-
1
-
-
84925969707
-
Metabolic pathways promoting cancer cell survival and growth
-
Boroughs LK, DeBerardinis RJ.Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 2015;17:351-9.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 351-359
-
-
Boroughs, L.K.1
DeBerardinis, R.J.2
-
2
-
-
84858604270
-
Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate
-
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012;21:297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
3
-
-
84883497454
-
Glutamine and cancer: Cell biology, physiology, and clinical opportunities
-
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013;123: 3678-84.
-
(2013)
J Clin Invest
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
DeBerardinis, R.J.3
-
4
-
-
84881372774
-
Cellular fatty acid metabolism and cancer
-
Currie E, Schulze A, Zechner R, Walther TC, Farese RVJrCellular fatty acid metabolism and cancer. Cell Metab 2013;18:153-61.
-
(2013)
Cell Metab
, vol.18
, pp. 153-161
-
-
Currie, E.1
Schulze, A.2
Zechner, R.3
Walther, T.C.4
Farese, R.V.5
-
5
-
-
84881177291
-
Serine, glycine and one-carbon units: Cancer metabolism in full circle
-
Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 2013;13:572-83.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 572-583
-
-
Locasale, J.W.1
-
6
-
-
84927133194
-
Targetingmitochondria metabolismfor cancer therapy
-
Weinberg SE, Chandel NS. Targetingmitochondria metabolismfor cancer therapy. Nat Chem Biol 2015;11:9-15.
-
(2015)
Nat Chem Biol
, vol.11
, pp. 9-15
-
-
Weinberg, S.E.1
Chandel, N.S.2
-
8
-
-
84901487313
-
Targetingmetabolic changes in cancer: Novel therapeutic approaches
-
Bobrovnikova-Marjon E, Hurov JB. Targetingmetabolic changes in cancer: novel therapeutic approaches. Annu Rev Med 2014;65:157-70.
-
(2014)
Annu Rev Med
, vol.65
, pp. 157-170
-
-
Bobrovnikova-Marjon, E.1
Hurov, J.B.2
-
9
-
-
84925834424
-
Rewired metabolism in drug-resistant leukemia cells: A metabolic switch hallmarked by reduced dependence on exogenous glutamine
-
Staubert C, Bhuiyan H, Lindahl A, Broom OJ, Zhu Y, IslamS, et al. Rewired metabolism in drug-resistant leukemia cells: a metabolic switch hallmarked by reduced dependence on exogenous glutamine. J Biol Chem 2015;290:8348-59.
-
(2015)
J Biol Chem
, vol.290
, pp. 8348-8359
-
-
Staubert, C.1
Bhuiyan, H.2
Lindahl, A.3
Broom, O.J.4
Zhu, Y.5
Islam, S.6
-
10
-
-
84856544687
-
PGC-1 family coactivators and cell fate: Roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling
-
Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G. PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 2012;12:86-99.
-
(2012)
Mitochondrion
, vol.12
, pp. 86-99
-
-
Jones, A.W.1
Yao, Z.2
Vicencio, J.M.3
Karkucinska-Wieckowska, A.4
Szabadkai, G.5
-
11
-
-
84861980898
-
The diverse role of the PPARgamma coactivator 1 family of transcriptional coactivators in cancer
-
Girnun GD. The diverse role of the PPARgamma coactivator 1 family of transcriptional coactivators in cancer. Semin Cell Dev Biol 2012;23: 381-8.
-
(2012)
Semin Cell Dev Biol
, vol.23
, pp. 381-388
-
-
Girnun, G.D.1
-
12
-
-
33644660537
-
PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
-
Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006;116:615-22.
-
(2006)
J Clin Invest
, vol.116
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
13
-
-
47949104798
-
The role of exercise and PGC1alpha in inflammation and chronic disease
-
Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 2008;454:463-9.
-
(2008)
Nature
, vol.454
, pp. 463-469
-
-
Handschin, C.1
Spiegelman, B.M.2
-
14
-
-
79953186142
-
PGC-1 coactivators in the control of energy metabolism
-
Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism. Acta Biochim Biophys Sin 2011;43:248-57.
-
(2011)
Acta Biochim Biophys Sin
, vol.43
, pp. 248-257
-
-
Liu, C.1
Lin, J.D.2
-
15
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005;1:361-70.
-
(2005)
Cell Metab
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
16
-
-
0037102256
-
Transcriptional coactivator PGC-1 alpha drives the formation of slow-twitch muscle fibres
-
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional coactivator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002;418:797-801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
Zhang, C.Y.4
Wu, Z.5
Boss, O.6
-
17
-
-
0038810035
-
An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle
-
Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 2003;100: 7111-6.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 7111-7116
-
-
Handschin, C.1
Rhee, J.2
Lin, J.3
Tarr, P.T.4
Spiegelman, B.M.5
-
18
-
-
0037477855
-
Coordinated reduction of genes of oxidative metabolismin humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
-
Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolismin humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003;100:8466-71.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 8466-8471
-
-
Patti, M.E.1
Butte, A.J.2
Crunkhorn, S.3
Cusi, K.4
Berria, R.5
Kashyap, S.6
-
19
-
-
2342477730
-
Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle
-
Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 2004;101:6570-5.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 6570-6575
-
-
Mootha, V.K.1
Handschin, C.2
Arlow, D.3
Xie, X.4
St Pierre, J.5
Sihag, S.6
-
20
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1(alpha)
-
Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1(alpha). J Biol Chem 2005;280:16456-60.
-
(2005)
J Biol Chem
, vol.280
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
21
-
-
69249116960
-
SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interactionwith MyoD
-
Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F. SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interactionwith MyoD. J Biol Chem 2009;284:21872-80.
-
(2009)
J Biol Chem
, vol.284
, pp. 21872-21880
-
-
Amat, R.1
Planavila, A.2
Chen, S.L.3
Iglesias, R.4
Giralt, M.5
Villarroya, F.6
-
22
-
-
80052454265
-
ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1
-
Haemmerle G, Moustafa T, Woelkart G, Buttner S, Schmidt A, van de Weijer T, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med 2011;17:1076-85.
-
(2011)
Nat Med
, vol.17
, pp. 1076-1085
-
-
Haemmerle, G.1
Moustafa, T.2
Woelkart, G.3
Buttner, S.4
Schmidt, A.5
Van De Weijer, T.6
-
23
-
-
84921921537
-
ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1alpha/PPAR-alpha signaling
-
Khan SA, Sathyanarayan A, Mashek MT, Ong KT, Wollaston-Hayden EE, Mashek DG. ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1alpha/PPAR-alpha signaling. Diabetes 2015;64:418-26.
-
(2015)
Diabetes
, vol.64
, pp. 418-426
-
-
Khan, S.A.1
Sathyanarayan, A.2
Mashek, M.T.3
Ong, K.T.4
Wollaston-Hayden, E.E.5
Mashek, D.G.6
-
24
-
-
0037064057
-
The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase i gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB)
-
Louet JF, Hayhurst G, Gonzalez FJ, Girard J, Decaux JF. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB). J Biol Chem 2002;277: 37991-8000.
-
(2002)
J Biol Chem
, vol.277
, pp. 37991-38000
-
-
Louet, J.F.1
Hayhurst, G.2
Gonzalez, F.J.3
Girard, J.4
Decaux, J.F.5
-
25
-
-
11144221621
-
Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase i (CPT-I alpha)
-
Zhang Y, Ma K, Song S, Elam MB, Cook GA, Park EA. Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). J Biol Chem 2004;279:53963-71.
-
(2004)
J Biol Chem
, vol.279
, pp. 53963-53971
-
-
Zhang, Y.1
Ma, K.2
Song, S.3
Elam, M.B.4
Cook, G.A.5
Park, E.A.6
-
26
-
-
84870918556
-
PPARGC1A/PGC-1alpha, TFEB and enhanced proteostasis in Huntington disease: Defining regulatory linkages between energy production and protein-organelle quality control
-
La Spada AR. PPARGC1A/PGC-1alpha, TFEB and enhanced proteostasis in Huntington disease: defining regulatory linkages between energy production and protein-organelle quality control. Autophagy 2012;8: 1845-7.
-
(2012)
Autophagy
, vol.8
, pp. 1845-1847
-
-
La Spada, A.R.1
-
27
-
-
84863923855
-
PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function
-
Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, et al. PGC-1alpha rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci TranslMed 2012;4:142ra97.
-
(2012)
Sci TranslMed
, vol.4
, pp. 142ra97
-
-
Tsunemi, T.1
Ashe, T.D.2
Morrison, B.E.3
Soriano, K.R.4
Au, J.5
Roque, R.A.6
-
28
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999;98:115-24.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
Mootha, V.6
-
29
-
-
0032549811
-
A coldinducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P,WuZ, Park CW, Graves R, Wright M, Spiegelman BM. A coldinducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998;92:829-39.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
30
-
-
84862776702
-
A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis
-
Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481:463-8.
-
(2012)
Nature
, vol.481
, pp. 463-468
-
-
Bostrom, P.1
Wu, J.2
Jedrychowski, M.P.3
Korde, A.4
Ye, L.5
Lo, J.C.6
-
31
-
-
67649819237
-
Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes
-
Olmos Y, Valle I, Borniquel S, Tierrez A, Soria E, Lamas S, et al. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes. J Biol Chem 2009;284:14476-84.
-
(2009)
J Biol Chem
, vol.284
, pp. 14476-14484
-
-
Olmos, Y.1
Valle, I.2
Borniquel, S.3
Tierrez, A.4
Soria, E.5
Lamas, S.6
-
32
-
-
84902546044
-
Evaluation of lovastatin effects on expression of anti-apoptotic Nrf2 and PGC-1alpha genes in neural stem cells treated with hydrogen peroxide
-
Abdanipour A, Tiraihi T, Noori-Zadeh A, Majdi A, Gosaili R. Evaluation of lovastatin effects on expression of anti-apoptotic Nrf2 and PGC-1alpha genes in neural stem cells treated with hydrogen peroxide. Mol Neurobiol 2014;49:1364-72.
-
(2014)
Mol Neurobiol
, vol.49
, pp. 1364-1372
-
-
Abdanipour, A.1
Tiraihi, T.2
Noori-Zadeh, A.3
Majdi, A.4
Gosaili, R.5
-
33
-
-
33749999530
-
Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
-
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006;127:397-408.
-
(2006)
Cell
, vol.127
, pp. 397-408
-
-
St-Pierre, J.1
Drori, S.2
Uldry, M.3
Silvaggi, J.M.4
Rhee, J.5
Jager, S.6
-
34
-
-
84872225149
-
PGC1alpha and mitochondrial metabolism-emerging concepts and relevance in ageing and neurodegenerative disorders
-
Austin S, St-Pierre J. PGC1alpha and mitochondrial metabolism-emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 2012;125:4963-71.
-
(2012)
J Cell Sci
, vol.125
, pp. 4963-4971
-
-
Austin, S.1
St-Pierre, J.2
-
35
-
-
14844328611
-
Tissue-specific regulation ofmetabolic pathways through the transcriptional coactivator PGC1-alpha
-
Puigserver P.Tissue-specific regulation ofmetabolic pathways through the transcriptional coactivator PGC1-alpha. Int J Obes 2005;29:S5-9.
-
(2005)
Int J Obes
, vol.29
, pp. S5-S9
-
-
Puigserver, P.1
-
36
-
-
84919489013
-
Is reliance on mitochondrial respiration a "chink in the armor" of therapy-resistant cancer?
-
Wolf DA.Is reliance on mitochondrial respiration a "chink in the armor" of therapy-resistant cancer? Cancer Cell 2014;26:788-95.
-
(2014)
Cancer Cell
, vol.26
, pp. 788-795
-
-
Wolf, D.A.1
-
37
-
-
0032589689
-
Activation of PPARgamma coactivator-1 through transcription factor docking
-
Puigserver P, Adelmant G,Wu Z, Fan M, Xu J,O'Malley B, et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 1999;286:1368-71.
-
(1999)
Science
, vol.286
, pp. 1368-1371
-
-
Puigserver, P.1
Adelmant, G.2
Wu, Z.3
Fan, M.4
Xu, J.5
O'Malley, B.6
-
38
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
-
Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003;423:550-5.
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
Rhee, J.2
Donovan, J.3
Walkey, C.J.4
Yoon, J.C.5
Oriente, F.6
-
39
-
-
0034116143
-
A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen
-
Knutti D, Kaul A, Kralli A. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 2000;20:2411-22.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 2411-2422
-
-
Knutti, D.1
Kaul, A.2
Kralli, A.3
-
40
-
-
0344413490
-
Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha
-
Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell 2003;12:1137-49.
-
(2003)
Mol Cell
, vol.12
, pp. 1137-1149
-
-
Wallberg, A.E.1
Yamamura, S.2
Malik, S.3
Spiegelman, B.M.4
Roeder, R.G.5
-
41
-
-
0033638283
-
Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1
-
Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 2000;6:307-16.
-
(2000)
Mol Cell
, vol.6
, pp. 307-316
-
-
Monsalve, M.1
Wu, Z.2
Adelmant, G.3
Puigserver, P.4
Fan, M.5
Spiegelman, B.M.6
-
42
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 2007;104:12017-22.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
43
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113-8.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
44
-
-
0035859836
-
Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor
-
Knutti D, Kressler D, Kralli A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc Natl Acad Sci U S A 2001;98:9713-8.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 9713-9718
-
-
Knutti, D.1
Kressler, D.2
Kralli, A.3
-
45
-
-
34250740323
-
Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
-
Li X, Monks B, Ge Q, BirnbaumMJ. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 2007;447:1012-6.
-
(2007)
Nature
, vol.447
, pp. 1012-1016
-
-
Li, X.1
Monks, B.2
Ge, Q.3
Birnbaum, M.J.4
-
46
-
-
70350031566
-
SUMOylation attenuates the function of PGC-1alpha
-
Rytinki MM, Palvimo JJ. SUMOylation attenuates the function of PGC-1alpha. J Biol Chem 2009;284:26184-93.
-
(2009)
J Biol Chem
, vol.284
, pp. 26184-26193
-
-
Rytinki, M.M.1
Palvimo, J.J.2
-
47
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001;413:179-83.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
-
48
-
-
33644946603
-
Regulation of Ca2+ signalling and Ca2+-mediated cell death by the transcriptional coactivator PGC-1alpha
-
Bianchi K, Vandecasteele G, Carli C, Romagnoli A, Szabadkai G, Rizzuto R. Regulation of Ca2+ signalling and Ca2+-mediated cell death by the transcriptional coactivator PGC-1alpha. Cell Death Differ 2006;13: 586-96.
-
(2006)
Cell Death Differ
, vol.13
, pp. 586-596
-
-
Bianchi, K.1
Vandecasteele, G.2
Carli, C.3
Romagnoli, A.4
Szabadkai, G.5
Rizzuto, R.6
-
49
-
-
80155126156
-
PGC1alpha promotes tumor growth by inducing gene expression programs supporting lipogenesis
-
Bhalla K, Hwang BJ, Dewi RE, Ou L, Twaddel W, Fang HB, et al. PGC1alpha promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res 2011;71:6888-98.
-
(2011)
Cancer Res
, vol.71
, pp. 6888-6898
-
-
Bhalla, K.1
Hwang, B.J.2
Dewi, R.E.3
Ou, L.4
Twaddel, W.5
Fang, H.B.6
-
50
-
-
84913573550
-
Proteomic signatures associated with p53 mutational status in lung adenocarcinoma
-
Taguchi A,Delgado O, Celiktas M, KatayamaH,WangH, Gazdar AF, et al. Proteomic signatures associated with p53 mutational status in lung adenocarcinoma. Proteomics 2014;14:2750-9.
-
(2014)
Proteomics
, vol.14
, pp. 2750-2759
-
-
Taguchi, A.1
Delgado, O.2
Celiktas, M.3
Katayama, H.4
Wang, H.5
Gazdar, A.F.6
-
51
-
-
84894237902
-
PGC-1alpha supports glutamine metabolism in breast cancer
-
McGuirk S, Gravel SP, Deblois G, Papadopoli DJ, Faubert B, Wegner A, et al. PGC-1alpha supports glutamine metabolism in breast cancer. Cancer Metab 2013;1:22.
-
(2013)
Cancer Metab
, vol.1
, pp. 22
-
-
McGuirk, S.1
Gravel, S.P.2
Deblois, G.3
Papadopoli, D.J.4
Faubert, B.5
Wegner, A.6
-
52
-
-
73549114238
-
Peroxisome proliferator-activated receptor gamma coactivator-1alpha interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR
-
Shiota M, Yokomizo A, Tada Y, Inokuchi J, Tatsugami K, Kuroiwa K, et al. Peroxisome proliferator-activated receptor gamma coactivator-1alpha interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol Endocrinol 2010;24:114-27.
-
(2010)
Mol Endocrinol
, vol.24
, pp. 114-127
-
-
Shiota, M.1
Yokomizo, A.2
Tada, Y.3
Inokuchi, J.4
Tatsugami, K.5
Kuroiwa, K.6
-
53
-
-
84876448550
-
PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress
-
Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K, et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013;23:287-301.
-
(2013)
Cancer Cell
, vol.23
, pp. 287-301
-
-
Vazquez, F.1
Lim, J.H.2
Chim, H.3
Bhalla, K.4
Girnun, G.5
Pierce, K.6
-
54
-
-
84871320315
-
P53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance
-
Aquilano K, Baldelli S, Pagliei B, Cannata SM, Rotilio G, Ciriolo MR. p53 orchestrates the PGC-1alpha-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal 2013; 18:386-99.
-
(2013)
Antioxid Redox Signal
, vol.18
, pp. 386-399
-
-
Aquilano, K.1
Baldelli, S.2
Pagliei, B.3
Cannata, S.M.4
Rotilio, G.5
Ciriolo, M.R.6
-
55
-
-
84937525756
-
Suppression of PGC-1a is critical for reprogramming oxidative metabolism in renal cell carcinoma
-
LaGory EL, Wu C, Taniguchi CM, Ding CK, Chi JT, von Eyben R, et al. Suppression of PGC-1a is critical for reprogramming oxidative metabolism in renal cell carcinoma. Cell Rep 2015;12:116-27.
-
(2015)
Cell Rep
, vol.12
, pp. 116-127
-
-
LaGory, E.L.1
Wu, C.2
Taniguchi, C.M.3
Ding, C.K.4
Chi, J.T.5
Von Eyben, R.6
-
56
-
-
84943451038
-
MYC/PGC-1a balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells
-
Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, et al. MYC/PGC-1a balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab 2015;22: 590-605.
-
(2015)
Cell Metab
, vol.22
, pp. 590-605
-
-
Sancho, P.1
Burgos-Ramos, E.2
Tavera, A.3
Bou Kheir, T.4
Jagust, P.5
Schoenhals, M.6
-
57
-
-
84876436850
-
Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF
-
Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 2013;23:302-15.
-
(2013)
Cancer Cell
, vol.23
, pp. 302-315
-
-
Haq, R.1
Shoag, J.2
Andreu-Perez, P.3
Yokoyama, S.4
Edelman, H.5
Rowe, G.C.6
-
58
-
-
84865959001
-
A metabolic prosurvival role for PML in breast cancer
-
Carracedo A,Weiss D, Leliaert AK, Bhasin M, de Boer VC, Laurent G, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest 2012;122:3088-100.
-
(2012)
J Clin Invest
, vol.122
, pp. 3088-3100
-
-
Carracedo, A.1
Weiss, D.2
Leliaert, A.K.3
Bhasin, M.4
De Boer, V.C.5
Laurent, G.6
-
59
-
-
49649103221
-
The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis
-
Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics 2008;1:13.
-
(2008)
BMC Med Genomics
, vol.1
, pp. 13
-
-
Riker, A.I.1
Enkemann, S.A.2
Fodstad, O.3
Liu, S.4
Ren, S.5
Morris, C.6
-
60
-
-
73949140415
-
Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival
-
Bogunovic D, O'NeillDW,Belitskaya-Levy I, Vacic V, Yu YL, Adams S, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci U S A 2009;106:20429-34.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 20429-20434
-
-
Bogunovic, D.1
O'Neill, D.W.2
Belitskaya-Levy, I.3
Vacic, V.4
Yu, Y.L.5
Adams, S.6
-
61
-
-
84876787120
-
The masters talk: The PGC-1alpha-MITF axis as a melanoma energizer
-
Ronai Z.The masters talk: the PGC-1alpha-MITF axis as a melanoma energizer. Pigment Cell Melanoma Res 2013;26:294-295.
-
(2013)
Pigment Cell Melanoma Res
, vol.26
, pp. 294-295
-
-
Ronai, Z.1
-
62
-
-
18444374405
-
Mutations of the BRAF gene in human cancer
-
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54.
-
(2002)
Nature
, vol.417
, pp. 949-954
-
-
Davies, H.1
Bignell, G.R.2
Cox, C.3
Stephens, P.4
Edkins, S.5
Clegg, S.6
-
63
-
-
12144289677
-
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF
-
Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004;116:855-67.
-
(2004)
Cell
, vol.116
, pp. 855-867
-
-
Wan, P.T.1
Garnett, M.J.2
Roe, S.M.3
Lee, S.4
Niculescu-Duvaz, D.5
Good, V.M.6
-
64
-
-
78651418282
-
Mutant BRAF melanomas-dependence and resistance
-
Poulikakos PI, Rosen N. Mutant BRAF melanomas-dependence and resistance. Cancer Cell 2011;19:11-5.
-
(2011)
Cancer Cell
, vol.19
, pp. 11-15
-
-
Poulikakos, P.I.1
Rosen, N.2
-
65
-
-
84934277617
-
Vemurafenib resistance reprograms melanoma cells towards glutamine dependence
-
Hernandez-Davies JE, Tran TQ, Reid MA, Rosales KR, Lowman XH, Pan M, et al. Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. J Transl Med 2015;13:210.
-
(2015)
J Transl Med
, vol.13
, pp. 210
-
-
Hernandez-Davies, J.E.1
Tran, T.Q.2
Reid, M.A.3
Rosales, K.R.4
Lowman, X.H.5
Pan, M.6
-
66
-
-
79959795786
-
Improved survival with vemurafenib in melanoma with BRAF V600E mutation
-
Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:2507-16.
-
(2011)
N Engl J Med
, vol.364
, pp. 2507-2516
-
-
Chapman, P.B.1
Hauschild, A.2
Robert, C.3
Haanen, J.B.4
Ascierto, P.5
Larkin, J.6
-
67
-
-
84863673204
-
Improved survival with MEK inhibition in BRAF-mutated melanoma
-
Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 2012;367:107-14.
-
(2012)
N Engl J Med
, vol.367
, pp. 107-114
-
-
Flaherty, K.T.1
Robert, C.2
Hersey, P.3
Nathan, P.4
Garbe, C.5
Milhem, M.6
-
68
-
-
84918582539
-
Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1a and oxidative phosphorylation inmelanoma
-
Gopal YN, Rizos H, Chen G, Deng W, Frederick DT, Cooper ZA, et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1a and oxidative phosphorylation inmelanoma. Cancer Res 2014;74:7037-47.
-
(2014)
Cancer Res
, vol.74
, pp. 7037-7047
-
-
Gopal, Y.N.1
Rizos, H.2
Chen, G.3
Deng, W.4
Frederick, D.T.5
Cooper, Z.A.6
-
69
-
-
84936073972
-
Constitutive activities of estrogen-related receptors: Transcriptional regulation of metabolism by the ERR pathways in health and disease
-
Huss JM, Garbacz WG, Xie W. Constitutive activities of estrogen-related receptors: transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim Biophys Acta 2015;1852:1912-27.
-
(2015)
Biochim Biophys Acta
, vol.1852
, pp. 1912-1927
-
-
Huss, J.M.1
Garbacz, W.G.2
Xie, W.3
-
70
-
-
79958035502
-
Kinase suppressor of ras 1 (KSR1) regulates PGC1alpha and estrogen-related receptor alpha to promote oncogenic Ras-dependent anchorage-independent growth
-
Fisher KW, Das B, Kortum RL, Chaika OV, Lewis RE. Kinase suppressor of ras 1 (KSR1) regulates PGC1alpha and estrogen-related receptor alpha to promote oncogenic Ras-dependent anchorage-independent growth. Mol Cell Biol 2011;31:2453-61.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 2453-2461
-
-
Fisher, K.W.1
Das, B.2
Kortum, R.L.3
Chaika, O.V.4
Lewis, R.E.5
-
71
-
-
84893465244
-
Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth
-
Sun RC, Denko NC. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 2014;19:285-92.
-
(2014)
Cell Metab
, vol.19
, pp. 285-292
-
-
Sun, R.C.1
Denko, N.C.2
-
72
-
-
84858165848
-
PGC-1alpha promotes the growth of ErbB2/Neu-inducedmammary tumors by regulating nutrient supply
-
Klimcakova E, Chenard V, McGuirk S, Germain D, Avizonis D, Muller WJ, et al. PGC-1alpha promotes the growth of ErbB2/Neu-inducedmammary tumors by regulating nutrient supply. Cancer Res 2012;72:1538-46.
-
(2012)
Cancer Res
, vol.72
, pp. 1538-1546
-
-
Klimcakova, E.1
Chenard, V.2
McGuirk, S.3
Germain, D.4
Avizonis, D.5
Muller, W.J.6
-
73
-
-
39749140405
-
HIFindependent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha
-
Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIFindependent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 2008;451:1008-12.
-
(2008)
Nature
, vol.451
, pp. 1008-1012
-
-
Arany, Z.1
Foo, S.Y.2
Ma, Y.3
Ruas, J.L.4
Bommi-Reddy, A.5
Girnun, G.6
-
74
-
-
33847755430
-
Adaptation of energy metabolism in breast cancer brain metastases
-
Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR, Kralli A, et al. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 2007;67:1472-86.
-
(2007)
Cancer Res
, vol.67
, pp. 1472-1486
-
-
Chen, E.I.1
Hewel, J.2
Krueger, J.S.3
Tiraby, C.4
Weber, M.R.5
Kralli, A.6
-
75
-
-
84920616812
-
PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promotemetastasis
-
1-15
-
LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promotemetastasis. Nat Cell Biol 2014;16:992-1003, 1-15.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 992-1003
-
-
LeBleu, V.S.1
O'Connell, J.T.2
Gonzalez Herrera, K.N.3
Wikman, H.4
Pantel, K.5
Haigis, M.C.6
-
76
-
-
84880921757
-
The PGC-1/ERR signaling axis in cancer
-
Deblois G, St-Pierre J, Giguere V. The PGC-1/ERR signaling axis in cancer. Oncogene 2013;32:3483-90.
-
(2013)
Oncogene
, vol.32
, pp. 3483-3490
-
-
Deblois, G.1
St-Pierre, J.2
Giguere, V.3
-
78
-
-
84943257841
-
MYC, metabolism, and cancer
-
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Discov 2015;5:1024-39.
-
(2015)
Cancer Discov
, vol.5
, pp. 1024-1039
-
-
Stine, Z.E.1
Walton, Z.E.2
Altman, B.J.3
Hsieh, A.L.4
Dang, C.V.5
-
79
-
-
84911861458
-
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
-
Viale A, Pettazzoni P, Lyssiotis CA, Ying H, SanchezN,MarchesiniM, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014;514:628-32.
-
(2014)
Nature
, vol.514
, pp. 628-632
-
-
Viale, A.1
Pettazzoni, P.2
Lyssiotis, C.A.3
Ying, H.4
Sanchez, N.5
Marchesini, M.6
-
80
-
-
74949089659
-
Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
-
Samudio I,Harmancey R, FieglM, Kantarjian H, Konopleva M, Korchin B, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 2010;120:142-56.
-
(2010)
J Clin Invest
, vol.120
, pp. 142-156
-
-
Samudio, I.1
Harmancey, R.2
Fiegl, M.3
Kantarjian, H.4
Konopleva, M.5
Korchin, B.6
-
81
-
-
84867595989
-
Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma
-
Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB, et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 2012;22:547-60.
-
(2012)
Cancer Cell
, vol.22
, pp. 547-560
-
-
Caro, P.1
Kishan, A.U.2
Norberg, E.3
Stanley, I.A.4
Chapuy, B.5
Ficarro, S.B.6
-
82
-
-
84926618078
-
Lipid catabolism via CPT1 as a therapeutic target for prostate cancer
-
Schlaepfer IR, Rider L, Rodrigues LU, Gijon MA, Pac CT, Romero L, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther 2014;13:2361-71.
-
(2014)
Mol Cancer Ther
, vol.13
, pp. 2361-2371
-
-
Schlaepfer, I.R.1
Rider, L.2
Rodrigues, L.U.3
Gijon, M.A.4
Pac, C.T.5
Romero, L.6
-
83
-
-
79956326256
-
Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
-
Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 2011;25:1041-51.
-
(2011)
Genes Dev
, vol.25
, pp. 1041-1051
-
-
Zaugg, K.1
Yao, Y.2
Reilly, P.T.3
Kannan, K.4
Kiarash, R.5
Mason, J.6
-
84
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000;20:1868-76.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
85
-
-
84857641358
-
The role of peroxisome proliferatoractivated receptors in carcinogenesis and chemoprevention
-
Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferatoractivated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 2012;12:181-95.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 181-195
-
-
Peters, J.M.1
Shah, Y.M.2
Gonzalez, F.J.3
-
86
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA,MaoM, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6.
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
Van'T Veer, L.J.1
Dai, H.2
Van De Vijver, M.J.3
He, Y.D.4
Hart, A.A.5
Mao, M.6
-
87
-
-
84868632060
-
A PML-PPARdelta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
-
Ito K, Carracedo A,Weiss D, Arai F, Ala U, Avigan DE, et al. A PML-PPARdelta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 2012;18:1350-8.
-
(2012)
Nat Med
, vol.18
, pp. 1350-1358
-
-
Ito, K.1
Carracedo, A.2
Weiss, D.3
Arai, F.4
Ala, U.5
Avigan, D.E.6
-
88
-
-
78649874959
-
Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
-
Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010;468:701-4.
-
(2010)
Nature
, vol.468
, pp. 701-704
-
-
Gan, B.1
Hu, J.2
Jiang, S.3
Liu, Y.4
Sahin, E.5
Zhuang, L.6
-
89
-
-
33745600820
-
Asymmetric and symmetric stem-cell divisions in development and cancer
-
Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006;441:1068-74.
-
(2006)
Nature
, vol.441
, pp. 1068-1074
-
-
Morrison, S.J.1
Kimble, J.2
-
90
-
-
61349187121
-
A novel signaling network as a critical rheostat for the biology and maintenance of the normal stem cell and the cancer-initiating cell
-
Ito K, Bernardi R, Pandolfi PP. A novel signaling network as a critical rheostat for the biology and maintenance of the normal stem cell and the cancer-initiating cell. Curr Opin Genet Dev 2009;19:51-9.
-
(2009)
Curr Opin Genet Dev
, vol.19
, pp. 51-59
-
-
Ito, K.1
Bernardi, R.2
Pandolfi, P.P.3
-
91
-
-
84934325574
-
Mitochondrial biogenesis is required for the anchorageindependent survival and propagation of stem-like cancer cells
-
De Luca A, Fiorillo M, Peiris-Pages M, Ozsvari B, Smith DL, Sanchez-Alvarez R, et al. Mitochondrial biogenesis is required for the anchorageindependent survival and propagation of stem-like cancer cells. Oncotarget 2015;6:14777-95.
-
(2015)
Oncotarget
, vol.6
, pp. 14777-14795
-
-
De Luca, A.1
Fiorillo, M.2
Peiris-Pages, M.3
Ozsvari, B.4
Smith, D.L.5
Sanchez-Alvarez, R.6
-
92
-
-
1842531175
-
Androgen receptor coregulators in prostate cancer: Mechanisms and clinical implications
-
Rahman M, Miyamoto H, Chang C. Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin Cancer Res 2004;10:2208-19.
-
(2004)
Clin Cancer Res
, vol.10
, pp. 2208-2219
-
-
Rahman, M.1
Miyamoto, H.2
Chang, C.3
-
93
-
-
79960071366
-
The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis
-
Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 2011;30:2719-33.
-
(2011)
EMBO J
, vol.30
, pp. 2719-2733
-
-
Massie, C.E.1
Lynch, A.2
Ramos-Montoya, A.3
Boren, J.4
Stark, R.5
Fazli, L.6
-
94
-
-
85027952132
-
Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alphamediated metabolic switch
-
Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, et al. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alphamediated metabolic switch. Oncogene 2014;33:5251-61.
-
(2014)
Oncogene
, vol.33
, pp. 5251-5261
-
-
Tennakoon, J.B.1
Shi, Y.2
Han, J.J.3
Tsouko, E.4
White, M.A.5
Burns, A.R.6
-
95
-
-
77957865282
-
Behind the scenes: Unravelling the molecular mechanisms of p53 target gene selectivity (Review)
-
Smeenk L, Lohrum M. Behind the scenes: unravelling the molecular mechanisms of p53 target gene selectivity (Review). Int J Oncol 2010; 37:1061-70.
-
(2010)
Int J Oncol
, vol.37
, pp. 1061-1070
-
-
Smeenk, L.1
Lohrum, M.2
-
96
-
-
81355153987
-
PGC-1a, a key modulator of p53, promotes cell survival upon metabolic stress
-
Sen N, Satija YK, Das S. PGC-1a, a key modulator of p53, promotes cell survival upon metabolic stress. Mol Cell 2011;44:621-34.
-
(2011)
Mol Cell
, vol.44
, pp. 621-634
-
-
Sen, N.1
Satija, Y.K.2
Das, S.3
-
97
-
-
81355133172
-
PGC1a confers specificity-metabolic stress and p53-dependent transcription
-
Cioce M, Blandino G.PGC1a confers specificity-metabolic stress and p53-dependent transcription. Mol Cell 2011;44:515-6.
-
(2011)
Mol Cell
, vol.44
, pp. 515-516
-
-
Cioce, M.1
Blandino, G.2
-
98
-
-
84902294427
-
RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1a-mediated mitochondrial oxidative phosphorylation and glycolysis
-
ChenW,WangQ, Bai L, ChenW,Wang X, Tellez CS, et al. RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1a-mediated mitochondrial oxidative phosphorylation and glycolysis. Cell Death Differ 2014;21:1061-70.
-
(2014)
Cell Death Differ
, vol.21
, pp. 1061-1070
-
-
Chen, W.1
Wang, Q.2
Bai, L.3
Chen, W.4
Wang, X.5
Tellez, C.S.6
-
99
-
-
84867877340
-
The NAD metabolome - A key determinant of cancer cell biology
-
Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome - a key determinant of cancer cell biology. Nat Rev Cancer 2012;12: 741-52.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 741-752
-
-
Chiarugi, A.1
Dolle, C.2
Felici, R.3
Ziegler, M.4
-
100
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007;26:1913-23.
-
(2007)
EMBO J
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.H.5
Mostoslavsky, R.6
-
101
-
-
84892181024
-
Fasting induces nuclear factor E2-related factor 2 and ATP-binding Cassette transporters via protein kinase A and Sirtuin-1 in mouse and human
-
Kulkarni SR, Donepudi AC, Xu J, Wei W, Cheng QC, Driscoll MV, et al. Fasting induces nuclear factor E2-related factor 2 and ATP-binding Cassette transporters via protein kinase A and Sirtuin-1 in mouse and human. Antioxid Redox Signal 2014;20:15-30.
-
(2014)
Antioxid Redox Signal
, vol.20
, pp. 15-30
-
-
Kulkarni, S.R.1
Donepudi, A.C.2
Xu, J.3
Wei, W.4
Cheng, Q.C.5
Driscoll, M.V.6
-
102
-
-
84904157844
-
Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents
-
DoMT, Kim HG, Choi JH, Jeong HG. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic Biol Med 2014;74:21-34.
-
(2014)
Free Radic Biol Med
, vol.74
, pp. 21-34
-
-
Do, M.T.1
Kim, H.G.2
Choi, J.H.3
Jeong, H.G.4
-
103
-
-
84861127026
-
Metformin use is associated with better survival of diabetic patients with pancreatic cancer
-
Sadeghi N, Abbruzzese JL, Yeung SC, Hassan M, Li D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin Cancer Res 2012;18:2905-12.
-
(2012)
Clin Cancer Res
, vol.18
, pp. 2905-2912
-
-
Sadeghi, N.1
Abbruzzese, J.L.2
Yeung, S.C.3
Hassan, M.4
Li, D.5
-
104
-
-
84860512005
-
Links between metabolism and cancer
-
Dang CV.Links between metabolism and cancer. Genes Dev 2012;26: 877-90.
-
(2012)
Genes Dev
, vol.26
, pp. 877-890
-
-
Dang, C.V.1
-
105
-
-
84903976031
-
Targeting mitochondrial oxidative metabolism in melanoma causes metabolic compensation through glucose and glutamine utilization
-
Lim JH, Luo C, Vazquez F, Puigserver P. Targeting mitochondrial oxidative metabolism in melanoma causes metabolic compensation through glucose and glutamine utilization. Cancer Res 2014;74:3535-45.
-
(2014)
Cancer Res
, vol.74
, pp. 3535-3545
-
-
Lim, J.H.1
Luo, C.2
Vazquez, F.3
Puigserver, P.4
-
106
-
-
15444380906
-
The localisation and reduction of nuclear staining of PPARgamma and PGC-1 in human breast cancer
-
Watkins G, Douglas-Jones A, Mansel RE, Jiang WG. The localisation and reduction of nuclear staining of PPARgamma and PGC-1 in human breast cancer. Oncol Rep 2004;12:483-8.
-
(2004)
Oncol Rep
, vol.12
, pp. 483-488
-
-
Watkins, G.1
Douglas-Jones, A.2
Mansel, R.E.3
Jiang, W.G.4
-
107
-
-
0345167182
-
Peroxisome proliferator-activated receptors (PPARs) and associated transcription factors in colon cancer: Reduced expression of PPARgamma-coactivator 1 (PGC-1)
-
Feilchenfeldt J, Brundler MA, Soravia C, Totsch M, Meier CA. Peroxisome proliferator-activated receptors (PPARs) and associated transcription factors in colon cancer: reduced expression of PPARgamma-coactivator 1 (PGC-1). Cancer Lett 2004;203:25-33.
-
(2004)
Cancer Lett
, vol.203
, pp. 25-33
-
-
Feilchenfeldt, J.1
Brundler, M.A.2
Soravia, C.3
Totsch, M.4
Meier, C.A.5
-
108
-
-
75149166058
-
PPAR(gamma)/PGC-1(alpha) pathway in E-cadherin expression and motility ofHepG2 cells
-
Lee HJ, Su Y, Yin PH, Lee HC, Chi CW. PPAR(gamma)/PGC-1(alpha) pathway in E-cadherin expression and motility ofHepG2 cells. Anticancer Res 2009;29:5057-63.
-
(2009)
Anticancer Res
, vol.29
, pp. 5057-5063
-
-
Lee, H.J.1
Su, Y.2
Yin, P.H.3
Lee, H.C.4
Chi, C.W.5
-
109
-
-
34247346466
-
PGC-1alpha induces apoptosis in human epithelial ovarian cancer cells through a PPARgamma-dependent pathway
-
Zhang Y, Ba Y, Liu C, Sun G, Ding L, Gao S, et al. PGC-1alpha induces apoptosis in human epithelial ovarian cancer cells through a PPARgamma-dependent pathway. Cell Res 2007;17:363-73.
-
(2007)
Cell Res
, vol.17
, pp. 363-373
-
-
Zhang, Y.1
Ba, Y.2
Liu, C.3
Sun, G.4
Ding, L.5
Gao, S.6
-
110
-
-
0042524273
-
Expression of peroxisome-proliferator activated receptor-gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates with clinical outcomes
-
Jiang WG, Douglas-Jones A, Mansel RE. Expression of peroxisome-proliferator activated receptor-gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates with clinical outcomes. Int J Cancer 2003;106:752-7.
-
(2003)
Int J Cancer
, vol.106
, pp. 752-757
-
-
Jiang, W.G.1
Douglas-Jones, A.2
Mansel, R.E.3
-
111
-
-
79955634801
-
Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1alpha) is a metabolic regulator of intestinal epithelial cell fate
-
D'Errico I, Salvatore L, Murzilli S, Lo Sasso G, Latorre D, Martelli N, et al. Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1alpha) is a metabolic regulator of intestinal epithelial cell fate. Proc Natl Acad Sci U S A 2011;108:6603-8.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 6603-6608
-
-
D'Errico, I.1
Salvatore, L.2
Murzilli, S.3
Lo Sasso, G.4
Latorre, D.5
Martelli, N.6
-
112
-
-
84894479646
-
Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferatoractivated receptor gamma coactivator-1a (PGC-1a) and mitostatin
-
Neill T, Torres A, Buraschi S, Owens RT, Hoek JB, Baffa R, et al. Decorin induces mitophagy in breast carcinoma cells via peroxisome proliferatoractivated receptor gamma coactivator-1a (PGC-1a) and mitostatin. J Biol Chem 2014;289:4952-68.
-
(2014)
J Biol Chem
, vol.289
, pp. 4952-4968
-
-
Neill, T.1
Torres, A.2
Buraschi, S.3
Owens, R.T.4
Hoek, J.B.5
Baffa, R.6
-
113
-
-
80052400864
-
Bax is necessary for PGC1alpha pro-apoptotic effect in colorectal cancer cells
-
D'Errico I, Lo Sasso G, Salvatore L, Murzilli S, Martelli N, Cristofaro M, et al. Bax is necessary for PGC1alpha pro-apoptotic effect in colorectal cancer cells. Cell Cycle 2011;10:2937-45.
-
(2011)
Cell Cycle
, vol.10
, pp. 2937-2945
-
-
D'Errico, I.1
Lo Sasso, G.2
Salvatore, L.3
Murzilli, S.4
Martelli, N.5
Cristofaro, M.6
-
114
-
-
84929649410
-
AMPK-mediated energy homeostasis and associated metabolic effects on cancer cell response and resistance to cetuximab
-
Li X, Lu Y, Lu H, Luo J, Hong Y, Fan Z. AMPK-mediated energy homeostasis and associated metabolic effects on cancer cell response and resistance to cetuximab. Oncotarget 2015;6:11507-18.
-
(2015)
Oncotarget
, vol.6
, pp. 11507-11518
-
-
Li, X.1
Lu, Y.2
Lu, H.3
Luo, J.4
Hong, Y.5
Fan, Z.6
-
115
-
-
84898450608
-
Sirtuin 1 facilitates chemoresistance of pancreatic cancer cells by regulating adaptive response to chemotherapy-induced stress
-
Zhang JG, Hong DF, Zhang CW, Sun XD, Wang ZF, Shi Y, et al. Sirtuin 1 facilitates chemoresistance of pancreatic cancer cells by regulating adaptive response to chemotherapy-induced stress. Cancer Sci 2014;105: 445-54.
-
(2014)
Cancer Sci
, vol.105
, pp. 445-454
-
-
Zhang, J.G.1
Hong, D.F.2
Zhang, C.W.3
Sun, X.D.4
Wang, Z.F.5
Shi, Y.6
-
116
-
-
84937523899
-
Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates
-
Egan DF, Chun MG, Vamos M, Zou H, Rong J, Miller CJ, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell 2015;59:285-97.
-
(2015)
Mol Cell
, vol.59
, pp. 285-297
-
-
Egan, D.F.1
Chun, M.G.2
Vamos, M.3
Zou, H.4
Rong, J.5
Miller, C.J.6
-
117
-
-
84926252071
-
Autophagy in malignant transformation and cancer progression
-
Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, et al. Autophagy in malignant transformation and cancer progression. EMBO J 2015;34:856-80.
-
(2015)
EMBO J
, vol.34
, pp. 856-880
-
-
Galluzzi, L.1
Pietrocola, F.2
Bravo-San Pedro, J.M.3
Amaravadi, R.K.4
Baehrecke, E.H.5
Cecconi, F.6
-
118
-
-
84934898837
-
Mitochondrial free fatty acid beta-oxidation supports oxidative phosphorylation and proliferation in cancer cells
-
Rodriguez-Enriquez S, Hernandez-Esquivel L, Marin-Hernandez A, El Hafidi M, Gallardo-Perez JC, Hernandez-Resendiz I, et al. Mitochondrial free fatty acid beta-oxidation supports oxidative phosphorylation and proliferation in cancer cells. Int J Biochem Cell Biol 2015;65: 209-21.
-
(2015)
Int J Biochem Cell Biol
, vol.65
, pp. 209-221
-
-
Rodriguez-Enriquez, S.1
Hernandez-Esquivel, L.2
Marin-Hernandez, A.3
El Hafidi, M.4
Gallardo-Perez, J.C.5
Hernandez-Resendiz, I.6
-
119
-
-
84941659899
-
Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies
-
Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 2015;3:1236-47.
-
(2015)
Cancer Immunol Res
, vol.3
, pp. 1236-1247
-
-
Hossain, F.1
Al-Khami, A.A.2
Wyczechowska, D.3
Hernandez, C.4
Zheng, L.5
Reiss, K.6
|