-
1
-
-
52649107626
-
Cancer cell metabolism: Warburg and beyond
-
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell 2008; 134: 703-707.
-
(2008)
Cell
, vol.134
, pp. 703-707
-
-
Hsu, P.P.1
Sabatini, D.M.2
-
2
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956; 123: 309-314.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
3
-
-
33749478922
-
Cancer's molecular sweet tooth and the Warburg effect
-
Kim JW, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 2006; 66: 8927-8930.
-
(2006)
Cancer Res
, vol.66
, pp. 8927-8930
-
-
Kim, J.W.1
Dang, C.V.2
-
4
-
-
60249085118
-
Mitochondria in cancer: Not just innocent bystanders
-
Frezza C, Gottlieb E. Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 2009; 19: 4-11.
-
(2009)
Semin Cancer Biol
, vol.19
, pp. 4-11
-
-
Frezza, C.1
Gottlieb, E.2
-
5
-
-
77955281020
-
Glutamine addiction: A new therapeutic target in cancer
-
Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010; 35: 427-433.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 427-433
-
-
Wise, D.R.1
Thompson, C.B.2
-
6
-
-
0034856827
-
Glutamine and cancer
-
Medina MA. Glutamine and cancer. J Nutr 2001; 131: 2539S-2542S.
-
(2001)
J Nutr
, vol.131
, pp. 2539S-2542S
-
-
Medina, M.A.1
-
7
-
-
0018386209
-
Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells
-
Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 1979; 254: 2669-2676.
-
(1979)
J Biol Chem
, vol.254
, pp. 2669-2676
-
-
Reitzer, L.J.1
Wice, B.M.2
Kennell, D.3
-
8
-
-
77956516647
-
Cancer metabolism: Is glutamine sweeter than glucose?
-
Lu W, Pelicano H, Huang P. Cancer metabolism: is glutamine sweeter than glucose? Cancer Cell 2010; 18: 199-200.
-
(2010)
Cancer Cell
, vol.18
, pp. 199-200
-
-
Lu, W.1
Pelicano, H.2
Huang, P.3
-
9
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104: 19345-19350.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 19345-19350
-
-
DeBerardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudkoff, M.5
Wehrli, S.6
-
10
-
-
78650181190
-
The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism
-
Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW et al. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 2010; 24: 2784-2799.
-
(2010)
Genes Dev
, vol.24
, pp. 2784-2799
-
-
Wellen, K.E.1
Lu, C.2
Mancuso, A.3
Lemons, J.M.4
Ryczko, M.5
Dennis, J.W.6
-
11
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012; 47: 349-358.
-
(2012)
Mol Cell
, vol.47
, pp. 349-358
-
-
Duran, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
-
12
-
-
84922805618
-
Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth
-
Jin L, Li D, Alesi GN, Fan J, Kang HB, Lu Z et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 2015; 27: 257-270.
-
(2015)
Cancer Cell
, vol.27
, pp. 257-270
-
-
Jin, L.1
Li, D.2
Alesi, G.N.3
Fan, J.4
Kang, H.B.5
Lu, Z.6
-
13
-
-
84922270824
-
Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion
-
Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 2014; 56: 205-218.
-
(2014)
Mol Cell
, vol.56
, pp. 205-218
-
-
Zhang, J.1
Fan, J.2
Venneti, S.3
Cross, J.R.4
Takagi, T.5
Bhinder, B.6
-
14
-
-
84869027086
-
ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation
-
Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 2012; 22: 631-644.
-
(2012)
Cancer Cell
, vol.22
, pp. 631-644
-
-
Qing, G.1
Li, B.2
Vu, A.3
Skuli, N.4
Walton, Z.E.5
Liu, X.6
-
15
-
-
77953861522
-
Ammonia derived from glutaminolysis is a diffusible regulator of autophagy
-
Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 2010; 3ra31.
-
(2010)
Sci Signal
, pp. 3ra31
-
-
Eng, C.H.1
Yu, K.2
Lucas, J.3
White, E.4
Abraham, R.T.5
-
16
-
-
0026689816
-
Relevance of glutamine metabolism to tumor cell growth
-
Medina MA, Sanchez-Jimenez F, Marquez J, Rodriguez Quesada A, Nunez de Castro I. Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem 1992; 113: 1-15.
-
(1992)
Mol Cell Biochem
, vol.113
, pp. 1-15
-
-
Medina, M.A.1
Sanchez-Jimenez, F.2
Marquez, J.3
Rodriguez Quesada, A.4
Nunez De Castro, I.5
-
17
-
-
0020536675
-
Mitochondrial metabolism of glutamine and glutamate and its physiological significance
-
Kovacevic Z, McGivan JD. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 1983; 63: 547-605.
-
(1983)
Physiol Rev
, vol.63
, pp. 547-605
-
-
Kovacevic, Z.1
McGivan, J.D.2
-
18
-
-
0027145124
-
Glutamine and cancer
-
Souba WW. Glutamine and cancer. Ann Surg 1993; 218: 715-728.
-
(1993)
Ann Surg
, vol.218
, pp. 715-728
-
-
Souba, W.W.1
-
19
-
-
75149148563
-
Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer
-
DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010; 29: 313-324.
-
(2010)
Oncogene
, vol.29
, pp. 313-324
-
-
DeBerardinis, R.J.1
Cheng, T.2
-
20
-
-
84883497454
-
Glutamine and cancer: Cell biology, physiology, and clinical opportunities
-
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123: 3678-3684.
-
(2013)
J Clin Invest
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
DeBerardinis, R.J.3
-
21
-
-
0021248051
-
The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme
-
Moreadith RW, Lehninger AL. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem 1984; 259: 6215-6221.
-
(1984)
J Biol Chem
, vol.259
, pp. 6215-6221
-
-
Moreadith, R.W.1
Lehninger, A.L.2
-
22
-
-
0025109484
-
Glutaminolysis and glycolysis interactions in proliferant cells
-
Medina MA, Nunez de Castro I. Glutaminolysis and glycolysis interactions in proliferant cells. Int J Biochem 1990; 22: 681-683.
-
(1990)
Int J Biochem
, vol.22
, pp. 681-683
-
-
Medina, M.A.1
Nunez De Castro, I.2
-
23
-
-
77958492734
-
Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells?
-
Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle 2010; 9: 3884-3886.
-
(2010)
Cell Cycle
, vol.9
, pp. 3884-3886
-
-
Dang, C.V.1
-
24
-
-
0019898583
-
Glycolysis, glutaminolysis and cell proliferation
-
McKeehan WL. Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep 1982; 6: 635-650.
-
(1982)
Cell Biol Int Rep
, vol.6
, pp. 635-650
-
-
McKeehan, W.L.1
-
25
-
-
0022196860
-
Glutamine metabolism in lymphocytes: Its biochemical, physiological and clinical importance
-
Newsholme EA, Crabtree B, Ardawi MS. Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol 1985; 70: 473-489.
-
(1985)
Q J Exp Physiol
, vol.70
, pp. 473-489
-
-
Newsholme, E.A.1
Crabtree, B.2
Ardawi, M.S.3
-
26
-
-
78649638496
-
Glutaminolysis and glycolysis regulation by troglitazone in breast cancer cells: Relationship to mitochondrial membrane potential
-
Friday E, Oliver R 3rd, Welbourne T, Turturro F. Glutaminolysis and glycolysis regulation by troglitazone in breast cancer cells: relationship to mitochondrial membrane potential. J Cell Physiol 2011; 226: 511-519.
-
(2011)
J Cell Physiol
, vol.226
, pp. 511-519
-
-
Friday, E.1
Oliver, R.2
Welbourne, T.3
Turturro, F.4
-
27
-
-
84902343371
-
Oxidation of alphaketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects
-
Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, Kovacs Z et al. Oxidation of alphaketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep 2014; 7: 1679-1690.
-
(2014)
Cell Rep
, vol.7
, pp. 1679-1690
-
-
Mullen, A.R.1
Hu, Z.2
Shi, X.3
Jiang, L.4
Boroughs, L.K.5
Kovacs, Z.6
-
28
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380-384.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gameiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
Hiller, K.6
-
29
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012; 481: 385-388.
-
(2012)
Nature
, vol.481
, pp. 385-388
-
-
Mullen, A.R.1
Wheaton, W.W.2
Jin, E.S.3
Chen, P.H.4
Sullivan, L.B.5
Cheng, T.6
-
30
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136: 521-534.
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
-
31
-
-
84889575198
-
Modulation of oxidative stress as an anticancer strategy
-
Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931-947.
-
(2013)
Nat Rev Drug Discov
, vol.12
, pp. 931-947
-
-
Gorrini, C.1
Harris, I.S.2
Mak, T.W.3
-
32
-
-
84922783167
-
Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression
-
Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015; 27: 211-222.
-
(2015)
Cancer Cell
, vol.27
, pp. 211-222
-
-
Harris, I.S.1
Treloar, A.E.2
Inoue, S.3
Sasaki, M.4
Gorrini, C.5
Lee, K.C.6
-
33
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762-765.
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
Ochi, T.6
-
34
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496: 101-105.
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
Wang, X.4
Hua, S.5
Ligorio, M.6
-
35
-
-
80054767730
-
Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: Roles for fumarate in KEAP1 succination and Nrf2 signaling
-
Adam J, Hatipoglu E, O'Flaherty L, Ternette N, Sahgal N, Lockstone H et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 2011; 20: 524-537.
-
(2011)
Cancer Cell
, vol.20
, pp. 524-537
-
-
Adam, J.1
Hatipoglu, E.2
O'Flaherty, L.3
Ternette, N.4
Sahgal, N.5
Lockstone, H.6
-
36
-
-
80054772589
-
An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma
-
Ooi A, Wong JC, Petillo D, Roossien D, Perrier-Trudova V, Whitten D et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 2011; 20: 511-523.
-
(2011)
Cancer Cell
, vol.20
, pp. 511-523
-
-
Ooi, A.1
Wong, J.C.2
Petillo, D.3
Roossien, D.4
Perrier-Trudova, V.5
Whitten, D.6
-
37
-
-
0025475371
-
Is glutamine a conditionally essential amino acid?
-
Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid? Nutr Rev 1990; 48: 297-309.
-
(1990)
Nutr Rev
, vol.48
, pp. 297-309
-
-
Lacey, J.M.1
Wilmore, D.W.2
-
38
-
-
84935519595
-
Amino acid transporters in cancer and their relevance to 'glutamine addiction': Novel targets for the design of a new class of anticancer drugs
-
Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino acid transporters in cancer and their relevance to 'glutamine addiction': novel targets for the design of a new class of anticancer drugs. Cancer Res 2015; 75: 1782-1788.
-
(2015)
Cancer Res
, vol.75
, pp. 1782-1788
-
-
Bhutia, Y.D.1
Babu, E.2
Ramachandran, S.3
Ganapathy, V.4
-
39
-
-
84895071580
-
Control of glutamine metabolism by the tumor suppressor Rb
-
Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y, Hill BG et al. Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 2014; 33: 556-566.
-
(2014)
Oncogene
, vol.33
, pp. 556-566
-
-
Reynolds, M.R.1
Lane, A.N.2
Robertson, B.3
Kemp, S.4
Liu, Y.5
Hill, B.G.6
-
40
-
-
84870925392
-
HIF2alpha acts as an mTORC1 activator through the amino acid carrier SLC7A5
-
Elorza A, Soro-Arnaiz I, Melendez-Rodriguez F, Rodriguez-Vaello V, Marsboom G, de Carcer G et al. HIF2alpha acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol Cell 2012; 48: 681-691.
-
(2012)
Mol Cell
, vol.48
, pp. 681-691
-
-
Elorza, A.1
Soro-Arnaiz, I.2
Melendez-Rodriguez, F.3
Rodriguez-Vaello, V.4
Marsboom, G.5
De Carcer, G.6
-
41
-
-
84888271341
-
Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia
-
Willems L, Jacque N, Jacquel A, Neveux N, Maciel TT, Lambert M et al. Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia. Blood 2013; 122: 3521-3532.
-
(2013)
Blood
, vol.122
, pp. 3521-3532
-
-
Willems, L.1
Jacque, N.2
Jacquel, A.3
Neveux, N.4
Maciel, T.T.5
Lambert, M.6
-
42
-
-
84873363313
-
SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival
-
Hassanein M, Hoeksema MD, Shiota M, Qian J, Harris BK, Chen H et al. SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin Cancer Res 2013; 19: 560-570.
-
(2013)
Clin Cancer Res
, vol.19
, pp. 560-570
-
-
Hassanein, M.1
Hoeksema, M.D.2
Shiota, M.3
Qian, J.4
Harris, B.K.5
Chen, H.6
-
43
-
-
84943399154
-
Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer
-
Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M, Ji X et al. Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer 2015; 137: 1587-1597.
-
(2015)
Int J Cancer
, vol.137
, pp. 1587-1597
-
-
Hassanein, M.1
Qian, J.2
Hoeksema, M.D.3
Wang, J.4
Jacobovitz, M.5
Ji, X.6
-
44
-
-
84902550841
-
Targeting glutamine transport to suppress melanoma cell growth
-
Wang Q, Beaumont KA, Otte NJ, Font J, Bailey CG, van Geldermalsen M et al. Targeting glutamine transport to suppress melanoma cell growth. Int J Cancer 2014; 135: 1060-1071.
-
(2014)
Int J Cancer
, vol.135
, pp. 1060-1071
-
-
Wang, Q.1
Beaumont, K.A.2
Otte, N.J.3
Font, J.4
Bailey, C.G.5
Van Geldermalsen, M.6
-
45
-
-
84876728581
-
Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer
-
Mates JM, Segura JA, Martin-Rufian M, Campos-Sandoval JA, Alonso FJ, Marquez J. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med 2013; 13: 514-534.
-
(2013)
Curr Mol Med
, vol.13
, pp. 514-534
-
-
Mates, J.M.1
Segura, J.A.2
Martin-Rufian, M.3
Campos-Sandoval, J.A.4
Alonso, F.J.5
Marquez, J.6
-
46
-
-
84930392977
-
Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis
-
Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest 2015; 125: 2293-2306.
-
(2015)
J Clin Invest
, vol.125
, pp. 2293-2306
-
-
Xiang, Y.1
Stine, Z.E.2
Xia, J.3
Lu, Y.4
O'Connor, R.S.5
Altman, B.J.6
-
47
-
-
34347402459
-
Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells
-
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007; 178: 93-105.
-
(2007)
J Cell Biol
, vol.178
, pp. 93-105
-
-
Yuneva, M.1
Zamboni, N.2
Oefner, P.3
Sachidanandam, R.4
Lazebnik, Y.5
-
48
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105: 18782-18787.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
DeBerardinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.Y.5
Pfeiffer, H.K.6
-
49
-
-
84855453655
-
Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
-
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110-121.
-
(2012)
Cell Metab
, vol.15
, pp. 110-121
-
-
Le, A.1
Lane, A.N.2
Hamaker, M.3
Bose, S.4
Gouw, A.5
Barbi, J.6
-
50
-
-
84872376676
-
Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells
-
Murphy TA, Dang CV, Young JD. Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 2013; 15: 206-217.
-
(2013)
Metab Eng
, vol.15
, pp. 206-217
-
-
Murphy, T.A.1
Dang, C.V.2
Young, J.D.3
-
51
-
-
84908192544
-
The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation
-
Csibi A, Lee G, Yoon SO, Tong H, Ilter D, Elia I et al. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol 2014; 24: 2274-2280.
-
(2014)
Curr Biol
, vol.24
, pp. 2274-2280
-
-
Csibi, A.1
Lee, G.2
Yoon, S.O.3
Tong, H.4
Ilter, D.5
Elia, I.6
-
52
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013; 153: 840-854.
-
(2013)
Cell
, vol.153
, pp. 840-854
-
-
Csibi, A.1
Fendt, S.M.2
Li, C.3
Poulogiannis, G.4
Choo, A.Y.5
Chapski, D.J.6
-
53
-
-
77957937428
-
Targeting mitochondrial glutaminase activity inhibits oncogenic transformation
-
Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010; 18: 207-219.
-
(2010)
Cancer Cell
, vol.18
, pp. 207-219
-
-
Wang, J.B.1
Erickson, J.W.2
Fuji, R.3
Ramachandran, S.4
Gao, P.5
Dinavahi, R.6
-
54
-
-
84861209572
-
Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism
-
Thangavelu K, Pan CQ, Karlberg T, Balaji G, Uttamchandani M, Suresh V et al. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc Natl Acad Sci USA 2012; 109: 7705-7710.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 7705-7710
-
-
Thangavelu, K.1
Pan, C.Q.2
Karlberg, T.3
Balaji, G.4
Uttamchandani, M.5
Suresh, V.6
-
55
-
-
84855476912
-
Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells
-
Colombo SL, Palacios-Callender M, Frakich N, Carcamo S, Kovacs I, Tudzarova S et al. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc Natl Acad Sci USA 2011; 108: 21069-21074.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 21069-21074
-
-
Colombo, S.L.1
Palacios-Callender, M.2
Frakich, N.3
Carcamo, S.4
Kovacs, I.5
Tudzarova, S.6
-
56
-
-
84864748956
-
Fulfilling the metabolic requirements for cell proliferation
-
Moncada S, Higgs EA, Colombo SL. Fulfilling the metabolic requirements for cell proliferation. Biochem J 2012; 446: 1-7.
-
(2012)
Biochem J
, vol.446
, pp. 1-7
-
-
Moncada, S.1
Higgs, E.A.2
Colombo, S.L.3
-
57
-
-
34548789512
-
Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES)
-
Robinson MM, McBryant SJ, Tsukamoto T, Rojas C, Ferraris DV, Hamilton SK et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 2007; 406: 407-414.
-
(2007)
Biochem J
, vol.406
, pp. 407-414
-
-
Robinson, M.M.1
McBryant, S.J.2
Tsukamoto, T.3
Rojas, C.4
Ferraris, D.V.5
Hamilton, S.K.6
-
58
-
-
84904645105
-
Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer
-
Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 2014; 13: 890-901.
-
(2014)
Mol Cancer Ther
, vol.13
, pp. 890-901
-
-
Gross, M.I.1
Demo, S.D.2
Dennison, J.B.3
Chen, L.4
Chernov-Rogan, T.5
Goyal, B.6
-
59
-
-
79957774646
-
Pyruvate carboxylase is required for glutamine-independent growth of tumor cells
-
Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 2011; 108: 8674-8679.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 8674-8679
-
-
Cheng, T.1
Sudderth, J.2
Yang, C.3
Mullen, A.R.4
Jin, E.S.5
Mates, J.M.6
-
60
-
-
84926304829
-
Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment
-
Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 2015; 125: 1591-1602.
-
(2015)
J Clin Invest
, vol.125
, pp. 1591-1602
-
-
Tanaka, K.1
Sasayama, T.2
Irino, Y.3
Takata, K.4
Nagashima, H.5
Satoh, N.6
-
61
-
-
84944076036
-
Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia
-
Herranz D, Ambesi-Impiombato A, Sudderth J, Sanchez-Martin M, Belver L, Tosello V et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med 2015; 21: 1182-1189.
-
(2015)
Nat Med
, vol.21
, pp. 1182-1189
-
-
Herranz, D.1
Ambesi-Impiombato, A.2
Sudderth, J.3
Sanchez-Martin, M.4
Belver, L.5
Tosello, V.6
-
62
-
-
77952212178
-
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
-
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010; 107: 7455-7460.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7455-7460
-
-
Hu, W.1
Zhang, C.2
Wu, R.3
Sun, Y.4
Levine, A.5
Feng, Z.6
-
63
-
-
77952227625
-
Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
-
Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 2010; 107: 7461-7466.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7461-7466
-
-
Suzuki, S.1
Tanaka, T.2
Poyurovsky, M.V.3
Nagano, H.4
Mayama, T.5
Ohkubo, S.6
-
64
-
-
84898477213
-
Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells
-
Martin-Rufian M, Nascimento-Gomes R, Higuero A, Crisma AR, Campos-Sandoval JA, Gomez-Garcia MC et al. Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. J Mol Med (Berl) 2014; 92: 277-290.
-
(2014)
J Mol Med (Berl)
, vol.92
, pp. 277-290
-
-
Martin-Rufian, M.1
Nascimento-Gomes, R.2
Higuero, A.3
Crisma, A.R.4
Campos-Sandoval, J.A.5
Gomez-Garcia, M.C.6
-
65
-
-
84883407636
-
Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation
-
Xiang L, Xie G, Liu C, Zhou J, Chen J, Yu S et al. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim Biophys Acta 2013; 1833: 2996-3005.
-
(2013)
Biochim Biophys Acta
, vol.1833
, pp. 2996-3005
-
-
Xiang, L.1
Xie, G.2
Liu, C.3
Zhou, J.4
Chen, J.5
Yu, S.6
-
66
-
-
84877127022
-
P63 regulates glutaminase 2 expression
-
Giacobbe A, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert EK, Levine AJ et al. p63 regulates glutaminase 2 expression. Cell Cycle 2013; 12: 1395-1405.
-
(2013)
Cell Cycle
, vol.12
, pp. 1395-1405
-
-
Giacobbe, A.1
Bongiorno-Borbone, L.2
Bernassola, F.3
Terrinoni, A.4
Markert, E.K.5
Levine, A.J.6
-
67
-
-
84937525519
-
Glutaminolysis and Transferrin regulate Ferroptosis
-
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and Transferrin regulate Ferroptosis. Mol Cell 2015; 59: 298-308.
-
(2015)
Mol Cell
, vol.59
, pp. 298-308
-
-
Gao, M.1
Monian, P.2
Quadri, N.3
Ramasamy, R.4
Jiang, X.5
-
68
-
-
70350217425
-
Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling
-
Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res 2009; 69: 7986-7993.
-
(2009)
Cancer Res
, vol.69
, pp. 7986-7993
-
-
Yang, C.1
Sudderth, J.2
Dang, T.3
Bachoo, R.M.4
McDonald, J.G.5
DeBerardinis, R.J.6
-
69
-
-
80052265272
-
The human GLUD2 glutamate dehydrogenase and its regulation in health and disease
-
Plaitakis A, Latsoudis H, Spanaki C. The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem Int 2011; 59: 495-509.
-
(2011)
Neurochem Int
, vol.59
, pp. 495-509
-
-
Plaitakis, A.1
Latsoudis, H.2
Spanaki, C.3
-
70
-
-
54249092318
-
Untangling the glutamate dehydrogenase allosteric nightmare
-
Smith TJ, Stanley CA. Untangling the glutamate dehydrogenase allosteric nightmare. Trends Biochem Sci 2008; 33: 557-564.
-
(2008)
Trends Biochem Sci
, vol.33
, pp. 557-564
-
-
Smith, T.J.1
Stanley, C.A.2
-
71
-
-
33744527647
-
Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase
-
Li C, Allen A, Kwagh J, Doliba NM, Qin W, Najafi H et al. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 2006; 281: 10214-10221.
-
(2006)
J Biol Chem
, vol.281
, pp. 10214-10221
-
-
Li, C.1
Allen, A.2
Kwagh, J.3
Doliba, N.M.4
Qin, W.5
Najafi, H.6
-
72
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
-
Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941-954.
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
Fahie, K.4
Christodoulou, D.C.5
Murphy, A.J.6
-
73
-
-
0032493123
-
Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene
-
Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 1998; 338: 1352-1357.
-
(1998)
N Engl J Med
, vol.338
, pp. 1352-1357
-
-
Stanley, C.A.1
Lieu, Y.K.2
Hsu, B.Y.3
Burlina, A.B.4
Greenberg, C.R.5
Hopwood, N.J.6
-
74
-
-
77952562382
-
Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
-
Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon SO et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 2010; 38: 487-499.
-
(2010)
Mol Cell
, vol.38
, pp. 487-499
-
-
Choo, A.Y.1
Kim, S.G.2
Vander Heiden, M.G.3
Mahoney, S.J.4
Vu, H.5
Yoon, S.O.6
-
75
-
-
84880906805
-
Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy
-
Lorin S, Tol MJ, Bauvy C, Strijland A, Pous C, Verhoeven AJ et al. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 2013; 9: 850-860.
-
(2013)
Autophagy
, vol.9
, pp. 850-860
-
-
Lorin, S.1
Tol, M.J.2
Bauvy, C.3
Strijland, A.4
Pous, C.5
Verhoeven, A.J.6
-
76
-
-
84907584801
-
Hominoidspecific enzyme GLUD2 promotes growth of IDH1R132H glioma
-
Chen R, Nishimura MC, Kharbanda S, Peale F, Deng Y, Daemen A et al. Hominoidspecific enzyme GLUD2 promotes growth of IDH1R132H glioma. Proc Natl Acad Sci USA 2014; 111: 14217-14222.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 14217-14222
-
-
Chen, R.1
Nishimura, M.C.2
Kharbanda, S.3
Peale, F.4
Deng, Y.5
Daemen, A.6
-
77
-
-
84927698067
-
SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth
-
Yang H, Zhou L, Shi Q, Zhao Y, Lin H, Zhang M et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J 2015; 34: 1110-1125.
-
(2015)
EMBO J
, vol.34
, pp. 1110-1125
-
-
Yang, H.1
Zhou, L.2
Shi, Q.3
Zhao, Y.4
Lin, H.5
Zhang, M.6
-
79
-
-
84904042360
-
A highthroughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor
-
Elhammali A, Ippolito JE, Collins L, Crowley J, Marasa J, Piwnica-Worms D. A highthroughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov 2014; 4: 828-839.
-
(2014)
Cancer Discov
, vol.4
, pp. 828-839
-
-
Elhammali, A.1
Ippolito, J.E.2
Collins, L.3
Crowley, J.4
Marasa, J.5
Piwnica-Worms, D.6
-
80
-
-
84869009687
-
How cancer metabolism is tuned for proliferation and vulnerable to disruption
-
Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012; 491: 364-373.
-
(2012)
Nature
, vol.491
, pp. 364-373
-
-
Schulze, A.1
Harris, A.L.2
-
81
-
-
84909592475
-
Action at a distance: Allostery and the development of drugs to target cancer cell metabolism
-
DeLaBarre B, Hurov J, Cianchetta G, Murray S, Dang L. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. Chem Biol 2014; 21: 1143-1161.
-
(2014)
Chem Biol
, vol.21
, pp. 1143-1161
-
-
DeLaBarre, B.1
Hurov, J.2
Cianchetta, G.3
Murray, S.4
Dang, L.5
-
82
-
-
84899573241
-
Glutaminase regulation in cancer cells: A druggable chain of events
-
Katt WP, Cerione RA. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov Today 2014; 19: 450-457.
-
(2014)
Drug Discov Today
, vol.19
, pp. 450-457
-
-
Katt, W.P.1
Cerione, R.A.2
-
83
-
-
84870982915
-
Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors
-
Shukla K, Ferraris DV, Thomas AG, Stathis M, Duvall B, Delahanty G et al. Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J Med Chem 2012; 55: 10551-10563.
-
(2012)
J Med Chem
, vol.55
, pp. 10551-10563
-
-
Shukla, K.1
Ferraris, D.V.2
Thomas, A.G.3
Stathis, M.4
Duvall, B.5
Delahanty, G.6
-
84
-
-
84930216252
-
MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism
-
Shroff EH, Eberlin LS, Dang VM, Gouw AM, Gabay M, Adam SJ et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc Natl Acad Sci USA 2015; 112: 6539-6544.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 6539-6544
-
-
Shroff, E.H.1
Eberlin, L.S.2
Dang, V.M.3
Gouw, A.M.4
Gabay, M.5
Adam, S.J.6
-
85
-
-
84920431299
-
Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells
-
Li J, Csibi A, Yang S, Hoffman GR, Li C, Zhang E et al. Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc Natl Acad Sci USA 2015; 112: E21-E29.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. E21-E29
-
-
Li, J.1
Csibi, A.2
Yang, S.3
Hoffman, G.R.4
Li, C.5
Zhang, E.6
-
86
-
-
84918523040
-
Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition
-
Ulanet DB, Couto K, Jha A, Choe S, Wang A, Woo HK et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS One 2014; 9: e115144.
-
(2014)
PLoS One
, vol.9
-
-
Ulanet, D.B.1
Couto, K.2
Jha, A.3
Choe, S.4
Wang, A.5
Woo, H.K.6
-
87
-
-
84862567758
-
Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation
-
Katt WP, Ramachandran S, Erickson JW, Cerione RA. Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation. Mol Cancer Ther 2012; 11: 1269-1278.
-
(2012)
Mol Cancer Ther
, vol.11
, pp. 1269-1278
-
-
Katt, W.P.1
Ramachandran, S.2
Erickson, J.W.3
Cerione, R.A.4
-
88
-
-
84920990454
-
Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells
-
Stalnecker CA, Ulrich SM, Li Y, Ramachandran S, McBrayer MK, DeBerardinis RJ et al. Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proc Natl Acad Sci USA 2015; 112: 394-399.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 394-399
-
-
Stalnecker, C.A.1
Ulrich, S.M.2
Li, Y.3
Ramachandran, S.4
McBrayer, M.K.5
DeBerardinis, R.J.6
-
89
-
-
59449083179
-
Targeting aspartate aminotransferase in breast cancer
-
Thornburg JM, Nelson KK, Clem BF, Lane AN, Arumugam S, Simmons A et al. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res 2008; 10: R84.
-
(2008)
Breast Cancer Res
, vol.10
, pp. R84
-
-
Thornburg, J.M.1
Nelson, K.K.2
Clem, B.F.3
Lane, A.N.4
Arumugam, S.5
Simmons, A.6
-
90
-
-
84942849765
-
Targeting glutamine metabolism in breast cancer with aminooxyacetate
-
Korangath P, Teo WW, Sadik H, Han L, Mori N, Huijts CM et al. Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin Cancer Res 2015; 21: 3263-3273.
-
(2015)
Clin Cancer Res
, vol.21
, pp. 3263-3273
-
-
Korangath, P.1
Teo, W.W.2
Sadik, H.3
Han, L.4
Mori, N.5
Huijts, C.M.6
-
91
-
-
84904173553
-
Metabolism of stromal and immune cells in health and disease
-
Ghesquiere B, Wong BW, Kuchnio A, Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature 2014; 511: 167-176.
-
(2014)
Nature
, vol.511
, pp. 167-176
-
-
Ghesquiere, B.1
Wong, B.W.2
Kuchnio, A.3
Carmeliet, P.4
|