-
1
-
-
33745828702
-
EGF-ERBB signalling: towards the systems level
-
Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 2006; 7:505-516.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 505-516
-
-
Citri, A.1
Yarden, Y.2
-
2
-
-
40849147041
-
EGFR antagonists in cancer treatment
-
Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N. Engl. J. Med. 2008; 358:1160-1174.
-
(2008)
N. Engl. J. Med.
, vol.358
, pp. 1160-1174
-
-
Ciardiello, F.1
Tortora, G.2
-
3
-
-
84861495556
-
Therapeutic targeting of the epidermal growth factor receptor in human cancer
-
Dhomen NS, Mariadason J, Tebbutt N, Scott AM. Therapeutic targeting of the epidermal growth factor receptor in human cancer. Crit Rev. Oncog. 2012; 17:31-50.
-
(2012)
Crit Rev. Oncog.
, vol.17
, pp. 31-50
-
-
Dhomen, N.S.1
Mariadason, J.2
Tebbutt, N.3
Scott, A.M.4
-
4
-
-
84887497121
-
The quest to overcome resistance to EGFR-targeted therapies in cancer
-
Chong CR, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 2013; 19:1389-1400.
-
(2013)
Nat. Med.
, vol.19
, pp. 1389-1400
-
-
Chong, C.R.1
Janne, P.A.2
-
5
-
-
77956268839
-
Understanding resistance to EGFR inhibitors-impact on future treatment strategies
-
Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat. Rev. Clin. Oncol. 2010; 7:493-507.
-
(2010)
Nat. Rev. Clin. Oncol.
, vol.7
, pp. 493-507
-
-
Wheeler, D.L.1
Dunn, E.F.2
Harari, P.M.3
-
6
-
-
84863000299
-
The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers
-
Diaz LA Jr., et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012; 486:537-540.
-
(2012)
Nature.
, vol.486
, pp. 537-540
-
-
Diaz Jr, L.A.1
-
7
-
-
84862999938
-
Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer
-
Misale S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012; 486:532-536.
-
(2012)
Nature.
, vol.486
, pp. 532-536
-
-
Misale, S.1
-
8
-
-
44449147036
-
Tumor cell metabolism: cancer's Achilles' heel
-
Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008; 13:472-482.
-
(2008)
Cancer Cell.
, vol.13
, pp. 472-482
-
-
Kroemer, G.1
Pouyssegur, J.2
-
9
-
-
34648876684
-
Metabolic targeting as an anticancer strategy: dawn of a new era?
-
Pan JG, Mak TW. Metabolic targeting as an anticancer strategy: dawn of a new era? Sci. STKE. 2007; 2007:e14.
-
(2007)
Sci. STKE.
, vol.2007
-
-
Pan, J.G.1
Mak, T.W.2
-
10
-
-
77949967131
-
Targeting metabolic transformation for cancer therapy
-
Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer. 2010; 10:267-277.
-
(2010)
Nat. Rev. Cancer.
, vol.10
, pp. 267-277
-
-
Tennant, D.A.1
Duran, R.V.2
Gottlieb, E.3
-
11
-
-
80052242132
-
Targeting cancer metabolism: a therapeutic window opens
-
Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 2011; 10:671-684.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
-
14
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324:1029-1033.
-
(2009)
Science.
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
15
-
-
77956674635
-
Evidence for an alternative glycolytic pathway in rapidly proliferating cells
-
Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 2010; 329:1492-1499.
-
(2010)
Science.
, vol.329
, pp. 1492-1499
-
-
Vander Heiden, M.G.1
Locasale, J.W.2
Swanson, K.D.3
Sharfi, H.4
Heffron, G.J.5
Amador-Noguez, D.6
Christofk, H.R.7
Wagner, G.8
Rabinowitz, J.D.9
Asara, J.M.10
Cantley, L.C.11
-
16
-
-
21744454494
-
The antiepidermal growth factor receptor monoclonal antibody cetuximab/C225 reduces hypoxia-inducible factor-1 alpha, leading to transcriptional inhibition of vascular endothelial growth factor expression
-
Luwor RB, Lu Y, Li X, Mendelsohn J, Fan Z. The antiepidermal growth factor receptor monoclonal antibody cetuximab/C225 reduces hypoxia-inducible factor-1 alpha, leading to transcriptional inhibition of vascular endothelial growth factor expression. Oncogene. 2005; 24:4433-4441.
-
(2005)
Oncogene.
, vol.24
, pp. 4433-4441
-
-
Luwor, R.B.1
Lu, Y.2
Li, X.3
Mendelsohn, J.4
Fan, Z.5
-
17
-
-
49849084552
-
Requirement of hypoxia-inducible factor-1alpha downregulation in mediating the antitumor activity of the antiepidermal growth factor receptor monoclonal antibody cetuximab
-
Li X, Lu Y, Liang K, Pan T, Mendelsohn J, Fan Z. Requirement of hypoxia-inducible factor-1alpha downregulation in mediating the antitumor activity of the antiepidermal growth factor receptor monoclonal antibody cetuximab. Mol. Cancer Ther. 2008; 7:1207-1217.
-
(2008)
Mol. Cancer Ther.
, vol.7
, pp. 1207-1217
-
-
Li, X.1
Lu, Y.2
Liang, K.3
Pan, T.4
Mendelsohn, J.5
Fan, Z.6
-
18
-
-
84885585514
-
Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A
-
Lu H, Li X, Luo Z, Liu J, Fan Z. Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A. Mol. Cancer Ther. 2013; 12:2187-2199.
-
(2013)
Mol. Cancer Ther.
, vol.12
, pp. 2187-2199
-
-
Lu, H.1
Li, X.2
Luo, Z.3
Liu, J.4
Fan, Z.5
-
19
-
-
67749111502
-
The LKB1-AMPK pathway:metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway:metabolism and growth control in tumour suppression. Nat. Rev. Cancer. 2009; 9:563-575.
-
(2009)
Nat. Rev. Cancer.
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
20
-
-
80053035284
-
AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function
-
Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011; 25:1895-1908.
-
(2011)
Genes Dev.
, vol.25
, pp. 1895-1908
-
-
Hardie, D.G.1
-
21
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012; 13:251-262.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
22
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001; 108:1167-1174.
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
-
23
-
-
0028092988
-
Critical phosphorylation sites for acetyl-CoA carboxylase activity
-
Ha J, Daniel S, Broyles SS, Kim KH. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J. Biol. Chem. 1994; 269:22162-22168.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 22162-22168
-
-
Ha, J.1
Daniel, S.2
Broyles, S.S.3
Kim, K.H.4
-
24
-
-
3242720345
-
Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer
-
Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J Med. 2004; 351:337-345.
-
(2004)
N. Engl. J Med.
, vol.351
, pp. 337-345
-
-
Cunningham, D.1
Humblet, Y.2
Siena, S.3
Khayat, D.4
Bleiberg, H.5
Santoro, A.6
Bets, D.7
Mueser, M.8
Harstrick, A.9
Verslype, C.10
Chau, I.11
Van Cutsem, E.12
-
25
-
-
33646228635
-
KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer
-
Lievre A, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006; 66:3992-3995.
-
(2006)
Cancer Res.
, vol.66
, pp. 3992-3995
-
-
Lievre, A.1
-
26
-
-
34548238762
-
Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab
-
Khambata-Ford S, et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 2007; 25:3230-3237.
-
(2007)
J. Clin. Oncol.
, vol.25
, pp. 3230-3237
-
-
Khambata-Ford, S.1
-
27
-
-
34548546535
-
Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab
-
Lu Y, Li X, Liang K, Luwor R, Siddik ZH, Mills GB, Mendelsohn J, Fan Z. Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab. Cancer Res. 2007; 67:8240-8247.
-
(2007)
Cancer Res.
, vol.67
, pp. 8240-8247
-
-
Lu, Y.1
Li, X.2
Liang, K.3
Luwor, R.4
Siddik, Z.H.5
Mills, G.B.6
Mendelsohn, J.7
Fan, Z.8
-
28
-
-
0023642627
-
A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis
-
Carling D, Zammit VA, Hardie DG. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 1987; 223:217-222.
-
(1987)
FEBS Lett.
, vol.223
, pp. 217-222
-
-
Carling, D.1
Zammit, V.A.2
Hardie, D.G.3
-
29
-
-
79953755370
-
AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
-
Li Y, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011; 13:376-388.
-
(2011)
Cell Metab.
, vol.13
, pp. 376-388
-
-
Li, Y.1
-
30
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003; 115:577-590.
-
(2003)
Cell.
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
31
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell. 2008; 30:214-226.
-
(2008)
Mol. Cell.
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
32
-
-
84858414020
-
Cellular metabolism and disease: what do metabolic outliers teach us?
-
DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012; 148:1132-1144.
-
(2012)
Cell.
, vol.148
, pp. 1132-1144
-
-
DeBerardinis, R.J.1
Thompson, C.B.2
-
33
-
-
84866856851
-
Cancer metabolism: When more is less
-
Jiang L, DeBerardinis RJ. Cancer metabolism: When more is less. Nature. 2012; 489:511-512.
-
(2012)
Nature.
, vol.489
, pp. 511-512
-
-
Jiang, L.1
DeBerardinis, R.J.2
-
34
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan DF, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011; 331:456-461.
-
(2011)
Science.
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
35
-
-
79551598347
-
AMPK, and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. AMPK, and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011; 13:132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
36
-
-
79951807242
-
AMPK and autophagy get connected
-
Hardie DG. AMPK and autophagy get connected. EMBO J. 2011; 30:634-635.
-
(2011)
EMBO J.
, vol.30
, pp. 634-635
-
-
Hardie, D.G.1
-
37
-
-
79955419135
-
Up-regulation of AMP-activated protein kinase in cancer cell lines is mediated through c-Src activation
-
Mizrachy-Schwartz S, Cohen N, Klein S, Kravchenko-Balasha N, Levitzki A. Up-regulation of AMP-activated protein kinase in cancer cell lines is mediated through c-Src activation. J Biol. Chem. 2011; 286:15268-15277.
-
(2011)
J Biol. Chem.
, vol.286
, pp. 15268-15277
-
-
Mizrachy-Schwartz, S.1
Cohen, N.2
Klein, S.3
Kravchenko-Balasha, N.4
Levitzki, A.5
-
38
-
-
0141706665
-
Activation of 5′-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells. Role of peroxynitrite
-
Zou MH, Hou XY, Shi CM, Kirkpatick S, Liu F, Goldman MH, Cohen RA. Activation of 5′-AMP-activated kinase is mediated through c-Src and phosphoinositide 3-kinase activity during hypoxia-reoxygenation of bovine aortic endothelial cells. Role of peroxynitrite. J Biol. Chem. 2003; 278:34003-34010.
-
(2003)
J Biol. Chem.
, vol.278
, pp. 34003-34010
-
-
Zou, M.H.1
Hou, X.Y.2
Shi, C.M.3
Kirkpatick, S.4
Liu, F.5
Goldman, M.H.6
Cohen, R.A.7
-
39
-
-
6344292389
-
Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species
-
Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol. Chem. 2004; 279:43940-43951.
-
(2004)
J Biol. Chem.
, vol.279
, pp. 43940-43951
-
-
Zou, M.H.1
Kirkpatrick, S.S.2
Davis, B.J.3
Nelson, J.S.4
Wiles, W.G.5
Schlattner, U.6
Neumann, D.7
Brownlee, M.8
Freeman, M.B.9
Goldman, M.H.10
-
40
-
-
75149117805
-
Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1
-
Yamada E, Pessin JE, Kurland IJ, Schwartz GJ, Bastie CC. Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1. Cell Metab. 2010; 11:113-124.
-
(2010)
Cell Metab.
, vol.11
, pp. 113-124
-
-
Yamada, E.1
Pessin, J.E.2
Kurland, I.J.3
Schwartz, G.J.4
Bastie, C.C.5
-
41
-
-
77955038334
-
The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1α and Bcl-2 and activating the Beclin 1/hVps34 complex
-
Li X, Fan Z. The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1α and Bcl-2 and activating the Beclin 1/hVps34 complex. Cancer Res. 2010; 70:5942-5952.
-
(2010)
Cancer Res.
, vol.70
, pp. 5942-5952
-
-
Li, X.1
Fan, Z.2
-
42
-
-
78649251524
-
Roles of autophagy in cetuximabmediated cancer therapy against EGFR
-
Li X, Lu Y, Pan T, Fan Z. Roles of autophagy in cetuximabmediated cancer therapy against EGFR. Autophagy. 2010; 6:1066-1077.
-
(2010)
Autophagy.
, vol.6
, pp. 1066-1077
-
-
Li, X.1
Lu, Y.2
Pan, T.3
Fan, Z.4
-
43
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005; 310:1642-1646.
-
(2005)
Science.
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
Koo, S.H.4
Bardeesy, N.5
Depinho, R.A.6
Montminy, M.7
Cantley, L.C.8
-
44
-
-
84873584845
-
LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin
-
Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, Wei L, Fishbein MC, Czernin J, Mischel PS, Shaw RJ. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell. 2013; 23:143-158.
-
(2013)
Cancer Cell.
, vol.23
, pp. 143-158
-
-
Shackelford, D.B.1
Abt, E.2
Gerken, L.3
Vasquez, D.S.4
Seki, A.5
Leblanc, M.6
Wei, L.7
Fishbein, M.C.8
Czernin, J.9
Mischel, P.S.10
Shaw, R.J.11
-
45
-
-
84879867265
-
Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines
-
Morgillo F, Sasso FC, Della Corte CM, Vitagliano D, D'Aiuto E, Troiani T, Martinelli E, De VF, Orditura M, De PR, Ciardiello F. Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Clin. Cancer Res. 2013; 19:3508-3519.
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 3508-3519
-
-
Morgillo, F.1
Sasso, F.C.2
Della Corte, C.M.3
Vitagliano, D.4
D'Aiuto, E.5
Troiani, T.6
Martinelli, E.7
De, V.F.8
Orditura, M.9
De, P.R.10
Ciardiello, F.11
-
46
-
-
84905757105
-
Metformin-mode of action and clinical implications for diabetes and cancer
-
Pernicova I, Korbonits M. Metformin-mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 2014; 10:143-156.
-
(2014)
Nat. Rev. Endocrinol.
, vol.10
, pp. 143-156
-
-
Pernicova, I.1
Korbonits, M.2
-
47
-
-
84862785887
-
The anti-EGFR antibody cetuximab sensitizes human head and neck squamous cell carcinoma cells to radiation in part through inhibiting radiation-induced upregulation of HIF-1alpha
-
Lu H, Liang K, Lu Y, Fan Z. The anti-EGFR antibody cetuximab sensitizes human head and neck squamous cell carcinoma cells to radiation in part through inhibiting radiation-induced upregulation of HIF-1alpha. Cancer Lett. 2012; 322:78-85.
-
(2012)
Cancer Lett.
, vol.322
, pp. 78-85
-
-
Lu, H.1
Liang, K.2
Lu, Y.3
Fan, Z.4
-
48
-
-
80455136301
-
Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites
-
Zhao M, et al. Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites. Clin. Cancer Res. 2011; 17:7248-7264.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 7248-7264
-
-
Zhao, M.1
-
49
-
-
0035698574
-
Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells
-
Post DE, Van Meir EG. Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther. 2001; 8:1801-1807.
-
(2001)
Gene Ther.
, vol.8
, pp. 1801-1807
-
-
Post, D.E.1
Van Meir, E.G.2
-
50
-
-
78650832902
-
1, 9-Pyrazoloanthrones downregulate HIF-1alpha and sensitize cancer cells to cetuximabmediated anti-EGFR therapy
-
Lu Y, Li X, Lu H, Fan Z. 1, 9-Pyrazoloanthrones downregulate HIF-1alpha and sensitize cancer cells to cetuximabmediated anti-EGFR therapy. PLoS One. 2010; 5:e58231.
-
(2010)
PLoS One.
, vol.5
-
-
Lu, Y.1
Li, X.2
Lu, H.3
Fan, Z.4
|