-
1
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-33.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
2
-
-
80054046029
-
Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27:441-64.
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
3
-
-
84858604270
-
Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate
-
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012;21:297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
4
-
-
44449147036
-
Tumor cell metabolism: Cancer's Achilles' heel
-
Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008;13:472-82.
-
(2008)
Cancer Cell
, vol.13
, pp. 472-482
-
-
Kroemer, G.1
Pouyssegur, J.2
-
5
-
-
78649711427
-
The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
-
Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010; 330:1340-4.
-
(2010)
Science
, vol.330
, pp. 1340-1344
-
-
Levine, A.J.1
Puzio-Kuter, A.M.2
-
6
-
-
84869009687
-
Howcancer metabolism is tuned for proliferation and vulnerable to disruption
-
Schulze A, Harris AL. Howcancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012;491:364-73.
-
(2012)
Nature
, vol.491
, pp. 364-373
-
-
Schulze, A.1
Harris, A.L.2
-
7
-
-
77955281020
-
Glutamine addiction: A new therapeutic target in cancer
-
Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 2010;35:427-33.
-
(2010)
Trends Biochem Sci
, vol.35
, pp. 427-433
-
-
Wise, D.R.1
Thompson, C.B.2
-
8
-
-
84855453655
-
Glucoseindependent glutamine metabolism via TCA cycling for proliferation and survival in B cells
-
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucoseindependent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012;15:110-21.
-
(2012)
Cell Metab
, vol.15
, pp. 110-121
-
-
Le, A.1
Lane, A.N.2
Hamaker, M.3
Bose, S.4
Gouw, A.5
Barbi, J.6
-
9
-
-
84877752572
-
Stalling the engine of resistance: Targeting cancer metabolism to overcome therapeutic resistance
-
Butler EB, Zhao Y, Munoz-Pinedo C, Lu J, Tan M. Stalling the engine of resistance: targeting cancer metabolism to overcome therapeutic resistance. Cancer Res 2013;73:2709-17.
-
(2013)
Cancer Res
, vol.73
, pp. 2709-2717
-
-
Butler, E.B.1
Zhao, Y.2
Munoz-Pinedo, C.3
Lu, J.4
Tan, M.5
-
10
-
-
84875890762
-
Targeting cellular metabolism to improve cancer therapeutics
-
Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013;4:e532.
-
(2013)
Cell Death Dis
, vol.4
-
-
Zhao, Y.1
Butler, E.B.2
Tan, M.3
-
11
-
-
84876448550
-
PGC1a expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress
-
Vazquez F, Lim JL, Chim H, Bhalla K, Girnun G, Pierce K, et al. PGC1a expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013;23:287-301.
-
(2013)
Cancer Cell
, vol.23
, pp. 287-301
-
-
Vazquez, F.1
Lim, J.L.2
Chim, H.3
Bhalla, K.4
Girnun, G.5
Pierce, K.6
-
12
-
-
84876436850
-
Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF
-
Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 2013;23:302-15.
-
(2013)
Cancer Cell
, vol.23
, pp. 302-315
-
-
Haq, R.1
Shoag, J.2
Andreu-Perez, P.3
Yokoyama, S.4
Edelman, H.5
Rowe, G.C.6
-
14
-
-
0142166332
-
Targeting HIF-1 for cancer therapy
-
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721-32.
-
(2003)
Nat Rev Cancer
, vol.3
, pp. 721-732
-
-
Semenza, G.L.1
-
16
-
-
0035917808
-
Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
-
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468-72.
-
(2001)
Science
, vol.292
, pp. 468-472
-
-
Jaakkola, P.1
Mole, D.R.2
Tian, Y.M.3
Wilson, M.I.4
Gielbert, J.5
Gaskell, S.J.6
-
17
-
-
0035917313
-
HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing
-
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001;292:464-8.
-
(2001)
Science
, vol.292
, pp. 464-468
-
-
Ivan, M.1
Kondo, K.2
Yang, H.3
Kim, W.4
Valiando, J.5
Ohh, M.6
-
18
-
-
43649093915
-
Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway
-
Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008;30:393-402.
-
(2008)
Mol Cell
, vol.30
, pp. 393-402
-
-
Wg, R.J.1
Ratcliffe, P.J.2
-
19
-
-
40949114950
-
Role and regulation of prolyl hydroxylase domain proteins
-
Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 2008;15:635-41.
-
(2008)
Cell Death Differ
, vol.15
, pp. 635-641
-
-
Fong, G.H.1
Takeda, K.2
-
21
-
-
83755168277
-
PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine
-
Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z, Wise DR, et al. PET imaging of glutaminolysis in tumors by 18F-(2S,4R)4-fluoroglutamine. J Nucl Med 2011;52:1947-55.
-
(2011)
J Nucl Med
, vol.52
, pp. 1947-1955
-
-
Lieberman, B.P.1
Ploessl, K.2
Wang, L.3
Qu, W.4
Zha, Z.5
Wise, D.R.6
-
22
-
-
79960329041
-
Role of glutamine in cancer: Therapeutic and imaging implications
-
Rajagopalan KN, DeBerardinis RJ. Role of glutamine in cancer: therapeutic and imaging implications. J Nucl Med 2011;52:1005-8.
-
(2011)
J Nucl Med
, vol.52
, pp. 1005-1008
-
-
Rajagopalan, K.N.1
Deberardinis, R.J.2
-
23
-
-
78549283855
-
Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1
-
Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010;70:8981-7.
-
(2010)
Cancer Res
, vol.70
, pp. 8981-8987
-
-
Seltzer, M.J.1
Bennett, B.D.2
Joshi, A.D.3
Gao, P.4
Thomas, A.G.5
Ferraris, D.V.6
-
24
-
-
77957937428
-
Targeting mitochondrial glutaminase activity inhibits oncogenic transformation
-
Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010;18:207-19.
-
(2010)
Cancer Cell
, vol.18
, pp. 207-219
-
-
Wang, J.B.1
Erickson, J.W.2
Fuji, R.3
Ramachandran, S.4
Gao, P.5
Dinavahi, R.6
-
25
-
-
84867909952
-
Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma
-
Filipp FV, Ratnikov B, De Ingeniis J, Smith JW, Osterman AL, Scott DA. Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell Melanoma Res 2012;25:732-9.
-
(2012)
Pigment Cell Melanoma Res
, vol.25
, pp. 732-739
-
-
Filipp, F.V.1
Ratnikov, B.2
De Ingeniis, J.3
Smith, J.W.4
Osterman, A.L.5
Scott, D.A.6
-
26
-
-
33646033137
-
A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen
-
Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006;124:1283-98.
-
(2006)
Cell
, vol.124
, pp. 1283-1298
-
-
Moffat, J.1
Grueneberg, D.A.2
Yang, X.3
Kim, S.Y.4
Kloepfer, A.M.5
Hinkle, G.6
-
27
-
-
33744534726
-
GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
-
Lerin C,Rodgers JT,KalumeDE,KimSH,PandeyA,PuigserverP.GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 2006;3:429-38.
-
(2006)
Cell Metab
, vol.3
, pp. 429-438
-
-
Lerin, C.1
Rodgers, J.T.2
Kalume, D.E.3
Kim, S.H.4
Pandey, A.5
Puigserver, P.6
-
28
-
-
4544346656
-
JunD reduces tumor angiogenesis by protecting cells from oxidative stress
-
Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 2004;118:781-94.
-
(2004)
Cell
, vol.118
, pp. 781-794
-
-
Gerald, D.1
Berra, E.2
Frapart, Y.M.3
Chan, D.A.4
Giaccia, A.J.5
Mansuy, D.6
-
29
-
-
24144493814
-
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
-
Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 2005;1:401-8.
-
(2005)
Cell Metab
, vol.1
, pp. 401-408
-
-
Guzy, R.D.1
Hoyos, B.2
Robin, E.3
Chen, H.4
Liu, L.5
Mansfield, K.D.6
-
30
-
-
34548257176
-
HIFdependent antitumorigenic effect of antioxidants in vivo
-
Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, et al. HIFdependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 2007;12:230-8.
-
(2007)
Cancer Cell
, vol.12
, pp. 230-238
-
-
Gao, P.1
Zhang, H.2
Dinavahi, R.3
Li, F.4
Xiang, Y.5
Raman, V.6
-
31
-
-
77955499804
-
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxiainducible factor 1alpha
-
Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxiainducible factor 1alpha. Mol Cell 2010;38:864-78.
-
(2010)
Mol Cell
, vol.38
, pp. 864-878
-
-
Lim, J.H.1
Lee, Y.M.2
Chun, Y.S.3
Chen, J.4
Kim, J.E.5
Park, J.W.6
-
32
-
-
84867414867
-
Nutrient-dependent acetylation controls basic regulatory metabolic switches and cellular reprogramming
-
Dominy JE, Gerhart-Hines Z, Puigserver P. Nutrient-dependent acetylation controls basic regulatory metabolic switches and cellular reprogramming. Cold Spring Harb Symp Quant Biol 2011;76:203-9.
-
(2011)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 203-209
-
-
Dominy, J.E.1
Gerhart-Hines, Z.2
Puigserver, P.3
-
33
-
-
84860512005
-
Links between metabolism and cancer
-
Dang CV. Links between metabolism and cancer. Genes Dev 2012; 26:877-90.
-
(2012)
Genes Dev
, vol.26
, pp. 877-890
-
-
Dang, C.V.1
-
34
-
-
77955347446
-
Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis
-
Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE 2010;5:e11707.
-
(2010)
PLoS ONE
, vol.5
-
-
Kong, X.1
Wang, R.2
Xue, Y.3
Liu, X.4
Zhang, H.5
Chen, Y.6
-
35
-
-
34548787792
-
Reactive oxygen species and cellular oxygen sensing
-
Cash TP, Pan Y, Simon MC. Reactive oxygen species and cellular oxygen sensing. Free Radic Biol Med 2007;43:1219-25.
-
(2007)
Free Radic Biol Med
, vol.43
, pp. 1219-1225
-
-
Cash, T.P.1
Pan, Y.2
Simon, M.C.3
-
36
-
-
70549092785
-
Mitochondrial reactive oxygen species regulate hypoxic signaling
-
Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol 2009;21:894-9.
-
(2009)
Curr Opin Cell Biol
, vol.21
, pp. 894-899
-
-
Hamanaka, R.B.1
Chandel, N.S.2
-
37
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012;481:380-4.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
Gameiro, P.A.2
Bell, E.L.3
Mattaini, K.R.4
Yang, J.5
Hiller, K.6
-
38
-
-
84881329062
-
Reductive glutamine metabolism is a function of the alphaketoglutarate to citrate ratio in cells
-
Fendt SM, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, et al. Reductive glutamine metabolism is a function of the alphaketoglutarate to citrate ratio in cells. Nat Commun 2013;4:2236.
-
(2013)
Nat Commun
, vol.4
, pp. 2236
-
-
Fendt, S.M.1
Bell, E.L.2
Keibler, M.A.3
Olenchock, B.A.4
Mayers, J.R.5
Wasylenko, T.M.6
|