-
1
-
-
51349090473
-
Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1
-
COI: 1:CAS:528:DC%2BD1cXhtV2isbrK, PID: 18688285
-
Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118:3132–42.
-
(2008)
J Clin Invest
, vol.118
, pp. 3132-3142
-
-
Hacein-Bey-Abina, S.1
Garrigue, A.2
Wang, G.P.3
-
2
-
-
0142084745
-
LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1
-
COI: 1:CAS:528:DC%2BD3sXotV2isb4%3D, PID: 14564000
-
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.
-
(2003)
Science
, vol.302
, pp. 415-419
-
-
Hacein-Bey-Abina, S.1
Von Kalle, C.2
Schmidt, M.3
-
3
-
-
0029857336
-
Suppression of apoptosis in hematopoietic factor-dependent progenitor cell lines by expression of the FAC gene
-
COI: 1:CAS:528:DyaK28XnsFKku7s%3D, PID: 8977247
-
Cumming RC, Liu JM, Youssoufian H, Buchwald M. Suppression of apoptosis in hematopoietic factor-dependent progenitor cell lines by expression of the FAC gene. Blood. 1996;88:4558–67.
-
(1996)
Blood
, vol.88
, pp. 4558-4567
-
-
Cumming, R.C.1
Liu, J.M.2
Youssoufian, H.3
Buchwald, M.4
-
4
-
-
0036168937
-
Engineering polydactyl zinc-finger transcription factors
-
COI: 1:CAS:528:DC%2BD38Xht1eqsLk%3D, PID: 11821858
-
Beerli RR, Barbas CF 3rd. Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol. 2002;20:135–41.
-
(2002)
Nat Biotechnol
, vol.20
, pp. 135-141
-
-
Beerli, R.R.1
Barbas, C.F.2
-
5
-
-
0030032063
-
Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain
-
COI: 1:CAS:528:DyaK28Xptl2luw%3D%3D, PID: 8577732
-
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93:1156–60.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 1156-1160
-
-
Kim, Y.G.1
Cha, J.2
Chandrasegaran, S.3
-
6
-
-
78650912707
-
Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures
-
COI: 1:CAS:528:DC%2BC3cXhsFajur3K, PID: 21131970
-
Doyon Y, Vo TD, Mendel MC, et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. 2011; 8:74–79
-
(2011)
Nat Methods.
, vol.8
, pp. 74-79
-
-
Doyon, Y.1
Vo, T.D.2
Mendel, M.C.3
-
7
-
-
42949083192
-
Unexpected failure rates for modular assembly of engineered zinc fingers
-
COI: 1:CAS:528:DC%2BD1cXlt1ahurY%3D, PID: 18446154
-
Ramirez CL, Foley JE, Wright DA, et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. 2008;5:374–5.
-
(2008)
Nat Methods
, vol.5
, pp. 374-375
-
-
Ramirez, C.L.1
Foley, J.E.2
Wright, D.A.3
-
9
-
-
47349097567
-
Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification
-
COI: 1:CAS:528:DC%2BD1cXpsFOgtb8%3D, PID: 18657511
-
Maeder ML, Thibodeau-Beganny S, Osiak A, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008;31:294–301.
-
(2008)
Mol Cell
, vol.31
, pp. 294-301
-
-
Maeder, M.L.1
Thibodeau-Beganny, S.2
Osiak, A.3
-
10
-
-
70349146995
-
Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays
-
COI: 1:CAS:528:DC%2BD1MXhtFWhu73M, PID: 19798082
-
Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK. Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays. Nat Protoc. 2009;4:1471–501.
-
(2009)
Nat Protoc
, vol.4
, pp. 1471-1501
-
-
Maeder, M.L.1
Thibodeau-Beganny, S.2
Sander, J.D.3
Voytas, D.F.4
Joung, J.K.5
-
11
-
-
79251580251
-
ZFNGenome: a comprehensive resource for locating zinc finger nuclease target sites in model organisms
-
COI: 1:CAS:528:DC%2BC3MXhvFagt7Y%3D
-
Reyon D, Kirkpatrick JR, Sander JD, et al. ZFNGenome: a comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genom. 2011;12:83.
-
(2011)
BMC Genom
, vol.12
, pp. 83
-
-
Reyon, D.1
Kirkpatrick, J.R.2
Sander, J.D.3
-
12
-
-
84866133669
-
Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos
-
COI: 1:CAS:528:DC%2BC38XhtlGitLfK, PID: 22970113
-
Hermann M, Maeder ML, Rector K, et al. Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos. PLoS One. 2012;7:e41796.
-
(2012)
PLoS One
, vol.7
, pp. 41796
-
-
Hermann, M.1
Maeder, M.L.2
Rector, K.3
-
13
-
-
78650863981
-
Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA)
-
COI: 1:CAS:528:DC%2BC3cXhsFGgtrzF, PID: 21151135
-
Sander JD, Dahlborg EJ, Goodwin MJ, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 2011;8:67–9.
-
(2011)
Nat Methods
, vol.8
, pp. 67-69
-
-
Sander, J.D.1
Dahlborg, E.J.2
Goodwin, M.J.3
-
14
-
-
80053032008
-
Synthetic zinc finger nuclease design and rapid assembly
-
COI: 1:CAS:528:DC%2BC3MXhtF2rs7rK, PID: 21663559
-
Osborn MJ, DeFeo AP, Blazar BR, Tolar J. Synthetic zinc finger nuclease design and rapid assembly. Hum Gene Ther. 2011;22:1155–65.
-
(2011)
Hum Gene Ther
, vol.22
, pp. 1155-1165
-
-
Osborn, M.J.1
DeFeo, A.P.2
Blazar, B.R.3
Tolar, J.4
-
16
-
-
35548942766
-
A bacterial effector acts as a plant transcription factor and induces a cell size regulator
-
COI: 1:CAS:528:DC%2BD2sXhtF2rsbfP, PID: 17962565
-
Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science. 2007;318:648–51.
-
(2007)
Science
, vol.318
, pp. 648-651
-
-
Kay, S.1
Hahn, S.2
Marois, E.3
Hause, G.4
Bonas, U.5
-
17
-
-
35548939950
-
Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene
-
PID: 17962564
-
Romer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science. 2007;318:645–8.
-
(2007)
Science
, vol.318
, pp. 645-648
-
-
Romer, P.1
Hahn, S.2
Jordan, T.3
Strauss, T.4
Bonas, U.5
Lahaye, T.6
-
18
-
-
72149110399
-
Breaking the code of DNA binding specificity of TAL-type III effectors
-
COI: 1:CAS:528:DC%2BD1MXhsFensbnL, PID: 19933107
-
Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–12.
-
(2009)
Science
, vol.326
, pp. 1509-1512
-
-
Boch, J.1
Scholze, H.2
Schornack, S.3
-
19
-
-
80053343092
-
TAL effectors: customizable proteins for DNA targeting
-
COI: 1:CAS:528:DC%2BC3MXht1aitrzE, PID: 21960622
-
Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science. 2011;333:1843–6.
-
(2011)
Science
, vol.333
, pp. 1843-1846
-
-
Bogdanove, A.J.1
Voytas, D.F.2
-
20
-
-
84863678546
-
TAL effector RVD specificities and efficiencies
-
COI: 1:CAS:528:DC%2BC38XpvFGjtbc%3D, PID: 22781676
-
Streubel J, Blucher C, Landgraf A, Boch J. TAL effector RVD specificities and efficiencies. Nat Biotechnol. 2012;30:593–5.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 593-595
-
-
Streubel, J.1
Blucher, C.2
Landgraf, A.3
Boch, J.4
-
21
-
-
65849183178
-
Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes
-
PID: 19436741
-
Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 2009;4:e5553.
-
(2009)
PLoS One
, vol.4
, pp. 5553
-
-
Engler, C.1
Gruetzner, R.2
Kandzia, R.3
Marillonnet, S.4
-
22
-
-
79960064013
-
Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting
-
COI: 1:CAS:528:DC%2BC3MXoslOgtLo%3D, PID: 21493687
-
Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 82
-
-
Cermak, T.1
Doyle, E.L.2
Christian, M.3
-
23
-
-
84863118393
-
Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification
-
COI: 1:CAS:528:DC%2BC38Xit1Sls70%3D, PID: 22271303
-
Li L, Piatek MJ, Atef A, et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol. 2012;78:407–16.
-
(2012)
Plant Mol Biol
, vol.78
, pp. 407-416
-
-
Li, L.1
Piatek, M.J.2
Atef, A.3
-
24
-
-
84861170955
-
A transcription activator-like effector toolbox for genome engineering
-
COI: 1:CAS:528:DC%2BC38Xht1KgtLg%3D, PID: 22222791
-
Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. A transcription activator-like effector toolbox for genome engineering. Nat Protoc. 2012;7:171–92.
-
(2012)
Nat Protoc
, vol.7
, pp. 171-192
-
-
Sanjana, N.E.1
Cong, L.2
Zhou, Y.3
Cunniff, M.M.4
Feng, G.5
Zhang, F.6
-
25
-
-
84874627289
-
Robust, synergistic regulation of human gene expression using TALE activators
-
COI: 1:CAS:528:DC%2BC3sXjtFWmsrs%3D, PID: 23396285
-
Maeder ML, Linder SJ, Reyon D, et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. 2013;10:243–5.
-
(2013)
Nat Methods
, vol.10
, pp. 243-245
-
-
Maeder, M.L.1
Linder, S.J.2
Reyon, D.3
-
26
-
-
84876389220
-
Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells
-
COI: 1:CAS:528:DC%2BC3sXktF2lsbg%3D, PID: 23275534
-
Holkers M, Maggio I, Liu J, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41:e63.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 63
-
-
Holkers, M.1
Maggio, I.2
Liu, J.3
-
27
-
-
79951694132
-
Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy
-
COI: 1:CAS:528:DC%2BC3MXjtFaiu7s%3D, PID: 21182466
-
Silva G, Poirot L, Galetto R, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 2011;11:11–27.
-
(2011)
Curr Gene Ther
, vol.11
, pp. 11-27
-
-
Silva, G.1
Poirot, L.2
Galetto, R.3
-
28
-
-
84865240239
-
Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases
-
COI: 1:CAS:528:DC%2BC38XhtlKltrvK, PID: 22684507
-
Baxter S, Lambert AR, Kuhar R, et al. Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases. Nucleic Acids Res. 2012;40:7985–8000.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 7985-8000
-
-
Baxter, S.1
Lambert, A.R.2
Kuhar, R.3
-
29
-
-
78651240053
-
Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification
-
COI: 1:CAS:528:DC%2BC3MXksFCrtw%3D%3D, PID: 21220111
-
Stoddard BL. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure. 2011;19:7–15.
-
(2011)
Structure.
, vol.19
, pp. 7-15
-
-
Stoddard, B.L.1
-
30
-
-
84865240239
-
Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases
-
COI: 1:CAS:528:DC%2BC38XhtlKltrvK, PID: 22684507
-
Baxter S, Lambert AR, Kuhar R, et al. Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases. Nucleic Acids Res. 2012;40:7985–8000.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 7985-8000
-
-
Baxter, S.1
Lambert, A.R.2
Kuhar, R.3
-
31
-
-
84895783187
-
megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering
-
COI: 1:CAS:528:DC%2BC2cXjtlOrurg%3D, PID: 24285304
-
Boissel S, Jarjour J, Astrakhan A, et al. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res. 2014;42:2591–601.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 2591-2601
-
-
Boissel, S.1
Jarjour, J.2
Astrakhan, A.3
-
32
-
-
84942903938
-
Multiplex genome edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies
-
COI: 1:CAS:528:DC%2BC2MXhsV2gtL7J, PID: 26183927
-
Poirot L, Philip B, Schiffer-Mannioui C et al. Multiplex genome edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 2015;75:3853–64.
-
(2015)
Cancer Res.
, vol.75
, pp. 3853-3864
-
-
Poirot, L.1
Philip, B.2
Schiffer-Mannioui, C.3
-
33
-
-
84934442376
-
Flow cytometric assays for interrogating LAGLIDADG homing endonuclease DNA-binding and cleavage properties
-
COI: 1:CAS:528:DC%2BC3sXhs1Ols7vM, PID: 23423888
-
Baxter SK, Lambert AR, Scharenberg AM, Jarjour J. Flow cytometric assays for interrogating LAGLIDADG homing endonuclease DNA-binding and cleavage properties. Methods Mol Biol. 2013;978:45–61.
-
(2013)
Methods Mol Biol
, vol.978
, pp. 45-61
-
-
Baxter, S.K.1
Lambert, A.R.2
Scharenberg, A.M.3
Jarjour, J.4
-
34
-
-
84960393099
-
Evaluation of TCR Gene Editing achieved by TALENs, CRISPR/Cas9 and megaTAL nucleases
-
COI: 1:CAS:528:DC%2BC28XjslCmsw%3D%3D, PID: 26502778
-
Osborn MJ, Webber BR, Knipping F, et al. Evaluation of TCR Gene Editing achieved by TALENs, CRISPR/Cas9 and megaTAL nucleases. Mol Ther. 2016;24:570–81.
-
(2016)
Mol Ther.
, vol.24
, pp. 570-581
-
-
Osborn, M.J.1
Webber, B.R.2
Knipping, F.3
-
35
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
COI: 1:CAS:528:DyaL1cXhsVCgs78%3D, PID: 3316184
-
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429–33.
-
(1987)
J Bacteriol
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
Amemura, M.4
Nakata, A.5
-
36
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
COI: 1:CAS:528:DC%2BD2MXps1Cju7g%3D, PID: 16079334
-
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151:2551–61.
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
37
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
COI: 1:CAS:528:DC%2BD2MXit1Sntb8%3D, PID: 15791728
-
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60:174–82.
-
(2005)
J Mol Evol
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Soria, E.4
-
38
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
COI: 1:CAS:528:DC%2BD2MXis1yqs7o%3D, PID: 15758212
-
Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151:653–63.
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
Salvignol, G.2
Vergnaud, G.3
-
39
-
-
75749118174
-
Self versus non-self discrimination during CRISPR RNA-directed immunity
-
COI: 1:CAS:528:DC%2BC3cXltlCntQ%3D%3D, PID: 20072129
-
Marraffini LA, Sontheimer EJ. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature. 2010;463:568–71.
-
(2010)
Nature
, vol.463
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
40
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
COI: 1:CAS:528:DC%2BC38XhtFOqsb3L, PID: 22745249
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
41
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
COI: 1:CAS:528:DC%2BC3sXjsFChs7s%3D, PID: 23452860
-
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
-
42
-
-
84976636671
-
-
L. Cong, F. A. Ran, D. Cox et al. Multiplex Genome Engineering Using CRISPR/Cas Systems
-
L. Cong, F. A. Ran, D. Cox et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science.
-
Science
-
-
-
43
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
COI: 1:CAS:528:DC%2BC3sXit1ygtb0%3D, PID: 23287722
-
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
-
44
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
-
COI: 1:CAS:528:DC%2BC3sXhsFGhsL8%3D, PID: 23360966
-
Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 230-232
-
-
Cho, S.W.1
Kim, S.2
Kim, J.M.3
Kim, J.S.4
-
45
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
PID: 23386978
-
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471.
-
(2013)
Elife
, vol.2
, pp. 00471
-
-
Jinek, M.1
East, A.2
Cheng, A.3
Lin, S.4
Ma, E.5
Doudna, J.6
-
46
-
-
84937905397
-
Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
-
COI: 1:CAS:528:DC%2BC2MXhtFait7%2FI, PID: 26121415
-
Hendel A, Bak RO, Clark JT, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;33:985–9.
-
(2015)
Nat Biotechnol.
, vol.33
, pp. 985-989
-
-
Hendel, A.1
Bak, R.O.2
Clark, J.T.3
-
47
-
-
84885180675
-
Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
-
COI: 1:CAS:528:DC%2BC3sXhsFOlt7bF, PID: 23979020
-
Cheng AW, Wang H, Yang H, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23:1163–71.
-
(2013)
Cell Res
, vol.23
, pp. 1163-1171
-
-
Cheng, A.W.1
Wang, H.2
Yang, H.3
-
48
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
COI: 1:CAS:528:DC%2BC3sXit1ygtb8%3D, PID: 23287718
-
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
-
49
-
-
84923096541
-
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
-
COI: 1:CAS:528:DC%2BC2MXhvVWhtbo%3D, PID: 25494202
-
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–8.
-
(2015)
Nature
, vol.517
, pp. 583-588
-
-
Konermann, S.1
Brigham, M.D.2
Trevino, A.E.3
-
50
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
COI: 1:CAS:528:DC%2BC3sXhsFaks7vM, PID: 24076762
-
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. 2013;10:1116–21.
-
(2013)
Nat Methods
, vol.10
, pp. 1116-1121
-
-
Esvelt, K.M.1
Mali, P.2
Braff, J.L.3
Moosburner, M.4
Yaung, S.J.5
Church, G.M.6
-
51
-
-
84884663630
-
Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
-
COI: 1:CAS:528:DC%2BC3sXhs1WlurvP, PID: 23940360
-
Hou Z, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA. 2013;110:15644–9.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 15644-15649
-
-
Hou, Z.1
Zhang, Y.2
Propson, N.E.3
-
52
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
COI: 1:CAS:528:DC%2BC2MXmt1Sms7o%3D, PID: 25830891
-
Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
-
53
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
COI: 1:CAS:528:DC%2BC2MXhsFKqtLvI, PID: 26422227
-
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163:759–71.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
-
54
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
PID: 26098369
-
Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523:481–5.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
-
55
-
-
84949791988
-
Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
-
COI: 1:CAS:528:DC%2BC2MXhslKgt7jL, PID: 26524662
-
Kleinstiver BP, Prew MS, Tsai SQ, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. 2015;33:1293–8.
-
(2015)
Nat Biotechnol.
, vol.33
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
-
56
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
COI: 1:CAS:528:DC%2BC3sXpvVykur4%3D, PID: 23792628
-
Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31:822–6.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
-
57
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
COI: 1:CAS:528:DC%2BC28Xns1GmsQ%3D%3D, PID: 26735016
-
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–5.
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
-
58
-
-
84949791988
-
Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
-
COI: 1:CAS:528:DC%2BC2MXhslKgt7jL, PID: 26524662
-
Kleinstiver BP, Prew MS, Tsai SQ, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. 2015;33:1293–8.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
-
59
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
COI: 1:CAS:528:DC%2BC2cXht1yru78%3D, PID: 24463574
-
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32:279–84.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
60
-
-
84947225411
-
Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease
-
COI: 1:CAS:528:DC%2BC2MXhs1Wls7fJ, PID: 26436575
-
Dahlman JE, Abudayyeh OO, Joung J, Gootenberg JS, Zhang F, Konermann S. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. 2015;33:1159–61.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1159-1161
-
-
Dahlman, J.E.1
Abudayyeh, O.O.2
Joung, J.3
Gootenberg, J.S.4
Zhang, F.5
Konermann, S.6
-
61
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
COI: 1:CAS:528:DC%2BC2MXitV2nt7nE, PID: 26628643
-
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351:84–8.
-
(2016)
Science.
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
62
-
-
84897954175
-
Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
-
COI: 1:CAS:528:DC%2BC2cXjtlyls7g%3D, PID: 24584192
-
Shen B, Zhang W, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11:399–402.
-
(2014)
Nat Methods
, vol.11
, pp. 399-402
-
-
Shen, B.1
Zhang, W.2
Zhang, J.3
-
63
-
-
84897413441
-
Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system
-
COI: 1:CAS:528:DC%2BC2cXislKmu7o%3D, PID: 24491566
-
Fujii W, Onuma A, Sugiura K, Naito K. Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system. Biochem Biophys Res Commun. 2014;445:791–4.
-
(2014)
Biochem Biophys Res Commun
, vol.445
, pp. 791-794
-
-
Fujii, W.1
Onuma, A.2
Sugiura, K.3
Naito, K.4
-
64
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
COI: 1:CAS:528:DC%2BC3sXhtlGrur3M, PID: 23992846
-
Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
-
65
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
-
COI: 1:CAS:528:DC%2BC2cXmvV2ktL4%3D, PID: 24770324
-
Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 2014;32:577–82.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 577-582
-
-
Guilinger, J.P.1
Thompson, D.B.2
Liu, D.R.3
-
66
-
-
84886488970
-
Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas
-
COI: 1:CAS:528:DC%2BC3sXhtlaktr3P, PID: 23977949
-
Farzadfard F, Perli SD, Lu TK. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol. 2013;2:604–13.
-
(2013)
ACS Synth Biol
, vol.2
, pp. 604-613
-
-
Farzadfard, F.1
Perli, S.D.2
Lu, T.K.3
-
67
-
-
84884906690
-
RNA-guided gene activation by CRISPR-Cas9-based transcription factors
-
COI: 1:CAS:528:DC%2BC3sXhtFOhtLnL, PID: 23892895
-
Perez-Pinera P, Kocak DD, Vockley CM, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10:973–6.
-
(2013)
Nat Methods
, vol.10
, pp. 973-976
-
-
Perez-Pinera, P.1
Kocak, D.D.2
Vockley, C.M.3
-
68
-
-
84880571335
-
CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
-
COI: 1:CAS:528:DC%2BC3sXhtV2ru7fP, PID: 23849981
-
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154:442–51.
-
(2013)
Cell
, vol.154
, pp. 442-451
-
-
Gilbert, L.A.1
Larson, M.H.2
Morsut, L.3
-
69
-
-
35948946526
-
Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery
-
COI: 1:CAS:528:DC%2BD2sXht1Oru7zO, PID: 17965707
-
Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25:1298–306.
-
(2007)
Nat Biotechnol
, vol.25
, pp. 1298-1306
-
-
Lombardo, A.1
Genovese, P.2
Beausejour, C.M.3
-
70
-
-
84902315464
-
Targeted genome editing in human repopulating haematopoietic stem cells
-
COI: 1:CAS:528:DC%2BC2cXps1Wmu70%3D, PID: 24870228
-
Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 2014;510:235–40.
-
(2014)
Nature
, vol.510
, pp. 235-240
-
-
Genovese, P.1
Schiroli, G.2
Escobar, G.3
-
71
-
-
79953885122
-
Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models
-
COI: 1:CAS:528:DC%2BC3MXksFGns7g%3D, PID: 21474107
-
Goessling W, Allen RS, Guan X, et al. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell. 2011;8:445–58.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 445-458
-
-
Goessling, W.1
Allen, R.S.2
Guan, X.3
-
72
-
-
34250883337
-
Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis
-
COI: 1:CAS:528:DC%2BD2sXms12jsr4%3D, PID: 17581586
-
North TE, Goessling W, Walkley CR, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447:1007–11.
-
(2007)
Nature
, vol.447
, pp. 1007-1011
-
-
North, T.E.1
Goessling, W.2
Walkley, C.R.3
-
73
-
-
77956519710
-
Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells
-
COI: 1:CAS:528:DC%2BC3cXhtFajs7rE, PID: 20688981
-
Boitano AE, Wang J, Romeo R, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329:1345–8.
-
(2010)
Science
, vol.329
, pp. 1345-1348
-
-
Boitano, A.E.1
Wang, J.2
Romeo, R.3
-
74
-
-
67049134758
-
Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation
-
COI: 1:CAS:528:DC%2BD1MXntVertbw%3D, PID: 19324903
-
Hoggatt J, Singh P, Sampath J, Pelus LM. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113:5444–55.
-
(2009)
Blood
, vol.113
, pp. 5444-5455
-
-
Hoggatt, J.1
Singh, P.2
Sampath, J.3
Pelus, L.M.4
-
75
-
-
84949814888
-
Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors
-
COI: 1:CAS:528:DC%2BC2MXhsl2gsbfE, PID: 26551060
-
Wang J, Exline CM, DeClercq JJ, et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol. 2015;33:1256–63.
-
(2015)
Nat Biotechnol.
, vol.33
, pp. 1256-1263
-
-
Wang, J.1
Exline, C.M.2
DeClercq, J.J.3
-
76
-
-
84942921684
-
Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template
-
PID: 26424571
-
Sather BD, Romano Ibarra GS, Sommer K, et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med. 2015;7:307ra156.
-
(2015)
Sci Transl Med.
, vol.7
, pp. 307156
-
-
Sather, B.D.1
Romano Ibarra, G.S.2
Sommer, K.3
-
77
-
-
84964788489
-
Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery
-
PID: 26527725
-
Wang J, DeClercq JJ, Hayward SB, et al. Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Res. 2016;44:e30.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 30
-
-
Wang, J.1
DeClercq, J.J.2
Hayward, S.B.3
-
78
-
-
84895487305
-
Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV
-
COI: 1:CAS:528:DC%2BC2cXkt1ehsLk%3D, PID: 24597865
-
Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10.
-
(2014)
N Engl J Med
, vol.370
, pp. 901-910
-
-
Tebas, P.1
Stein, D.2
Tang, W.W.3
-
79
-
-
84891772031
-
4+ T cells from HIV-1 infection
-
COI: 1:CAS:528:DC%2BC2cXosVClug%3D%3D, PID: 24162716
-
4+ T cells from HIV-1 infection. Blood. 2014;123:61–9.
-
(2014)
Blood
, vol.123
, pp. 61-69
-
-
Didigu, C.A.1
Wilen, C.B.2
Wang, J.3
-
80
-
-
84908073316
-
Chimeric antigen receptor T cells for sustained remissions in leukemia
-
COI: 1:CAS:528:DC%2BC2cXitVSls73K, PID: 25317870
-
Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.
-
(2014)
N Engl J Med
, vol.371
, pp. 1507-1517
-
-
Maude, S.L.1
Frey, N.2
Shaw, P.A.3
-
81
-
-
84860681545
-
Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer
-
COI: 1:CAS:528:DC%2BC38XkvVGmtLw%3D, PID: 22466705
-
Provasi E, Genovese P, Lombardo A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med. 2012;18:807–15.
-
(2012)
Nat Med
, vol.18
, pp. 807-815
-
-
Provasi, E.1
Genovese, P.2
Lombardo, A.3
-
82
-
-
84862496486
-
A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR
-
COI: 1:CAS:528:DC%2BC38XhtVGns7%2FP, PID: 22535661
-
Torikai H, Reik A, Liu PQ, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119:5697–705.
-
(2012)
Blood
, vol.119
, pp. 5697-5705
-
-
Torikai, H.1
Reik, A.2
Liu, P.Q.3
-
83
-
-
84902084418
-
TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer
-
COI: 1:CAS:528:DC%2BC2cXkvF2mu7g%3D, PID: 24670996
-
Berdien B, Mock U, Atanackovic D, Fehse B. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther. 2014;21:539–48.
-
(2014)
Gene Ther
, vol.21
, pp. 539-548
-
-
Berdien, B.1
Mock, U.2
Atanackovic, D.3
Fehse, B.4
-
84
-
-
34249655671
-
Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia
-
COI: 1:CAS:528:DC%2BD2sXlslCqsbc%3D, PID: 17530018
-
Alinari L, Lapalombella R, Andritsos L, Baiocchi RA, Lin TS, Byrd JC. Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene. 2007;26:3644–53.
-
(2007)
Oncogene
, vol.26
, pp. 3644-3653
-
-
Alinari, L.1
Lapalombella, R.2
Andritsos, L.3
Baiocchi, R.A.4
Lin, T.S.5
Byrd, J.C.6
-
85
-
-
84923275611
-
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
-
COI: 1:CAS:528:DC%2BC2cXitFCru7zE, PID: 25503383
-
Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol. 2015;33:179–86.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 179-186
-
-
Frock, R.L.1
Hu, J.2
Meyers, R.M.3
Ho, Y.J.4
Kii, E.5
Alt, F.W.6
-
86
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
COI: 1:CAS:528:DC%2BC2cXitFCqs7vE, PID: 25513782
-
Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33:187–97.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
Zheng, Z.2
Nguyen, N.T.3
-
87
-
-
84903212620
-
TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity
-
COI: 1:CAS:528:DC%2BC2cXhtVWmsbrN, PID: 24792154
-
Mussolino C, Alzubi J, Fine EJ, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 2014;42:6762–73.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 6762-6773
-
-
Mussolino, C.1
Alzubi, J.2
Fine, E.J.3
-
88
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
-
COI: 1:CAS:528:DC%2BC2cXosVCitQ%3D%3D, PID: 24253446
-
Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132–41.
-
(2014)
Genome Res
, vol.24
, pp. 132-141
-
-
Cho, S.W.1
Kim, S.2
Kim, Y.3
-
89
-
-
80052766645
-
An unbiased genome-wide analysis of zinc-finger nuclease specificity
-
COI: 1:CAS:528:DC%2BC3MXpvVOmur0%3D, PID: 21822255
-
Gabriel R, Lombardo A, Arens A, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29:816–23.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 816-823
-
-
Gabriel, R.1
Lombardo, A.2
Arens, A.3
-
90
-
-
84969433236
-
First clinical application of Talen engineered universal CAR19 T cells in B-ALL
-
Qasim W, Amrolia PJ, Samarasinghe S, Ghorashian S, Zhan H, Stafford S, Butler K, Ahsan G, Gilmour K, Adams S, Pinner D, Chiesa R, Chatters S, Swift S, Goulden N, Peggs K, Thrasher AJ, Veys P, Pule M. First clinical application of Talen engineered universal CAR19 T cells in B-ALL. Blood. 2015;126:2046.
-
(2015)
Blood.
, vol.126
, pp. 2046
-
-
Qasim, W.1
Amrolia, P.J.2
Samarasinghe, S.3
Ghorashian, S.4
Zhan, H.5
Stafford, S.6
Butler, K.7
Ahsan, G.8
Gilmour, K.9
Adams, S.10
Pinner, D.11
Chiesa, R.12
Chatters, S.13
Swift, S.14
Goulden, N.15
Peggs, K.16
Thrasher, A.J.17
Veys, P.18
Pule, M.19
-
91
-
-
33845522237
-
Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche
-
COI: 1:CAS:528:DC%2BD28XhtlShsLnN
-
Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transpl. 2007;39:11–23.
-
(2007)
Bone Marrow Transpl
, vol.39
, pp. 11-23
-
-
Hofmeister, C.C.1
Zhang, J.2
Knight, K.L.3
Le, P.4
Stiff, P.J.5
-
92
-
-
79955150089
-
Embryonic origin of the adult hematopoietic system: advances and questions
-
COI: 1:CAS:528:DC%2BC3MXlt1Oqt78%3D, PID: 21343360
-
Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development. 2011;138:1017–31.
-
(2011)
Development
, vol.138
, pp. 1017-1031
-
-
Medvinsky, A.1
Rybtsov, S.2
Taoudi, S.3
-
93
-
-
77954839499
-
Embryonic origin of human hematopoiesis
-
PID: 20711983
-
Tavian M, Biasch K, Sinka L, Vallet J, Peault B. Embryonic origin of human hematopoiesis. Int J Dev Biol. 2010;54:1061–5.
-
(2010)
Int J Dev Biol
, vol.54
, pp. 1061-1065
-
-
Tavian, M.1
Biasch, K.2
Sinka, L.3
Vallet, J.4
Peault, B.5
-
94
-
-
84902000278
-
Effect of developmental stage of HSC and recipient on transplant outcomes
-
COI: 1:CAS:528:DC%2BC2cXpslCqtL4%3D, PID: 24914562
-
Arora N, Wenzel PL, McKinney-Freeman SL, et al. Effect of developmental stage of HSC and recipient on transplant outcomes. Dev Cell. 2014;29:621–8.
-
(2014)
Dev Cell
, vol.29
, pp. 621-628
-
-
Arora, N.1
Wenzel, P.L.2
McKinney-Freeman, S.L.3
-
95
-
-
84928910821
-
De novo generation of HSCs from somatic and pluripotent stem cell sources
-
COI: 1:CAS:528:DC%2BC2MXptlGitbY%3D, PID: 25762177
-
Vo LT, Daley GQ. De novo generation of HSCs from somatic and pluripotent stem cell sources. Blood. 2015;125:2641–8.
-
(2015)
Blood
, vol.125
, pp. 2641-2648
-
-
Vo, L.T.1
Daley, G.Q.2
-
96
-
-
79960424171
-
In vivo genome editing restores haemostasis in a mouse model of haemophilia
-
COI: 1:CAS:528:DC%2BC3MXotV2gs74%3D, PID: 21706032
-
Li H, Haurigot V, Doyon Y, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475:217–21.
-
(2011)
Nature
, vol.475
, pp. 217-221
-
-
Li, H.1
Haurigot, V.2
Doyon, Y.3
-
97
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
COI: 1:CAS:528:DC%2BD2sXhsVCntbbK, PID: 18035408
-
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
-
98
-
-
84945971040
-
In vitro production of megakaryocytes and platelets from human induced pluripotent cells by GMP compatible methods
-
Moreau T, Colzani M, Arumugam M, et al. In vitro production of megakaryocytes and platelets from human induced pluripotent cells by GMP compatible methods. Blood. 2013;122:2401.
-
(2013)
Blood
, vol.122
, pp. 2401
-
-
Moreau, T.1
Colzani, M.2
Arumugam, M.3
-
99
-
-
84885612102
-
Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy
-
COI: 1:CAS:528:DC%2BC3sXht1Cgs73M, PID: 23934177
-
Themeli M, Kloss CC, Ciriello G, et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013;31:928–33.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 928-933
-
-
Themeli, M.1
Kloss, C.C.2
Ciriello, G.3
-
100
-
-
84861122295
-
The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer
-
Lee DW, Barrett DM, Mackall C, Orentas R, Grupp SA. The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer. Clin Cancer Res. 18:2780–2790.
-
Clin Cancer Res
, vol.18
, pp. 2780-2790
-
-
Lee, D.W.1
Barrett, D.M.2
Mackall, C.3
Orentas, R.4
Grupp, S.A.5
-
102
-
-
84866735170
-
Paths to stemness: building the ultimate antitumour T cell
-
COI: 1:CAS:528:DC%2BC38XhtlyltLfI, PID: 22996603
-
Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12:671–84.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 671-684
-
-
Gattinoni, L.1
Klebanoff, C.A.2
Restifo, N.P.3
-
103
-
-
84873395620
-
Superior T memory stem cell persistence supports long-lived T cell memory
-
COI: 1:CAS:528:DC%2BC3sXitl2hs7o%3D, PID: 23281401
-
Lugli E, Dominguez MH, Gattinoni L, et al. Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest. 2013;123:594–9.
-
(2013)
J Clin Invest
, vol.123
, pp. 594-599
-
-
Lugli, E.1
Dominguez, M.H.2
Gattinoni, L.3
-
104
-
-
84954385240
-
Targeted application of human genetic variation can improve red blood cell production from stem cells
-
COI: 1:CAS:528:DC%2BC2MXhslWhsrbO, PID: 26607381
-
Giani FC, Fiorini C, Wakabayashi A, et al. Targeted application of human genetic variation can improve red blood cell production from stem cells. Cell Stem Cell. 2016;18:73–8.
-
(2016)
Cell Stem Cell.
, vol.18
, pp. 73-78
-
-
Giani, F.C.1
Fiorini, C.2
Wakabayashi, A.3
-
105
-
-
84923185262
-
Fanconi anemia gene editing by the CRISPR/Cas9 system
-
COI: 1:CAS:528:DC%2BC2MXislSmsrs%3D, PID: 25545896
-
Osborn MJ, Gabriel R, Webber BR, et al. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther. 2015;26:114–26.
-
(2015)
Hum Gene Ther
, vol.26
, pp. 114-126
-
-
Osborn, M.J.1
Gabriel, R.2
Webber, B.R.3
-
106
-
-
84901791385
-
Targeted gene therapy and cell reprogramming in Fanconi anemia
-
COI: 1:CAS:528:DC%2BC2cXptVansrc%3D, PID: 24859981
-
Rio P, Banos R, Lombardo A, et al. Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol Med. 2014;6:835–48.
-
(2014)
EMBO Mol Med
, vol.6
, pp. 835-848
-
-
Rio, P.1
Banos, R.2
Lombardo, A.3
-
107
-
-
84861912972
-
Overcoming reprogramming resistance of Fanconi anemia cells
-
COI: 1:CAS:528:DC%2BC38XovFantbo%3D, PID: 22371882
-
Muller LU, Milsom MD, Harris CE, et al. Overcoming reprogramming resistance of Fanconi anemia cells. Blood. 2012;119:5449–57.
-
(2012)
Blood
, vol.119
, pp. 5449-5457
-
-
Muller, L.U.1
Milsom, M.D.2
Harris, C.E.3
-
108
-
-
0027389676
-
Hematopoietic commitment during embryonic stem cell differentiation in culture
-
COI: 1:CAS:528:DyaK3sXpvVOksQ%3D%3D, PID: 8417345
-
Keller G, Kennedy M, Papayannopoulou T, Wiles MV. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol. 1993;13:473–86.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 473-486
-
-
Keller, G.1
Kennedy, M.2
Papayannopoulou, T.3
Wiles, M.V.4
-
109
-
-
84874438241
-
In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells
-
COI: 1:CAS:528:DC%2BC3sXjsFKmtrg%3D, PID: 23212524
-
Amabile G, Welner RS, Nombela-Arrieta C, et al. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood. 2013;121:1255–64.
-
(2013)
Blood
, vol.121
, pp. 1255-1264
-
-
Amabile, G.1
Welner, R.S.2
Nombela-Arrieta, C.3
-
110
-
-
84879694584
-
Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation
-
COI: 1:CAS:528:DC%2BC3sXnvVSiurg%3D, PID: 23670574
-
Suzuki N, Yamazaki S, Yamaguchi T, et al. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther. 2013;21:1424–31.
-
(2013)
Mol Ther
, vol.21
, pp. 1424-1431
-
-
Suzuki, N.1
Yamazaki, S.2
Yamaguchi, T.3
-
111
-
-
84904439259
-
Reprogramming human endothelial cells to haematopoietic cells requires vascular induction
-
COI: 1:CAS:528:DC%2BC2cXhtFOjtrrF, PID: 25030167
-
Sandler VM, Lis R, Liu Y, et al. Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature. 2014;511:312–8.
-
(2014)
Nature
, vol.511
, pp. 312-318
-
-
Sandler, V.M.1
Lis, R.2
Liu, Y.3
-
112
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
COI: 1:CAS:528:DC%2BC3sXit1ygtb0%3D, PID: 23287722
-
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.
-
(2013)
Science.
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
-
113
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
COI: 1:CAS:528:DC%2BC2cXkslyj, PID: 24336571
-
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
-
114
-
-
84885620722
-
An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level
-
COI: 1:CAS:528:DC%2BC3sXhsFyns73P, PID: 24115442
-
Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342:253–7.
-
(2013)
Science
, vol.342
, pp. 253-257
-
-
Bauer, D.E.1
Kamran, S.C.2
Lessard, S.3
-
115
-
-
84946925193
-
BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis
-
COI: 1:CAS:528:DC%2BC2MXhsFersLrO, PID: 26375006
-
Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527:192–7.
-
(2015)
Nature
, vol.527
, pp. 192-197
-
-
Canver, M.C.1
Smith, E.C.2
Sher, F.3
-
116
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
COI: 1:CAS:528:DC%2BC2MXmtVarsr0%3D, PID: 25849900
-
Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33:510–7.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
D’Ippolito, A.M.2
Vockley, C.M.3
|