Keller M, Pae J, et al. 2015. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading tomyeloproliferative neoplasms. J. Exp. Med. 212:1833-50
    • (2015) J. Exp. Med , vol.212 , pp. 1833-1850
    • Mullenders, J.1    Aranda-Orgilles, B.2    Lhoumaud, P.3    Keller, M.4    Pae, J.5
  • 94
    • 84950266410 scopus 로고    scopus 로고
    • DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism
    • Murayama Y, Uhlmann F. 2015. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163:1628-40
    • (2015) Cell , vol.163 , pp. 1628-1640
    • Murayama, Y.1    Uhlmann, F.2
  • 95
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-tocell variability in chromosome structure
    • Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, et al. 2013. Single-cell Hi-C reveals cell-tocell variability in chromosome structure. Nature 502:59-64
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1    Lubling, Y.2    Stevens, T.J.3    Schoenfelder, S.4    Yaffe, E.5
  • 96
    • 84878590595 scopus 로고    scopus 로고
    • A genome-wide map of CTCF multivalency redefines the CTCF code
    • Nakahashi H, Kwon KR, Resch W, Vian L, Dose M, et al. 2013. A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep. 3:1678-89
    • (2013) Cell Rep , vol.3 , pp. 1678-1689
    • Nakahashi, H.1    Kwon, K.R.2    Resch, W.3    Vian, L.4    Dose, M.5
  • 97
    • 84923771297 scopus 로고    scopus 로고
    • CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation
    • Narendra V, Rocha PP, An D, Raviram R, Skok JA, et al. 2015. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347:1017-21
    • (2015) Science , vol.347 , pp. 1017-1021
    • Narendra, V.1    Rocha, P.P.2    An, D.3    Raviram, R.4    Skok, J.A.5
  • 98
    • 0035678054 scopus 로고    scopus 로고
    • Disseminating the genome: Joining, resolving, and separating sister chromatids during mitosis and meiosis
    • Nasmyth K. 2001. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35:673-745
    • (2001) Annu. Rev. Genet , vol.35 , pp. 673-745
    • Nasmyth, K.1
  • 99
    • 73349127026 scopus 로고    scopus 로고
    • Cohesin: Its roles and mechanisms
    • Nasmyth K, Haering CH. 2009. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43:525-58
    • (2009) Annu. Rev. Genet , vol.43 , pp. 525-558
    • Nasmyth, K.1    Haering, C.H.2
  • 100
    • 73649145481 scopus 로고    scopus 로고
    • Cohesin is required for higherorder chromatin conformation at the imprinted IGF2-H19 locus
    • Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, et al. 2009. Cohesin is required for higherorder chromatin conformation at the imprinted IGF2-H19 locus. PLOS Genet. 5:e1000739
    • (2009) PLOS Genet , vol.5
    • Nativio, R.1    Wendt, K.S.2    Ito, Y.3    Huddleston, J.E.4    Uribe-Lewis, S.5
  • 102
    • 84939240549 scopus 로고    scopus 로고
    • A CTCF code for 3D genome architecture
    • Nichols MH, Corces VG. 2015. A CTCF code for 3D genome architecture. Cell 162:703-5
    • (2015) Cell , vol.162 , pp. 703-705
    • Nichols, M.H.1    Corces, V.G.2
  • 103
    • 84881613036 scopus 로고    scopus 로고
    • Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods?
    • Nora EP, Dekker J, Heard E. 2013. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? BioEssays 35:818-28
    • (2013) BioEssays , vol.35 , pp. 818-828
    • Nora, E.P.1    Dekker, J.2    Heard, E.3
  • 104
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X-inactivation centre
    • Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381-85
    • (2012) Nature , vol.485 , pp. 381-385
    • Nora, E.P.1    Lajoie, B.R.2    Schulz, E.G.3    Giorgetti, L.4    Okamoto, I.5
  • 105
    • 1842505303 scopus 로고    scopus 로고
    • Mutation of a single CTCF target site within the H19 imprinting control region leads to loss of Igf2 imprinting and complex patterns of de novo methylation upon maternal inheritance
    • Pant V, Kurukuti S, Pugacheva E, Shamsuddin S, Mariano P, et al. 2004. Mutation of a single CTCF target site within the H19 imprinting control region leads to loss of Igf2 imprinting and complex patterns of de novo methylation upon maternal inheritance. Mol. Cell. Biol. 24:3497-504
    • (2004) Mol. Cell. Biol , vol.24 , pp. 3497-3504
    • Pant, V.1    Kurukuti, S.2    Pugacheva, E.3    Shamsuddin, S.4    Mariano, P.5
  • 106
    • 38849121606 scopus 로고    scopus 로고
    • Cohesins functionally associate with CTCF on mammalian chromosome arms
    • Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, et al. 2008. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422-33
    • (2008) Cell , vol.132 , pp. 422-433
    • Parelho, V.1    Hadjur, S.2    Spivakov, M.3    Leleu, M.4    Sauer, S.5
  • 107
    • 77952576224 scopus 로고    scopus 로고
    • Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation
    • Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, et al. 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38:603-13
    • (2010) Mol. Cell , vol.38 , pp. 603-613
    • Peric-Hupkes, D.1    Meuleman, W.2    Pagie, L.3    Bruggeman, S.W.4    Solovei, I.5
  • 108
    • 67549119096 scopus 로고    scopus 로고
    • CTCF: Master weaver of the genome
    • Phillips JE, Corces VG. 2009. CTCF: master weaver of the genome. Cell 137:1194-211
    • (2009) Cell , vol.137 , pp. 1194-1211
    • Phillips, J.E.1    Corces, V.G.2
  • 109
    • 84911478490 scopus 로고    scopus 로고
    • Topologically associating domains are stable units of replication-timing regulation
    • Pope BD, Ryba T, Dileep V, Yue F, Wu W, et al. 2014. Topologically associating domains are stable units of replication-timing regulation. Nature 515:402-5
    • (2014) Nature , vol.515 , pp. 402-405
    • Pope, B.D.1    Ryba, T.2    Dileep, V.3    Yue, F.4    Wu, W.5
  • 110
    • 84919949716 scopus 로고    scopus 로고
    • A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
    • Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665-80
    • (2014) Cell , vol.159 , pp. 1665-1680
    • Rao, S.S.P.1    Huntley, M.H.2    Durand, N.C.3    Stamenova, E.K.4    Bochkov, I.D.5
  • 112
    • 0015694748 scopus 로고
    • A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining
    • Rowley JD. 1973. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290-93
    • (1973) Nature , vol.243 , pp. 290-293
    • Rowley, J.D.1
  • 114
    • 84898854590 scopus 로고    scopus 로고
    • CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53
    • Saldaña-Meyer R, González-Buendía E, Guerrero G, Narendra V, Bonasio R, et al. 2014. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53. Genes Dev. 28:723-34
    • (2014) Genes Dev , vol.28 , pp. 723-734
    • Saldaña-Meyer, R.1    González-Buendía, E.2    Guerrero, G.3    Narendra, V.4    Bonasio, R.5
  • 115
    • 84948403758 scopus 로고    scopus 로고
    • Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes
    • Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH, et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS 112:E6456-65
    • (2015) PNAS , vol.112 , pp. E6456-E6465
    • Sanborn, A.L.1    Rao, S.S.P.2    Huang, S.-C.3    Durand, N.C.4    Huntley, M.H.5
  • 116
    • 84870404918 scopus 로고    scopus 로고
    • Large-scale functional organization of long-range chromatin interaction networks
    • Sandhu KS, Li G, Poh HM, Quek YL, Sia YY, et al. 2012. Large-scale functional organization of long-range chromatin interaction networks. Cell Rep. 2:1207-19
    • (2012) Cell Rep , vol.2 , pp. 1207-1219
    • Sandhu, K.S.1    Li, G.2    Poh, H.M.3    Quek, Y.L.4    Sia, Y.Y.5
  • 117
    • 84865800494 scopus 로고    scopus 로고
    • The long-range interaction landscape of gene promoters
    • Sanyal A, Lajoie BR, Jain G, Dekker J. 2012. The long-range interaction landscape of gene promoters. Nature 489:109-13
    • (2012) Nature , vol.489 , pp. 109-113
    • Sanyal, A.1    Lajoie, B.R.2    Jain, G.3    Dekker, J.4
  • 119
    • 84927763931 scopus 로고    scopus 로고
    • The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements
    • Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R, et al. 2015. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25:582-97
    • (2015) Genome Res , vol.25 , pp. 582-597
    • Schoenfelder, S.1    Furlan-Magaril, M.2    Mifsud, B.3    Tavares-Cadete, F.4    Sugar, R.5
  • 120
    • 84890504911 scopus 로고    scopus 로고
    • Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments
    • Seitan VC, Faure AJ, Zhan Y, McCord RP, Lajoie BR, et al. 2013. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res. 23:2066-77
    • (2013) Genome Res , vol.23 , pp. 2066-2077
    • Seitan, V.C.1    Faure, A.J.2    Zhan, Y.3    McCord, R.P.4    Lajoie, B.R.5
  • 122
    • 84870507845 scopus 로고    scopus 로고
    • An ectopic CTCFdependent transcriptional insulator influences the choice of Vβgene segments for VDJ recombination at TCRβlocus
    • Shrimali S, Srivastava S, Varma G, Grinberg A, Pfeifer K, Srivastava M. 2012. An ectopic CTCFdependent transcriptional insulator influences the choice of Vβgene segments for VDJ recombination at TCRβlocus. Nucleic Acids Res. 40:7753-65
    • (2012) Nucleic Acids Res , vol.40 , pp. 7753-7765
    • Shrimali, S.1    Srivastava, S.2    Varma, G.3    Grinberg, A.4    Pfeifer, K.5    Srivastava, M.6
  • 123
    • 80455176999 scopus 로고    scopus 로고
    • CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
    • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, et al. 2011. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479:74-79
    • (2011) Nature , vol.479 , pp. 74-79
    • Shukla, S.1    Kavak, E.2    Gregory, M.3    Imashimizu, M.4    Shutinoski, B.5
  • 124
    • 77956182276 scopus 로고    scopus 로고
    • Buck the establishment: Reinventing sister chromatid cohesion
    • Skibbens RV. 2010. Buck the establishment: reinventing sister chromatid cohesion. Trends Cell Biol. 20:507-13
    • (2010) Trends Cell Biol , vol.20 , pp. 507-513
    • Skibbens, R.V.1
  • 125
    • 84862255926 scopus 로고    scopus 로고
    • Themale germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner
    • Sleutels F, Soochit W, Bartkuhn M, Heath H, Dienstbach S, et al. 2012. Themale germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner. Epigenetics Chromatin 5:8
    • (2012) Epigenetics Chromatin , vol.5 , pp. 8
    • Sleutels, F.1    Soochit, W.2    Bartkuhn, M.3    Heath, H.4    Dienstbach, S.5
  • 126
    • 84890566970 scopus 로고    scopus 로고
    • Cohesin-mediated interactions organize chromosomal domain architecture
    • Sofueva S, Yaffe E, Chan WC, Georgopoulou D, Vietri Rudan M, et al. 2013. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32:3119-29
    • (2013) EMBO J , vol.32 , pp. 3119-3129
    • Sofueva, S.1    Yaffe, E.2    Chan, W.C.3    Georgopoulou, D.4    Vietri Rudan, M.5
  • 127
    • 84921445757 scopus 로고    scopus 로고
    • Molecular basis for SMC rod formation and its dissolution upon DNA binding
    • Soh YM, Bürmann F, Shin HC, Oda T, Jin KS, et al. 2015. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57:290-303
    • (2015) Mol. Cell , vol.57 , pp. 290-303
    • Soh, Y.M.1    Bürmann, F.2    Shin, H.C.3    Oda, T.4    Jin, K.S.5
  • 128
    • 64249139170 scopus 로고    scopus 로고
    • Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution
    • Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, et al. 2009. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356-68
    • (2009) Cell , vol.137 , pp. 356-368
    • Solovei, I.1    Kreysing, M.2    Lanctôt, C.3    Kösem, S.4    Peichl, L.5
  • 130
    • 79959952919 scopus 로고    scopus 로고
    • The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA
    • Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJ, et al. 2011. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25:1371-83
    • (2011) Genes Dev , vol.25 , pp. 1371-1383
    • Splinter, E.1    De Wit, E.2    Nora, E.P.3    Klous, P.4    Van De Werken, H.J.5
  • 131
    • 33748259774 scopus 로고    scopus 로고
    • CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus
    • Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, et al. 2006. CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev. 20:2349-54
    • (2006) Genes Dev , vol.20 , pp. 2349-2354
    • Splinter, E.1    Heath, H.2    Kooren, J.3    Palstra, R.J.4    Klous, P.5
  • 132
    • 0029894165 scopus 로고    scopus 로고
    • Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro
    • Stanhope-Baker P, Hudson KM, Shaffer AL, Constantinescu A, Schlissel MS. 1996. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85:887-97
    • (1996) Cell , vol.85 , pp. 887-897
    • Stanhope-Baker, P.1    Hudson, K.M.2    Shaffer, A.L.3    Constantinescu, A.4    Schlissel, M.S.5
  • 133
    • 0024364817 scopus 로고
    • Site-specific recombination by Tn3 resolvase: Topological changes in the forward and reverse reactions
    • Stark WM, Sherratt DJ, Boocock MR. 1989. Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions. Cell 58:779-90
    • (1989) Cell , vol.58 , pp. 779-790
    • Stark, W.M.1    Sherratt, D.J.2    Boocock, M.R.3
  • 134
    • 39449111307 scopus 로고    scopus 로고
    • Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators
    • Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. 2008. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 27:654-66
    • (2008) EMBO J , vol.27 , pp. 654-666
    • Stedman, W.1    Kang, H.2    Lin, S.3    Kissil, J.L.4    Bartolomei, M.S.5    Lieberman, P.M.6
  • 135
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. 2015. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16:133-45
    • (2015) Nat. Rev. Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 137
    • 84895522959 scopus 로고    scopus 로고
    • Functional and topological characteristics of mammalian regulatory domains
    • Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, et al. 2014. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24:390-400
    • (2014) Genome Res , vol.24 , pp. 390-400
    • Symmons, O.1    Uslu, V.V.2    Tsujimura, T.3    Ruf, S.4    Nassari, S.5
  • 138
    • 84951567954 scopus 로고    scopus 로고
    • CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription
    • Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ, et al. 2015. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163:1611-27
    • (2015) Cell , vol.163 , pp. 1611-1627
    • Tang, Z.1    Luo, O.J.2    Li, X.3    Zheng, M.4    Zhu, J.J.5
  • 139
    • 84908352990 scopus 로고    scopus 로고
    • Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: Insight into chromatin folding by polymer modelling
    • Tark-Dame M, Jerabek H, Manders EMM, Heermann DW, van Driel R. 2014. Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. PLOS Comput. Biol. 10:e1003877
    • (2014) PLOS Comput. Biol , vol.10
    • Tark-Dame, M.1    Jerabek, H.2    Manders, E.M.M.3    Heermann, D.W.4    Van Driel, R.5
  • 140
    • 0021679848 scopus 로고
    • Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation
    • Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. 1984. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097-99
    • (1984) Science , vol.226 , pp. 1097-1099
    • Tsujimoto, Y.1    Finger, L.R.2    Yunis, J.3    Nowell, P.C.4    Croce, C.M.5
  • 141
    • 84870806502 scopus 로고    scopus 로고
    • Super-resolution imaging reveals three-dimensional folding dynamics of the β-globin locus upon gene activation
    • van deCorput MP, deBoer E, Knoch TA, van Cappellen WA, Quintanilla A, et al. 2012. Super-resolution imaging reveals three-dimensional folding dynamics of the β-globin locus upon gene activation. J. Cell Sci. 125:4630-39
    • (2012) J. Cell Sci , vol.125 , pp. 4630-4639
    • Van Decorput, M.P.1    DeBoer, E.2    Knoch, T.A.3    Van Cappellen, W.A.4    Quintanilla, A.5
  • 142
    • 79956064734 scopus 로고    scopus 로고
    • Chromatin: Constructing the big picture
    • van Steensel B. 2011. Chromatin: constructing the big picture. EMBO J. 30:1885-95
    • (2011) EMBO J , vol.30 , pp. 1885-1895
    • Van Steensel, B.1
  • 143
    • 84924533047 scopus 로고    scopus 로고
    • ComparativeHi-C reveals that CTCF underlies evolution of chromosomal domain architecture
    • Vietri Rudan M, Barrington C, Henderson S, Ernst C, Odom DT, et al. 2015. ComparativeHi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 10:1297-309
    • (2015) Cell Rep , vol.10 , pp. 1297-1309
    • Vietri Rudan, M.1    Barrington, C.2    Henderson, S.3    Ernst, C.4    Odom, D.T.5
  • 144
    • 84952038314 scopus 로고    scopus 로고
    • Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis
    • Viny AD, Ott CJ, Spitzer B, Rivas M, Meydan C, et al. 2015. Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J. Exp. Med. 212:1819-32
    • (2015) J. Exp. Med , vol.212 , pp. 1819-1832
    • Viny, A.D.1    Ott, C.J.2    Spitzer, B.3    Rivas, M.4    Meydan, C.5
  • 145
    • 52449127383 scopus 로고    scopus 로고
    • Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development
    • Wan LB, Pan H, Hannenhalli S, Cheng Y, Ma J, et al. 2008. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 135:2729-38
    • (2008) Development , vol.135 , pp. 2729-2738
    • Wan, L.B.1    Pan, H.2    Hannenhalli, S.3    Cheng, Y.4    Ma, J.5
  • 146
    • 84865836579 scopus 로고    scopus 로고
    • Widespread plasticity inCTCFoccupancy linked to DNA methylation
    • Wang H, Maurano MT, Qu H, Varley KE, Gertz J, et al. 2012. Widespread plasticity inCTCFoccupancy linked to DNA methylation. Genome Res. 22:1680-88
    • (2012) Genome Res , vol.22 , pp. 1680-1688
    • Wang, H.1    Maurano, M.T.2    Qu, H.3    Varley, K.E.4    Gertz, J.5
  • 147
    • 39149121436 scopus 로고    scopus 로고
    • Cohesinmediates transcriptional insulation by CCCTC-binding factor
    • Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, et al. 2008. Cohesinmediates transcriptional insulation by CCCTC-binding factor. Nature 451:796-801
    • (2008) Nature , vol.451 , pp. 796-801
    • Wendt, K.S.1    Yoshida, K.2    Itoh, T.3    Bando, M.4    Koch, B.5
  • 148
    • 84876216563 scopus 로고    scopus 로고
    • Master transcription factors and Mediator establish super-enhancers at key cell identity genes
    • Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, et al. 2013. Master transcription factors and Mediator establish super-enhancers at key cell identity genes. Cell 153:307-19
    • (2013) Cell , vol.153 , pp. 307-319
    • Whyte, W.A.1    Orlando, D.A.2    Hnisz, D.3    Abraham, B.J.4    Lin, C.Y.5
  • 149
    • 84957665004 scopus 로고    scopus 로고
    • Cause and consequence of tethering a subTAD to different nuclear compartments
    • Wijchers PJ, Krijger PH, Geeven G, Zhu Y, Denker A, et al. 2016. Cause and consequence of tethering a subTAD to different nuclear compartments. Mol. Cell 61:461-73
    • (2016) Mol. Cell , vol.61 , pp. 461-473
    • Wijchers, P.J.1    Krijger, P.H.2    Geeven, G.3    Zhu, Y.4    Denker, A.5
  • 150
    • 0028179987 scopus 로고
    • Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division
    • Wu LJ, Errington J. 1994. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264:572-75
    • (1994) Science , vol.264 , pp. 572-575
    • Wu, L.J.1    Errington, J.2
  • 151
    • 79958065572 scopus 로고    scopus 로고
    • Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity
    • Xiao T, Wallace J, Felsenfeld G. 2011. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol. Cell. Biol. 31:2174-83
    • (2011) Mol. Cell. Biol , vol.31 , pp. 2174-2183
    • Xiao, T.1    Wallace, J.2    Felsenfeld, G.3
  • 152
    • 84973137911 scopus 로고    scopus 로고
    • Towards a predictive model of chromatin 3D organization
    • In press
    • Xu C, Corces VG. 2016. Towards a predictive model of chromatin 3D organization. Semin. Cell Dev. Biol. In press. doi: 10.1016/j.semcdb.2015.11.013
    • (2016) Semin. Cell Dev. Biol
    • Xu, C.1    Corces, V.G.2
  • 153
    • 35649000946 scopus 로고    scopus 로고
    • Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein
    • Xu N, Donohoe ME, Silva SS, Lee JT. 2007. Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat. Genet. 39:1390-96
    • (2007) Nat. Genet , vol.39 , pp. 1390-1396
    • Xu, N.1    Donohoe, M.E.2    Silva, S.S.3    Lee, J.T.4
  • 154
    • 84882738244 scopus 로고    scopus 로고
    • Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites
    • Yan J, Enge M, Whitington T, Dave K, Liu J, et al. 2013. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154:801-3
    • (2013) Cell , vol.154 , pp. 801-803
    • Yan, J.1    Enge, M.2    Whitington, T.3    Dave, K.4    Liu, J.5
  • 155
    • 84938412430 scopus 로고    scopus 로고
    • The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation
    • Yang F, Deng X, Ma W, Berletch JB, Rabaia N, et al. 2015. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16:52
    • (2015) Genome Biol , vol.16 , pp. 52
    • Yang, F.1    Deng, X.2    Ma, W.3    Berletch, J.B.4    Rabaia, N.5
  • 156
    • 59449098465 scopus 로고    scopus 로고
    • Handcuff for sisters: A new model for sister chromatid cohesion
    • Zhang N, Pati D. 2009. Handcuff for sisters: a new model for sister chromatid cohesion. Cell Cycle 8:399-402
    • (2009) Cell Cycle , vol.8 , pp. 399-402
    • Zhang, N.1    Pati, D.2
  • 157
    • 84890432056 scopus 로고    scopus 로고
    • Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations
    • Zhang Y, Wong C-H, Birnbaum RY, Li G, Favaro R, et al. 2013 . Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504:306-10
    • (2013) Nature , vol.504 , pp. 306-310
    • Zhang, Y.1    Wong, C.-H.2    Birnbaum, R.Y.3    Li, G.4    Favaro, R.5
  • 158
    • 84941804625 scopus 로고    scopus 로고
    • PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription
    • Zhao H, Sifakis EG, Sumida N, Millán-Ariño L, Scholz BA, et al. 2015. PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription. Mol. Cell 59:984-97
    • (2015) Mol. Cell , vol.59 , pp. 984-997
    • Zhao, H.1    Sifakis, E.G.2    Sumida, N.3    Millán-Ariño, L.4    Scholz, B.A.5
  • 159
    • 33750203582 scopus 로고    scopus 로고
    • Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions
    • Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, et al. 2006. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38:1341-47
    • (2006) Nat. Genet , vol.38 , pp. 1341-1347
    • Zhao, Z.1    Tavoosidana, G.2    Sjölinder, M.3    Göndör, A.4    Mariano, P.5
  • 160
    • 84892934183 scopus 로고    scopus 로고
    • Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells
    • Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, et al. 2014. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. PNAS 111:996-1001
    • (2014) PNAS , vol.111 , pp. 996-1001
    • Zuin, J.1    Dixon, J.R.2    Van Der Reijden, M.I.3    Ye, Z.4    Kolovos, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.