메뉴 건너뛰기




Volumn 35, Issue 28, 2016, Pages 3619-3625

Glutaminolysis as a target for cancer therapy

Author keywords

[No Author keywords available]

Indexed keywords

2 AMINOBICYCLO[2.2.1]HEPTANE 2 CARBOXYLIC ACID; 6 DIAZO 5 OXONORLEUCINE; ACETAMIDE DERIVATIVE; ACIVICIN; AMINOOXYACETIC ACID; ASPARTATE AMINOTRANSFERASE; AZASERINE; BENZYLSERINE; BIS 2 [ 5 PHENYLACETAMIDO 1,2,4 THIADIAZOL 2 YL]ETHYL SULFIDE; ENZYME; EPIGALLOCATECHIN GALLATE; GLUTAMATE DEHYDROGENASE; GLUTAMIC ACID; GLUTAMINASE; GLUTAMINE; GLUTAMINE TRANSPORTER; MAMMALIAN TARGET OF RAPAMYCIN INHIBITOR; MEMBRANE PROTEIN; PURPURIN; RAPAMYCIN; SERINE DERIVATIVE; UNCLASSIFIED DRUG; ANTINEOPLASTIC AGENT; MOLECULAR LIBRARY;

EID: 84978900742     PISSN: 09509232     EISSN: 14765594     Source Type: Journal    
DOI: 10.1038/onc.2015.447     Document Type: Review
Times cited : (330)

References (91)
  • 1
    • 52649107626 scopus 로고    scopus 로고
    • Cancer cell metabolism: Warburg and beyond
    • Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell 2008; 134: 703-707.
    • (2008) Cell , vol.134 , pp. 703-707
    • Hsu, P.P.1    Sabatini, D.M.2
  • 2
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science 1956; 123: 309-314.
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 3
    • 33749478922 scopus 로고    scopus 로고
    • Cancer's molecular sweet tooth and the Warburg effect
    • Kim JW, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 2006; 66: 8927-8930.
    • (2006) Cancer Res , vol.66 , pp. 8927-8930
    • Kim, J.W.1    Dang, C.V.2
  • 4
    • 60249085118 scopus 로고    scopus 로고
    • Mitochondria in cancer: Not just innocent bystanders
    • Frezza C, Gottlieb E. Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 2009; 19: 4-11.
    • (2009) Semin Cancer Biol , vol.19 , pp. 4-11
    • Frezza, C.1    Gottlieb, E.2
  • 5
    • 77955281020 scopus 로고    scopus 로고
    • Glutamine addiction: A new therapeutic target in cancer
    • Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010; 35: 427-433.
    • (2010) Trends Biochem Sci , vol.35 , pp. 427-433
    • Wise, D.R.1    Thompson, C.B.2
  • 6
    • 0034856827 scopus 로고    scopus 로고
    • Glutamine and cancer
    • Medina MA. Glutamine and cancer. J Nutr 2001; 131: 2539S-2542S.
    • (2001) J Nutr , vol.131 , pp. 2539S-2542S
    • Medina, M.A.1
  • 7
    • 0018386209 scopus 로고
    • Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells
    • Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 1979; 254: 2669-2676.
    • (1979) J Biol Chem , vol.254 , pp. 2669-2676
    • Reitzer, L.J.1    Wice, B.M.2    Kennell, D.3
  • 8
    • 77956516647 scopus 로고    scopus 로고
    • Cancer metabolism: Is glutamine sweeter than glucose?
    • Lu W, Pelicano H, Huang P. Cancer metabolism: is glutamine sweeter than glucose? Cancer Cell 2010; 18: 199-200.
    • (2010) Cancer Cell , vol.18 , pp. 199-200
    • Lu, W.1    Pelicano, H.2    Huang, P.3
  • 9
    • 37449034854 scopus 로고    scopus 로고
    • Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104: 19345-19350.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 19345-19350
    • DeBerardinis, R.J.1    Mancuso, A.2    Daikhin, E.3    Nissim, I.4    Yudkoff, M.5    Wehrli, S.6
  • 10
    • 78650181190 scopus 로고    scopus 로고
    • The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism
    • Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW et al. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 2010; 24: 2784-2799.
    • (2010) Genes Dev , vol.24 , pp. 2784-2799
    • Wellen, K.E.1    Lu, C.2    Mancuso, A.3    Lemons, J.M.4    Ryczko, M.5    Dennis, J.W.6
  • 12
    • 84922805618 scopus 로고    scopus 로고
    • Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth
    • Jin L, Li D, Alesi GN, Fan J, Kang HB, Lu Z et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 2015; 27: 257-270.
    • (2015) Cancer Cell , vol.27 , pp. 257-270
    • Jin, L.1    Li, D.2    Alesi, G.N.3    Fan, J.4    Kang, H.B.5    Lu, Z.6
  • 13
    • 84922270824 scopus 로고    scopus 로고
    • Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion
    • Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 2014; 56: 205-218.
    • (2014) Mol Cell , vol.56 , pp. 205-218
    • Zhang, J.1    Fan, J.2    Venneti, S.3    Cross, J.R.4    Takagi, T.5    Bhinder, B.6
  • 14
    • 84869027086 scopus 로고    scopus 로고
    • ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation
    • Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 2012; 22: 631-644.
    • (2012) Cancer Cell , vol.22 , pp. 631-644
    • Qing, G.1    Li, B.2    Vu, A.3    Skuli, N.4    Walton, Z.E.5    Liu, X.6
  • 15
    • 77953861522 scopus 로고    scopus 로고
    • Ammonia derived from glutaminolysis is a diffusible regulator of autophagy
    • Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 2010; 3ra31.
    • (2010) Sci Signal , pp. 3ra31
    • Eng, C.H.1    Yu, K.2    Lucas, J.3    White, E.4    Abraham, R.T.5
  • 17
    • 0020536675 scopus 로고
    • Mitochondrial metabolism of glutamine and glutamate and its physiological significance
    • Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 1983; 63: 547-605.
    • (1983) Physiol Rev , vol.63 , pp. 547-605
    • Kovacevic, Z.1    McGivan, J.D.2
  • 18
    • 0027145124 scopus 로고
    • Glutamine and cancer
    • Souba WW. Glutamine and cancer. Ann Surg 1993; 218: 715-728.
    • (1993) Ann Surg , vol.218 , pp. 715-728
    • Souba, W.W.1
  • 19
    • 75149148563 scopus 로고    scopus 로고
    • Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer
    • DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010; 29: 313-324.
    • (2010) Oncogene , vol.29 , pp. 313-324
    • DeBerardinis, R.J.1    Cheng, T.2
  • 20
    • 84883497454 scopus 로고    scopus 로고
    • Glutamine and cancer: Cell biology, physiology, and clinical opportunities
    • Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123: 3678-3684.
    • (2013) J Clin Invest , vol.123 , pp. 3678-3684
    • Hensley, C.T.1    Wasti, A.T.2    DeBerardinis, R.J.3
  • 21
    • 0021248051 scopus 로고
    • The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme
    • Moreadith RW, Lehninger AL. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem 1984; 259: 6215-6221.
    • (1984) J Biol Chem , vol.259 , pp. 6215-6221
    • Moreadith, R.W.1    Lehninger, A.L.2
  • 22
    • 0025109484 scopus 로고
    • Glutaminolysis and glycolysis interactions in proliferant cells
    • Medina MA, Nunez de Castro I. Glutaminolysis and glycolysis interactions in proliferant cells. Int J Biochem 1990; 22: 681-683.
    • (1990) Int J Biochem , vol.22 , pp. 681-683
    • Medina, M.A.1    Nunez De Castro, I.2
  • 23
    • 77958492734 scopus 로고    scopus 로고
    • Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells?
    • Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle 2010; 9: 3884-3886.
    • (2010) Cell Cycle , vol.9 , pp. 3884-3886
    • Dang, C.V.1
  • 24
    • 0019898583 scopus 로고
    • Glycolysis, glutaminolysis and cell proliferation
    • McKeehan WL. Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 1982; 6: 635-650.
    • (1982) Cell Biol Int Rep , vol.6 , pp. 635-650
    • McKeehan, W.L.1
  • 25
    • 0022196860 scopus 로고
    • Glutamine metabolism in lymphocytes: Its biochemical, physiological and clinical importance
    • Newsholme EA, Crabtree B, Ardawi MS. Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol 1985; 70: 473-489.
    • (1985) Q J Exp Physiol , vol.70 , pp. 473-489
    • Newsholme, E.A.1    Crabtree, B.2    Ardawi, M.S.3
  • 26
    • 78649638496 scopus 로고    scopus 로고
    • Glutaminolysis and glycolysis regulation by troglitazone in breast cancer cells: Relationship to mitochondrial membrane potential
    • Friday E, Oliver R 3rd, Welbourne T, Turturro F. Glutaminolysis and glycolysis regulation by troglitazone in breast cancer cells: relationship to mitochondrial membrane potential. J Cell Physiol 2011; 226: 511-519.
    • (2011) J Cell Physiol , vol.226 , pp. 511-519
    • Friday, E.1    Oliver, R.2    Welbourne, T.3    Turturro, F.4
  • 27
    • 84902343371 scopus 로고    scopus 로고
    • Oxidation of alphaketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects
    • Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, Kovacs Z et al. Oxidation of alphaketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep 2014; 7: 1679-1690.
    • (2014) Cell Rep , vol.7 , pp. 1679-1690
    • Mullen, A.R.1    Hu, Z.2    Shi, X.3    Jiang, L.4    Boroughs, L.K.5    Kovacs, Z.6
  • 28
  • 29
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012; 481: 385-388.
    • (2012) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1    Wheaton, W.W.2    Jin, E.S.3    Chen, P.H.4    Sullivan, L.B.5    Cheng, T.6
  • 30
  • 31
    • 84889575198 scopus 로고    scopus 로고
    • Modulation of oxidative stress as an anticancer strategy
    • Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931-947.
    • (2013) Nat Rev Drug Discov , vol.12 , pp. 931-947
    • Gorrini, C.1    Harris, I.S.2    Mak, T.W.3
  • 32
    • 84922783167 scopus 로고    scopus 로고
    • Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression
    • Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015; 27: 211-222.
    • (2015) Cancer Cell , vol.27 , pp. 211-222
    • Harris, I.S.1    Treloar, A.E.2    Inoue, S.3    Sasaki, M.4    Gorrini, C.5    Lee, K.C.6
  • 33
    • 64749116346 scopus 로고    scopus 로고
    • C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
    • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762-765.
    • (2009) Nature , vol.458 , pp. 762-765
    • Gao, P.1    Tchernyshyov, I.2    Chang, T.C.3    Lee, Y.S.4    Kita, K.5    Ochi, T.6
  • 34
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
    • Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496: 101-105.
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1    Lyssiotis, C.A.2    Ying, H.3    Wang, X.4    Hua, S.5    Ligorio, M.6
  • 35
    • 80054767730 scopus 로고    scopus 로고
    • Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: Roles for fumarate in KEAP1 succination and Nrf2 signaling
    • Adam J, Hatipoglu E, O'Flaherty L, Ternette N, Sahgal N, Lockstone H et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 2011; 20: 524-537.
    • (2011) Cancer Cell , vol.20 , pp. 524-537
    • Adam, J.1    Hatipoglu, E.2    O'Flaherty, L.3    Ternette, N.4    Sahgal, N.5    Lockstone, H.6
  • 36
    • 80054772589 scopus 로고    scopus 로고
    • An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma
    • Ooi A, Wong JC, Petillo D, Roossien D, Perrier-Trudova V, Whitten D et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 2011; 20: 511-523.
    • (2011) Cancer Cell , vol.20 , pp. 511-523
    • Ooi, A.1    Wong, J.C.2    Petillo, D.3    Roossien, D.4    Perrier-Trudova, V.5    Whitten, D.6
  • 37
    • 0025475371 scopus 로고
    • Is glutamine a conditionally essential amino acid?
    • Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid? Nutr Rev 1990; 48: 297-309.
    • (1990) Nutr Rev , vol.48 , pp. 297-309
    • Lacey, J.M.1    Wilmore, D.W.2
  • 38
    • 84935519595 scopus 로고    scopus 로고
    • Amino acid transporters in cancer and their relevance to 'glutamine addiction': Novel targets for the design of a new class of anticancer drugs
    • Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino acid transporters in cancer and their relevance to 'glutamine addiction': novel targets for the design of a new class of anticancer drugs. Cancer Res 2015; 75: 1782-1788.
    • (2015) Cancer Res , vol.75 , pp. 1782-1788
    • Bhutia, Y.D.1    Babu, E.2    Ramachandran, S.3    Ganapathy, V.4
  • 41
    • 84888271341 scopus 로고    scopus 로고
    • Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia
    • Willems L, Jacque N, Jacquel A, Neveux N, Maciel TT, Lambert M et al. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood 2013; 122: 3521-3532.
    • (2013) Blood , vol.122 , pp. 3521-3532
    • Willems, L.1    Jacque, N.2    Jacquel, A.3    Neveux, N.4    Maciel, T.T.5    Lambert, M.6
  • 42
    • 84873363313 scopus 로고    scopus 로고
    • SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival
    • Hassanein M, Hoeksema MD, Shiota M, Qian J, Harris BK, Chen H et al. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 2013; 19: 560-570.
    • (2013) Clin Cancer Res , vol.19 , pp. 560-570
    • Hassanein, M.1    Hoeksema, M.D.2    Shiota, M.3    Qian, J.4    Harris, B.K.5    Chen, H.6
  • 43
    • 84943399154 scopus 로고    scopus 로고
    • Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer
    • Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M, Ji X et al. Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer 2015; 137: 1587-1597.
    • (2015) Int J Cancer , vol.137 , pp. 1587-1597
    • Hassanein, M.1    Qian, J.2    Hoeksema, M.D.3    Wang, J.4    Jacobovitz, M.5    Ji, X.6
  • 46
    • 84930392977 scopus 로고    scopus 로고
    • Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis
    • Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest 2015; 125: 2293-2306.
    • (2015) J Clin Invest , vol.125 , pp. 2293-2306
    • Xiang, Y.1    Stine, Z.E.2    Xia, J.3    Lu, Y.4    O'Connor, R.S.5    Altman, B.J.6
  • 47
    • 34347402459 scopus 로고    scopus 로고
    • Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
    • Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007; 178: 93-105.
    • (2007) J Cell Biol , vol.178 , pp. 93-105
    • Yuneva, M.1    Zamboni, N.2    Oefner, P.3    Sachidanandam, R.4    Lazebnik, Y.5
  • 48
    • 57749088701 scopus 로고    scopus 로고
    • Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
    • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105: 18782-18787.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 18782-18787
    • Wise, D.R.1    DeBerardinis, R.J.2    Mancuso, A.3    Sayed, N.4    Zhang, X.Y.5    Pfeiffer, H.K.6
  • 49
    • 84855453655 scopus 로고    scopus 로고
    • Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
    • Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110-121.
    • (2012) Cell Metab , vol.15 , pp. 110-121
    • Le, A.1    Lane, A.N.2    Hamaker, M.3    Bose, S.4    Gouw, A.5    Barbi, J.6
  • 50
    • 84872376676 scopus 로고    scopus 로고
    • Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells
    • Murphy TA, Dang CV, Young JD. Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 2013; 15: 206-217.
    • (2013) Metab Eng , vol.15 , pp. 206-217
    • Murphy, T.A.1    Dang, C.V.2    Young, J.D.3
  • 51
    • 84908192544 scopus 로고    scopus 로고
    • The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation
    • Csibi A, Lee G, Yoon SO, Tong H, Ilter D, Elia I et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol 2014; 24: 2274-2280.
    • (2014) Curr Biol , vol.24 , pp. 2274-2280
    • Csibi, A.1    Lee, G.2    Yoon, S.O.3    Tong, H.4    Ilter, D.5    Elia, I.6
  • 52
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013; 153: 840-854.
    • (2013) Cell , vol.153 , pp. 840-854
    • Csibi, A.1    Fendt, S.M.2    Li, C.3    Poulogiannis, G.4    Choo, A.Y.5    Chapski, D.J.6
  • 54
    • 84861209572 scopus 로고    scopus 로고
    • Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism
    • Thangavelu K, Pan CQ, Karlberg T, Balaji G, Uttamchandani M, Suresh V et al. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc Natl Acad Sci USA 2012; 109: 7705-7710.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 7705-7710
    • Thangavelu, K.1    Pan, C.Q.2    Karlberg, T.3    Balaji, G.4    Uttamchandani, M.5    Suresh, V.6
  • 55
    • 84855476912 scopus 로고    scopus 로고
    • Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells
    • Colombo SL, Palacios-Callender M, Frakich N, Carcamo S, Kovacs I, Tudzarova S et al. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc Natl Acad Sci USA 2011; 108: 21069-21074.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 21069-21074
    • Colombo, S.L.1    Palacios-Callender, M.2    Frakich, N.3    Carcamo, S.4    Kovacs, I.5    Tudzarova, S.6
  • 56
    • 84864748956 scopus 로고    scopus 로고
    • Fulfilling the metabolic requirements for cell proliferation
    • Moncada S, Higgs EA, Colombo SL. Fulfilling the metabolic requirements for cell proliferation. Biochem J 2012; 446: 1-7.
    • (2012) Biochem J , vol.446 , pp. 1-7
    • Moncada, S.1    Higgs, E.A.2    Colombo, S.L.3
  • 57
    • 34548789512 scopus 로고    scopus 로고
    • Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES)
    • Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 2007; 406: 407-414.
    • (2007) Biochem J , vol.406 , pp. 407-414
    • Robinson, M.M.1    McBryant, S.J.2    Tsukamoto, T.3    Rojas, C.4    Ferraris, D.V.5    Hamilton, S.K.6
  • 60
    • 84926304829 scopus 로고    scopus 로고
    • Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment
    • Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 2015; 125: 1591-1602.
    • (2015) J Clin Invest , vol.125 , pp. 1591-1602
    • Tanaka, K.1    Sasayama, T.2    Irino, Y.3    Takata, K.4    Nagashima, H.5    Satoh, N.6
  • 61
    • 84944076036 scopus 로고    scopus 로고
    • Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia
    • Herranz D, Ambesi-Impiombato A, Sudderth J, Sanchez-Martin M, Belver L, Tosello V et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med 2015; 21: 1182-1189.
    • (2015) Nat Med , vol.21 , pp. 1182-1189
    • Herranz, D.1    Ambesi-Impiombato, A.2    Sudderth, J.3    Sanchez-Martin, M.4    Belver, L.5    Tosello, V.6
  • 62
    • 77952212178 scopus 로고    scopus 로고
    • Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
    • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010; 107: 7455-7460.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 7455-7460
    • Hu, W.1    Zhang, C.2    Wu, R.3    Sun, Y.4    Levine, A.5    Feng, Z.6
  • 63
    • 77952227625 scopus 로고    scopus 로고
    • Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
    • Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 2010; 107: 7461-7466.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 7461-7466
    • Suzuki, S.1    Tanaka, T.2    Poyurovsky, M.V.3    Nagano, H.4    Mayama, T.5    Ohkubo, S.6
  • 65
    • 84883407636 scopus 로고    scopus 로고
    • Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation
    • Xiang L, Xie G, Liu C, Zhou J, Chen J, Yu S et al. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim Biophys Acta 2013; 1833: 2996-3005.
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 2996-3005
    • Xiang, L.1    Xie, G.2    Liu, C.3    Zhou, J.4    Chen, J.5    Yu, S.6
  • 67
    • 84937525519 scopus 로고    scopus 로고
    • Glutaminolysis and Transferrin regulate Ferroptosis
    • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and Transferrin regulate Ferroptosis. Mol Cell 2015; 59: 298-308.
    • (2015) Mol Cell , vol.59 , pp. 298-308
    • Gao, M.1    Monian, P.2    Quadri, N.3    Ramasamy, R.4    Jiang, X.5
  • 68
    • 70350217425 scopus 로고    scopus 로고
    • Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling
    • Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 2009; 69: 7986-7993.
    • (2009) Cancer Res , vol.69 , pp. 7986-7993
    • Yang, C.1    Sudderth, J.2    Dang, T.3    Bachoo, R.M.4    McDonald, J.G.5    DeBerardinis, R.J.6
  • 69
    • 80052265272 scopus 로고    scopus 로고
    • The human GLUD2 glutamate dehydrogenase and its regulation in health and disease
    • Plaitakis A, Latsoudis H, Spanaki C. The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem Int 2011; 59: 495-509.
    • (2011) Neurochem Int , vol.59 , pp. 495-509
    • Plaitakis, A.1    Latsoudis, H.2    Spanaki, C.3
  • 70
    • 54249092318 scopus 로고    scopus 로고
    • Untangling the glutamate dehydrogenase allosteric nightmare
    • Smith TJ, Stanley CA. Untangling the glutamate dehydrogenase allosteric nightmare. Trends Biochem Sci 2008; 33: 557-564.
    • (2008) Trends Biochem Sci , vol.33 , pp. 557-564
    • Smith, T.J.1    Stanley, C.A.2
  • 71
    • 33744527647 scopus 로고    scopus 로고
    • Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase
    • Li C, Allen A, Kwagh J, Doliba NM, Qin W, Najafi H et al. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 2006; 281: 10214-10221.
    • (2006) J Biol Chem , vol.281 , pp. 10214-10221
    • Li, C.1    Allen, A.2    Kwagh, J.3    Doliba, N.M.4    Qin, W.5    Najafi, H.6
  • 72
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941-954.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3    Fahie, K.4    Christodoulou, D.C.5    Murphy, A.J.6
  • 73
    • 0032493123 scopus 로고    scopus 로고
    • Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene
    • Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 1998; 338: 1352-1357.
    • (1998) N Engl J Med , vol.338 , pp. 1352-1357
    • Stanley, C.A.1    Lieu, Y.K.2    Hsu, B.Y.3    Burlina, A.B.4    Greenberg, C.R.5    Hopwood, N.J.6
  • 74
    • 77952562382 scopus 로고    scopus 로고
    • Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
    • Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon SO et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 2010; 38: 487-499.
    • (2010) Mol Cell , vol.38 , pp. 487-499
    • Choo, A.Y.1    Kim, S.G.2    Vander Heiden, M.G.3    Mahoney, S.J.4    Vu, H.5    Yoon, S.O.6
  • 75
    • 84880906805 scopus 로고    scopus 로고
    • Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy
    • Lorin S, Tol MJ, Bauvy C, Strijland A, Pous C, Verhoeven AJ et al. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 2013; 9: 850-860.
    • (2013) Autophagy , vol.9 , pp. 850-860
    • Lorin, S.1    Tol, M.J.2    Bauvy, C.3    Strijland, A.4    Pous, C.5    Verhoeven, A.J.6
  • 77
    • 84927698067 scopus 로고    scopus 로고
    • SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth
    • Yang H, Zhou L, Shi Q, Zhao Y, Lin H, Zhang M et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J 2015; 34: 1110-1125.
    • (2015) EMBO J , vol.34 , pp. 1110-1125
    • Yang, H.1    Zhou, L.2    Shi, Q.3    Zhao, Y.4    Lin, H.5    Zhang, M.6
  • 78
    • 0025232412 scopus 로고
    • Metabolism and action of amino acid analog anti-cancer agents
    • Ahluwalia GS, Grem JL, Hao Z, Cooney DA. Metabolism and action of amino acid analog anti-cancer agents. Pharmacol Ther 1990; 46: 243-271.
    • (1990) Pharmacol Ther , vol.46 , pp. 243-271
    • Ahluwalia, G.S.1    Grem, J.L.2    Hao, Z.3    Cooney, D.A.4
  • 79
    • 84904042360 scopus 로고    scopus 로고
    • A highthroughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor
    • Elhammali A, Ippolito JE, Collins L, Crowley J, Marasa J, Piwnica-Worms D. A highthroughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov 2014; 4: 828-839.
    • (2014) Cancer Discov , vol.4 , pp. 828-839
    • Elhammali, A.1    Ippolito, J.E.2    Collins, L.3    Crowley, J.4    Marasa, J.5    Piwnica-Worms, D.6
  • 80
    • 84869009687 scopus 로고    scopus 로고
    • How cancer metabolism is tuned for proliferation and vulnerable to disruption
    • Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012; 491: 364-373.
    • (2012) Nature , vol.491 , pp. 364-373
    • Schulze, A.1    Harris, A.L.2
  • 81
    • 84909592475 scopus 로고    scopus 로고
    • Action at a distance: Allostery and the development of drugs to target cancer cell metabolism
    • DeLaBarre B, Hurov J, Cianchetta G, Murray S, Dang L. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. Chem Biol 2014; 21: 1143-1161.
    • (2014) Chem Biol , vol.21 , pp. 1143-1161
    • DeLaBarre, B.1    Hurov, J.2    Cianchetta, G.3    Murray, S.4    Dang, L.5
  • 82
    • 84899573241 scopus 로고    scopus 로고
    • Glutaminase regulation in cancer cells: A druggable chain of events
    • Katt WP, Cerione RA. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov Today 2014; 19: 450-457.
    • (2014) Drug Discov Today , vol.19 , pp. 450-457
    • Katt, W.P.1    Cerione, R.A.2
  • 83
    • 84870982915 scopus 로고    scopus 로고
    • Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors
    • Shukla K, Ferraris DV, Thomas AG, Stathis M, Duvall B, Delahanty G et al. Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J Med Chem 2012; 55: 10551-10563.
    • (2012) J Med Chem , vol.55 , pp. 10551-10563
    • Shukla, K.1    Ferraris, D.V.2    Thomas, A.G.3    Stathis, M.4    Duvall, B.5    Delahanty, G.6
  • 84
    • 84930216252 scopus 로고    scopus 로고
    • MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism
    • Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M, Adam SJ et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci USA 2015; 112: 6539-6544.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. 6539-6544
    • Shroff, E.H.1    Eberlin, L.S.2    Dang, V.M.3    Gouw, A.M.4    Gabay, M.5    Adam, S.J.6
  • 85
    • 84920431299 scopus 로고    scopus 로고
    • Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells
    • Li J, Csibi A, Yang S, Hoffman GR, Li C, Zhang E et al. Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc Natl Acad Sci USA 2015; 112: E21-E29.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. E21-E29
    • Li, J.1    Csibi, A.2    Yang, S.3    Hoffman, G.R.4    Li, C.5    Zhang, E.6
  • 86
    • 84918523040 scopus 로고    scopus 로고
    • Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition
    • Ulanet DB, Couto K, Jha A, Choe S, Wang A, Woo HK et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS One 2014; 9: e115144.
    • (2014) PLoS One , vol.9
    • Ulanet, D.B.1    Couto, K.2    Jha, A.3    Choe, S.4    Wang, A.5    Woo, H.K.6
  • 87
    • 84862567758 scopus 로고    scopus 로고
    • Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation
    • Katt WP, Ramachandran S, Erickson JW, Cerione RA. Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation. Mol Cancer Ther 2012; 11: 1269-1278.
    • (2012) Mol Cancer Ther , vol.11 , pp. 1269-1278
    • Katt, W.P.1    Ramachandran, S.2    Erickson, J.W.3    Cerione, R.A.4
  • 91
    • 84904173553 scopus 로고    scopus 로고
    • Metabolism of stromal and immune cells in health and disease
    • Ghesquiere B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature 2014; 511: 167-176.
    • (2014) Nature , vol.511 , pp. 167-176
    • Ghesquiere, B.1    Wong, B.W.2    Kuchnio, A.3    Carmeliet, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.