메뉴 건너뛰기




Volumn 36, Issue 4, 2016, Pages 524-544

Role of deubiquitinating enzymes in DNA repair

Author keywords

[No Author keywords available]

Indexed keywords

BRCA1 ASSOCIATED PROTEIN 1; DEUBIQUITINASE; DNA; DNA DIRECTED DNA POLYMERASE BETA; FANCI PROTEIN; FANCONI ANEMIA GROUP D2 PROTEIN; OTU FAMILY DEUBIQUITINATING ENZYME 1; PAD ONE HOMOLOG 1; UBIQUITIN SPECIFIC PROTEASE 34; UBIQUITIN SPECIFIC PROTEASE 4; UBIQUITIN SPECIFIC PROTEASE 47; UBIQUITIN SPECIFIC PROTEASE 7; UNCLASSIFIED DRUG; UBIQUITIN;

EID: 84957899372     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00847-15     Document Type: Article
Times cited : (66)

References (243)
  • 2
    • 67649634849 scopus 로고    scopus 로고
    • Defining the human deubiquitinating enzyme interaction landscape
    • Sowa ME, Bennett EJ, Gygi SP, Harper JW. 2009. Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389-403. http://dx.doi.org/10.1016/j.cell.2009.04.042.
    • (2009) Cell , vol.138 , pp. 389-403
    • Sowa, M.E.1    Bennett, E.J.2    Gygi, S.P.3    Harper, J.W.4
  • 6
    • 84861877407 scopus 로고    scopus 로고
    • The ubiquitin code
    • Komander D, Rape M. 2012. The ubiquitin code. Annu Rev Biochem 81:203-229. http://dx.doi.org/10.1146/annurev-biochem-060310-170328.
    • (2012) Annu Rev Biochem , vol.81 , pp. 203-229
    • Komander, D.1    Rape, M.2
  • 7
    • 80052265841 scopus 로고    scopus 로고
    • Mechanism, specificity and structure of the deubiquitinases
    • Komander D. 2010. Mechanism, specificity and structure of the deubiquitinases. Subcell Biochem 54:69-87. http://dx.doi.org/10.1007/978-1-4419-6676-6_6.
    • (2010) Subcell Biochem , vol.54 , pp. 69-87
    • Komander, D.1
  • 8
    • 33646196532 scopus 로고    scopus 로고
    • Regulation of DNA repair by ubiquitylation
    • Huang TT, D'Andrea AD. 2006. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7:323-334. http://dx.doi.org/10.1038/nrm1908.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 323-334
    • Huang, T.T.1    D'Andrea, A.D.2
  • 9
    • 84865364870 scopus 로고    scopus 로고
    • Playing the end game: DNA double-strand break repair pathway choice
    • Chapman JR, Taylor MR, Boulton SJ. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497-510. http://dx.doi.org/10.1016/j.molcel.2012.07.029.
    • (2012) Mol Cell , vol.47 , pp. 497-510
    • Chapman, J.R.1    Taylor, M.R.2    Boulton, S.J.3
  • 10
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: making it safe to play with knives
    • Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Mol Cell 40:179-204. http://dx.doi.org/10.1016/j.molcel.2010.09.019.
    • (2010) Mol Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 11
    • 0343280013 scopus 로고    scopus 로고
    • A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage
    • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886-895. http://dx.doi.org/10.1016/S0960-9822(00)00610-2.
    • (2000) Curr Biol , vol.10 , pp. 886-895
    • Paull, T.T.1    Rogakou, E.P.2    Yamazaki, V.3    Kirchgessner, C.U.4    Gellert, M.5    Bonner, W.M.6
  • 12
    • 0037468192 scopus 로고    scopus 로고
    • MDC1 is a mediator of the mammalian DNA damage checkpoint
    • Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. 2003. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961-966. http://dx.doi.org/10.1038/nature01446.
    • (2003) Nature , vol.421 , pp. 961-966
    • Stewart, G.S.1    Wang, B.2    Bignell, C.R.3    Taylor, A.M.4    Elledge, S.J.5
  • 13
    • 36749025467 scopus 로고    scopus 로고
    • Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage
    • Wang B, Elledge SJ. 2007. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A 104:20759-20763. http://dx.doi.org/10.1073/pnas.0710061104.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 20759-20763
    • Wang, B.1    Elledge, S.J.2
  • 14
    • 36249031962 scopus 로고    scopus 로고
    • RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly
    • Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J. 2007. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131:901-914. http://dx.doi.org/10.1016/j.cell.2007.09.041.
    • (2007) Cell , vol.131 , pp. 901-914
    • Huen, M.S.1    Grant, R.2    Manke, I.3    Minn, K.4    Yu, X.5    Yaffe, M.B.6    Chen, J.7
  • 15
    • 36248966246 scopus 로고    scopus 로고
    • RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins
    • Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J. 2007. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131:887-900. http://dx.doi.org/10.1016/j.cell.2007.09.040.
    • (2007) Cell , vol.131 , pp. 887-900
    • Mailand, N.1    Bekker-Jensen, S.2    Faustrup, H.3    Melander, F.4    Bartek, J.5    Lukas, C.6    Lukas, J.7
  • 21
    • 63049101044 scopus 로고    scopus 로고
    • Regulatory ubiquitylation in response to DNA double-strand breaks
    • Panier S, Durocher D. 2009. Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst) 8:436-443. http://dx.doi.org/10.1016/j.dnarep.2009.01.013.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 436-443
    • Panier, S.1    Durocher, D.2
  • 22
    • 84864919890 scopus 로고    scopus 로고
    • Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks
    • Panier S, Ichijima Y, Fradet-Turcotte A, Leung CC, Kaustov L, Arrowsmith CH, Durocher D. 2012. Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks. Mol Cell 47:383-395. http://dx.doi.org/10.1016/j.molcel.2012.05.045.
    • (2012) Mol Cell , vol.47 , pp. 383-395
    • Panier, S.1    Ichijima, Y.2    Fradet-Turcotte, A.3    Leung, C.C.4    Kaustov, L.5    Arrowsmith, C.H.6    Durocher, D.7
  • 23
    • 84859895529 scopus 로고    scopus 로고
    • RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites
    • Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S. 2012. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J 31:1865-1878. http://dx.doi.org/10.1038/emboj.2012.47.
    • (2012) EMBO J , vol.31 , pp. 1865-1878
    • Mallette, F.A.1    Mattiroli, F.2    Cui, G.3    Young, L.C.4    Hendzel, M.J.5    Mer, G.6    Sixma, T.K.7    Richard, S.8
  • 25
    • 84897449829 scopus 로고    scopus 로고
    • Nucleosome acidic patch promotes RNF168- and RING1B/BMI1-dependent H2AX and H2A ubiquitination and DNA damage signaling
    • Leung JW, Agarwal P, Canny MD, Gong F, Robison AD, Finkelstein IJ, Durocher D, Miller KM. 2014. Nucleosome acidic patch promotes RNF168- and RING1B/BMI1-dependent H2AX and H2A ubiquitination and DNA damage signaling. PLoS Genet 10:e1004178. http://dx.doi.org/10.1371/journal.pgen.1004178.
    • (2014) PLoS Genet , vol.10 , pp. e1004178
    • Leung, J.W.1    Agarwal, P.2    Canny, M.D.3    Gong, F.4    Robison, A.D.5    Finkelstein, I.J.6    Durocher, D.7    Miller, K.M.8
  • 27
    • 0033525582 scopus 로고    scopus 로고
    • Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
    • Hofmann RM, Pickart CM. 1999. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645-653. http://dx.doi.org/10.1016/S0092-8674(00)80575-9.
    • (1999) Cell , vol.96 , pp. 645-653
    • Hofmann, R.M.1    Pickart, C.M.2
  • 29
  • 31
    • 34249946686 scopus 로고    scopus 로고
    • Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response
    • Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, Elledge SJ. 2007. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316:1194-1198. http://dx.doi.org/10.1126/science.1139476.
    • (2007) Science , vol.316 , pp. 1194-1198
    • Wang, B.1    Matsuoka, S.2    Ballif, B.A.3    Zhang, D.4    Smogorzewska, A.5    Gygi, S.P.6    Elledge, S.J.7
  • 32
    • 34249950879 scopus 로고    scopus 로고
    • Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response
    • Kim H, Chen J, Yu X. 2007. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316:1202-1205. http://dx.doi.org/10.1126/science.1139621.
    • (2007) Science , vol.316 , pp. 1202-1205
    • Kim, H.1    Chen, J.2    Yu, X.3
  • 33
    • 34547120473 scopus 로고    scopus 로고
    • The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response
    • Yan J, Kim YS, Yang XP, Li LP, Liao G, Xia F, Jetten AM. 2007. The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res 67:6647-6656. http://dx.doi.org/10.1158/0008-5472.CAN-07-0924.
    • (2007) Cancer Res , vol.67 , pp. 6647-6656
    • Yan, J.1    Kim, Y.S.2    Yang, X.P.3    Li, L.P.4    Liao, G.5    Xia, F.6    Jetten, A.M.7
  • 34
    • 84863315246 scopus 로고    scopus 로고
    • RAP80 protein is important for genomic stability and is required for stabilizing BRCA1-A complex at DNA damage sites in vivo
    • Wu J, Liu C, Chen J, Yu X. 2012. RAP80 protein is important for genomic stability and is required for stabilizing BRCA1-A complex at DNA damage sites in vivo. J Biol Chem 287:22919-22926. http://dx.doi.org/10.1074/jbc.M112.351007.
    • (2012) J Biol Chem , vol.287 , pp. 22919-22926
    • Wu, J.1    Liu, C.2    Chen, J.3    Yu, X.4
  • 35
    • 66349096607 scopus 로고    scopus 로고
    • PALB2 is an integral component of the BRCA complex required for homologous recombination repair
    • Sy SM, Huen MS, Chen J. 2009. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A 106:7155-7160. http://dx.doi.org/10.1073/pnas.0811159106.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 7155-7160
    • Sy, S.M.1    Huen, M.S.2    Chen, J.3
  • 36
    • 67651166786 scopus 로고    scopus 로고
    • PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2
    • Zhang F, Fan Q, Ren K, Andreassen PR. 2009. PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 7:1110-1118. http://dx.doi.org/10.1158/1541-7786.MCR-09-0123.
    • (2009) Mol Cancer Res , vol.7 , pp. 1110-1118
    • Zhang, F.1    Fan, Q.2    Ren, K.3    Andreassen, P.R.4
  • 38
    • 79954528832 scopus 로고    scopus 로고
    • RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci
    • Hu Y, Scully R, Sobhian B, Xie A, Shestakova E, Livingston DM. 2011. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 25:685-700. http://dx.doi.org/10.1101/gad.2011011.
    • (2011) Genes Dev , vol.25 , pp. 685-700
    • Hu, Y.1    Scully, R.2    Sobhian, B.3    Xie, A.4    Shestakova, E.5    Livingston, D.M.6
  • 39
    • 79953869356 scopus 로고    scopus 로고
    • The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection
    • Coleman KA, Greenberg RA. 2011. The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem 286:13669-13680. http://dx.doi.org/10.1074/jbc.M110.213728.
    • (2011) J Biol Chem , vol.286 , pp. 13669-13680
    • Coleman, K.A.1    Greenberg, R.A.2
  • 44
    • 84892983257 scopus 로고    scopus 로고
    • 53BP1: pro choice in DNA repair
    • Zimmermann M, de Lange T. 2014. 53BP1: pro choice in DNA repair. Trends Cell Biol 24:108-117. http://dx.doi.org/10.1016/j.tcb.2013.09.003.
    • (2014) Trends Cell Biol , vol.24 , pp. 108-117
    • Zimmermann, M.1    de Lange, T.2
  • 45
    • 84873488846 scopus 로고    scopus 로고
    • 53BP1 regulates DSB repair using Rif1 to control 5' end resection
    • Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T. 2013. 53BP1 regulates DSB repair using Rif1 to control 5' end resection. Science 339:700-704. http://dx.doi.org/10.1126/science.1231573.
    • (2013) Science , vol.339 , pp. 700-704
    • Zimmermann, M.1    Lottersberger, F.2    Buonomo, S.B.3    Sfeir, A.4    de Lange, T.5
  • 49
    • 84876527317 scopus 로고    scopus 로고
    • RIF1 counteracts BRCA1-mediated end resection during DNA repair
    • Feng L, Fong KW, Wang J, Wang W, Chen J. 2013. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J Biol Chem 288:11135-11143. http://dx.doi.org/10.1074/jbc.M113.457440.
    • (2013) J Biol Chem , vol.288 , pp. 11135-11143
    • Feng, L.1    Fong, K.W.2    Wang, J.3    Wang, W.4    Chen, J.5
  • 52
    • 84918555933 scopus 로고    scopus 로고
    • PTIP associates with Artemis to dictate DNA repair pathway choice
    • Wang J, Aroumougame A, Lobrich M, Li Y, Chen D, Chen J, Gong Z. 2014. PTIP associates with Artemis to dictate DNA repair pathway choice. Genes Dev 28:2693-2698. http://dx.doi.org/10.1101/gad.252478.114.
    • (2014) Genes Dev , vol.28 , pp. 2693-2698
    • Wang, J.1    Aroumougame, A.2    Lobrich, M.3    Li, Y.4    Chen, D.5    Chen, J.6    Gong, Z.7
  • 53
    • 84931291782 scopus 로고    scopus 로고
    • Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining
    • Zong D, Callen E, Pegoraro G, Lukas C, Lukas J, Nussenzweig A. 2015. Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining. Nucleic Acids Res 43:4950-4961. http://dx.doi.org/10.1093/nar/gkv336.
    • (2015) Nucleic Acids Res , vol.43 , pp. 4950-4961
    • Zong, D.1    Callen, E.2    Pegoraro, G.3    Lukas, C.4    Lukas, J.5    Nussenzweig, A.6
  • 54
    • 62649104153 scopus 로고    scopus 로고
    • K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1
    • Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. 2009. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 28:621-631. http://dx.doi.org/10.1038/emboj.2009.27.
    • (2009) EMBO J , vol.28 , pp. 621-631
    • Cooper, E.M.1    Cutcliffe, C.2    Kristiansen, T.Z.3    Pandey, A.4    Pickart, C.M.5    Cohen, R.E.6
  • 55
    • 34547662882 scopus 로고    scopus 로고
    • CCDC98 targets BRCA1 to DNA damage sites
    • Liu Z, Wu J, Yu X. 2007. CCDC98 targets BRCA1 to DNA damage sites. Nat Struct Mol Biol 14:716-720. http://dx.doi.org/10.1038/nsmb1279.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 716-720
    • Liu, Z.1    Wu, J.2    Yu, X.3
  • 56
    • 34547655427 scopus 로고    scopus 로고
    • CCDC98 is a BRCA1-BRCT domainbinding protein involved in the DNA damage response
    • Kim H, Huang J, Chen J. 2007. CCDC98 is a BRCA1-BRCT domainbinding protein involved in the DNA damage response. Nat Struct Mol Biol 14:710-715. http://dx.doi.org/10.1038/nsmb1277.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 710-715
    • Kim, H.1    Huang, J.2    Chen, J.3
  • 57
    • 63049138322 scopus 로고    scopus 로고
    • NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control
    • Wang B, Hurov K, Hofmann K, Elledge SJ. 2009. NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev 23:729-739. http://dx.doi.org/10.1101/gad.1770309.
    • (2009) Genes Dev , vol.23 , pp. 729-739
    • Wang, B.1    Hurov, K.2    Hofmann, K.3    Elledge, S.J.4
  • 58
    • 77957260099 scopus 로고    scopus 로고
    • The Lys63-specific deubiquitinating enzyme BRCC36 is regulated by two scaffold proteins localizing in different subcellular compartments
    • Feng L, Wang J, Chen J. 2010. The Lys63-specific deubiquitinating enzyme BRCC36 is regulated by two scaffold proteins localizing in different subcellular compartments. J Biol Chem 285:30982-30988. http://dx.doi.org/10.1074/jbc.M110.135392.
    • (2010) J Biol Chem , vol.285 , pp. 30982-30988
    • Feng, L.1    Wang, J.2    Chen, J.3
  • 59
    • 79953203601 scopus 로고    scopus 로고
    • NBA1/MERIT40 and BRE interaction is required for the integrity of two distinct deubiquitinating enzyme BRCC36-containing complexes
    • Hu X, Kim JA, Castillo A, Huang M, Liu J, Wang B. 2011. NBA1/MERIT40 and BRE interaction is required for the integrity of two distinct deubiquitinating enzyme BRCC36-containing complexes. J Biol Chem 286:11734-11745. http://dx.doi.org/10.1074/jbc.M110.200857.
    • (2011) J Biol Chem , vol.286 , pp. 11734-11745
    • Hu, X.1    Kim, J.A.2    Castillo, A.3    Huang, M.4    Liu, J.5    Wang, B.6
  • 60
    • 0345276495 scopus 로고    scopus 로고
    • Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair
    • Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, Shiekhattar R. 2003. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 12:1087-1099. http://dx.doi.org/10.1016/S1097-2765(03)00424-6.
    • (2003) Mol Cell , vol.12 , pp. 1087-1099
    • Dong, Y.1    Hakimi, M.A.2    Chen, X.3    Kumaraswamy, E.4    Cooch, N.S.5    Godwin, A.K.6    Shiekhattar, R.7
  • 62
    • 62549140202 scopus 로고    scopus 로고
    • The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks
    • Shao G, Lilli DR, Patterson-Fortin J, Coleman KA, Morrissey DE, Greenberg RA. 2009. The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc Natl Acad Sci U S A 106:3166-3171. http://dx.doi.org/10.1073/pnas.0807485106.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 3166-3171
    • Shao, G.1    Lilli, D.R.2    Patterson-Fortin, J.3    Coleman, K.A.4    Morrissey, D.E.5    Greenberg, R.A.6
  • 63
    • 84874351566 scopus 로고    scopus 로고
    • A two-step mechanism for TRF2-mediated chromosome-end protection
    • Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR, III, Denchi EL. 2013. A two-step mechanism for TRF2-mediated chromosome-end protection. Nature 494:502-505. http://dx.doi.org/10.1038/nature11873.
    • (2013) Nature , vol.494 , pp. 502-505
    • Okamoto, K.1    Bartocci, C.2    Ouzounov, I.3    Diedrich, J.K.4    Yates, J.R.5    Denchi, E.L.6
  • 64
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • Verma R, Aravind L, Oania R, McDonald WH, Yates JR, III, Koonin EV, Deshaies RJ. 2002. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611-615. http://dx.doi.org/10.1126/science.1075898.
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1    Aravind, L.2    Oania, R.3    McDonald, W.H.4    Yates, J.R.5    Koonin, E.V.6    Deshaies, R.J.7
  • 65
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • Yao T, Cohen RE. 2002. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403-407. http://dx.doi.org/10.1038/nature01071.
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 67
    • 84890324730 scopus 로고    scopus 로고
    • Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection
    • Kakarougkas A, Ismail A, Katsuki Y, Freire R, Shibata A, Jeggo PA. 2013. Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Res 41:10298-10311. http://dx.doi.org/10.1093/nar/gkt802.
    • (2013) Nucleic Acids Res , vol.41 , pp. 10298-10311
    • Kakarougkas, A.1    Ismail, A.2    Katsuki, Y.3    Freire, R.4    Shibata, A.5    Jeggo, P.A.6
  • 68
    • 84895868714 scopus 로고    scopus 로고
    • Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
    • Worden EJ, Padovani C, Martin A. 2014. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol 21:220-227. http://dx.doi.org/10.1038/nsmb.2771.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 220-227
    • Worden, E.J.1    Padovani, C.2    Martin, A.3
  • 70
    • 77950418771 scopus 로고    scopus 로고
    • The 19S proteasomal lid subunit POH1 enhances the transcriptional activation by Mitf in osteoclasts
    • Schwarz T, Sohn C, Kaiser B, Jensen ED, Mansky KC. 2010. The 19S proteasomal lid subunit POH1 enhances the transcriptional activation by Mitf in osteoclasts. J Cell Biochem 109:967-974. http://dx.doi.org/10.1002/jcb.22475.
    • (2010) J Cell Biochem , vol.109 , pp. 967-974
    • Schwarz, T.1    Sohn, C.2    Kaiser, B.3    Jensen, E.D.4    Mansky, K.C.5
  • 71
    • 84898762983 scopus 로고    scopus 로고
    • The JAMM in the proteasome
    • Wauer T, Komander D. 2014. The JAMM in the proteasome. Nat Struct Mol Biol 21:346-348. http://dx.doi.org/10.1038/nsmb.2800.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 346-348
    • Wauer, T.1    Komander, D.2
  • 72
    • 0030746105 scopus 로고    scopus 로고
    • In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome
    • Amerik AY, Swaminathan S, Krantz BA, Wilkinson KD, Hochstrasser M. 1997. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J 16:4826-4838. http://dx.doi.org/10.1093/emboj/16.16.4826.
    • (1997) EMBO J , vol.16 , pp. 4826-4838
    • Amerik, A.Y.1    Swaminathan, S.2    Krantz, B.A.3    Wilkinson, K.D.4    Hochstrasser, M.5
  • 73
    • 84898015292 scopus 로고    scopus 로고
    • Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks
    • Nakajima S, Lan L, Wei L, Hsieh CL, Rapic-Otrin V, Yasui A, Levine AS. 2014. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks. PLoS One 9:e84899. http://dx.doi.org/10.1371/journal.pone.0084899.
    • (2014) PLoS One , vol.9 , pp. e84899
    • Nakajima, S.1    Lan, L.2    Wei, L.3    Hsieh, C.L.4    Rapic-Otrin, V.5    Yasui, A.6    Levine, A.S.7
  • 74
    • 33646066025 scopus 로고    scopus 로고
    • The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin
    • Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. 2006. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124:1197-1208. http://dx.doi.org/10.1016/j.cell.2006.02.038.
    • (2006) Cell , vol.124 , pp. 1197-1208
    • Reyes-Turcu, F.E.1    Horton, J.R.2    Mullally, J.E.3    Heroux, A.4    Cheng, X.5    Wilkinson, K.D.6
  • 76
    • 84894067659 scopus 로고    scopus 로고
    • Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice
    • Kato K, Nakajima K, Ui A, Muto-Terao Y, Ogiwara H, Nakada S. 2014. Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. Mol Cell 53:617-630. http://dx.doi.org/10.1016/j.molcel.2014.01.030.
    • (2014) Mol Cell , vol.53 , pp. 617-630
    • Kato, K.1    Nakajima, K.2    Ui, A.3    Muto-Terao, Y.4    Ogiwara, H.5    Nakada, S.6
  • 78
    • 0242361623 scopus 로고    scopus 로고
    • Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
    • Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL. 2003. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648-2663. http://dx.doi.org/10.1101/gad.1144003.
    • (2003) Genes Dev , vol.17 , pp. 2648-2663
    • Henry, K.W.1    Wyce, A.2    Lo, W.S.3    Duggan, L.J.4    Emre, N.C.5    Kao, C.F.6    Pillus, L.7    Shilatifard, A.8    Osley, M.A.9    Berger, S.L.10
  • 79
    • 0033578890 scopus 로고    scopus 로고
    • Characterization and chromosomal localization of USP3, a novel human ubiquitin-specific protease
    • Sloper-Mould KE, Eyre HJ, Wang XW, Sutherland GR, Baker RT. 1999. Characterization and chromosomal localization of USP3, a novel human ubiquitin-specific protease. J Biol Chem 274:26878-26884. http://dx.doi.org/10.1074/jbc.274.38.26878.
    • (1999) J Biol Chem , vol.274 , pp. 26878-26884
    • Sloper-Mould, K.E.1    Eyre, H.J.2    Wang, X.W.3    Sutherland, G.R.4    Baker, R.T.5
  • 81
    • 84892562030 scopus 로고    scopus 로고
    • USP3 counteracts RNF168 via deubiquitinating H2A and gamma H2AX at lysine 13 and 15
    • Sharma N, Zhu Q, Wani G, He J, Wang QE, Wani AA. 2014. USP3 counteracts RNF168 via deubiquitinating H2A and gamma H2AX at lysine 13 and 15. Cell Cycle 13:106-114. http://dx.doi.org/10.4161/cc.26814.
    • (2014) Cell Cycle , vol.13 , pp. 106-114
    • Sharma, N.1    Zhu, Q.2    Wani, G.3    He, J.4    Wang, Q.E.5    Wani, A.A.6
  • 82
    • 84878758649 scopus 로고    scopus 로고
    • The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases
    • Mosbech A, Lukas C, Bekker-Jensen S, Mailand N. 2013. The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J Biol Chem 288:16579-16587. http://dx.doi.org/10.1074/jbc.M113.459917.
    • (2013) J Biol Chem , vol.288 , pp. 16579-16587
    • Mosbech, A.1    Lukas, C.2    Bekker-Jensen, S.3    Mailand, N.4
  • 84
    • 84903536551 scopus 로고    scopus 로고
    • Dub3 controls DNA damage signalling by direct deubiquitination of H2AX
    • Delgado-Diaz MR, Martin Y, Berg A, Freire R, Smits VA. 2014. Dub3 controls DNA damage signalling by direct deubiquitination of H2AX. Mol Oncol 8:884-893. http://dx.doi.org/10.1016/j.molonc.2014.03.003.
    • (2014) Mol Oncol , vol.8 , pp. 884-893
    • Delgado-Diaz, M.R.1    Martin, Y.2    Berg, A.3    Freire, R.4    Smits, V.A.5
  • 88
    • 80051654271 scopus 로고    scopus 로고
    • Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia
    • Zhang Y, van Deursen J, Galardy PJ. 2011. Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia. PLoS One 6:e23389. http://dx.doi.org/10.1371/journal.pone.0023389.
    • (2011) PLoS One , vol.6 , pp. e23389
    • Zhang, Y.1    van Deursen, J.2    Galardy, P.J.3
  • 89
    • 84870536691 scopus 로고    scopus 로고
    • The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation
    • Holland AJ, Cleveland DW. 2012. The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation. J Clin Invest 122:4325-4328. http://dx.doi.org/10.1172/JCI66420.
    • (2012) J Clin Invest , vol.122 , pp. 4325-4328
    • Holland, A.J.1    Cleveland, D.W.2
  • 91
    • 84954111112 scopus 로고    scopus 로고
    • USP11 is a negative regulator to gamma H2AX ubiquitylation by RNF8/RNF168
    • 27 October
    • Yu M, Liu K, Mao Z, Luo J, Gu W, Zhao W. 27 October 2015. USP11 is a negative regulator to gamman H2AX ubiquitylation by RNF8/RNF168. J Biol Chem http://dx.doi.org/10.1074/jbc.M114.624478.
    • (2015) J Biol Chem
    • Yu, M.1    Liu, K.2    Mao, Z.3    Luo, J.4    Gu, W.5    Zhao, W.6
  • 92
    • 4344717012 scopus 로고    scopus 로고
    • BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage
    • Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA. 2004. BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol Cell Biol 24:7444-7455. http://dx.doi.org/10.1128/MCB.24.17.7444-7455.2004.
    • (2004) Mol Cell Biol , vol.24 , pp. 7444-7455
    • Schoenfeld, A.R.1    Apgar, S.2    Dolios, G.3    Wang, R.4    Aaronson, S.A.5
  • 93
    • 77951985779 scopus 로고    scopus 로고
    • Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair
    • Wiltshire TD, Lovejoy CA, Wang T, Xia F, O'Connor MJ, Cortez D. 2010. Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair. J Biol Chem 285:14565-14571. http://dx.doi.org/10.1074/jbc.M110.104745.
    • (2010) J Biol Chem , vol.285 , pp. 14565-14571
    • Wiltshire, T.D.1    Lovejoy, C.A.2    Wang, T.3    Xia, F.4    O'Connor, M.J.5    Cortez, D.6
  • 94
    • 84940056533 scopus 로고    scopus 로고
    • Ubiquitin-specific protease 11 (USP11) deubiquitinates hybrid small ubiquitin-like modifier (SUMO)-ubiquitin chains to counteract RING finger protein 4 (RNF4)
    • Hendriks IA, Schimmel J, Eifler K, Olsen JV, Vertegaal AC. 2015. Ubiquitin-specific protease 11 (USP11) deubiquitinates hybrid small ubiquitin-like modifier (SUMO)-ubiquitin chains to counteract RING finger protein 4 (RNF4). J Biol Chem 290:15526-15537. http://dx.doi.org/10.1074/jbc.M114.618132.
    • (2015) J Biol Chem , vol.290 , pp. 15526-15537
    • Hendriks, I.A.1    Schimmel, J.2    Eifler, K.3    Olsen, J.V.4    Vertegaal, A.C.5
  • 96
    • 84870760201 scopus 로고    scopus 로고
    • RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage
    • Guzzo CM, Berndsen CE, Zhu J, Gupta V, Datta A, Greenberg RA, Wolberger C, Matunis MJ. 2012. RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci Signal 5:ra88. http://dx.doi.org/10.1126/scisignal.2003485.
    • (2012) Sci Signal , vol.5 , pp. ra88
    • Guzzo, C.M.1    Berndsen, C.E.2    Zhu, J.3    Gupta, V.4    Datta, A.5    Greenberg, R.A.6    Wolberger, C.7    Matunis, M.J.8
  • 97
    • 84863846456 scopus 로고    scopus 로고
    • Sumoylation of MDC1 is important for proper DNA damage response
    • Luo K, Zhang H, Wang L, Yuan J, Lou Z. 2012. Sumoylation of MDC1 is important for proper DNA damage response. EMBO J 31:3008-3019. http://dx.doi.org/10.1038/emboj.2012.158.
    • (2012) EMBO J , vol.31 , pp. 3008-3019
    • Luo, K.1    Zhang, H.2    Wang, L.3    Yuan, J.4    Lou, Z.5
  • 98
    • 84861765707 scopus 로고    scopus 로고
    • RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair
    • Galanty Y, Belotserkovskaya R, Coates J, Jackson SP. 2012. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev 26:1179-1195. http://dx.doi.org/10.1101/gad.188284.112.
    • (2012) Genes Dev , vol.26 , pp. 1179-1195
    • Galanty, Y.1    Belotserkovskaya, R.2    Coates, J.3    Jackson, S.P.4
  • 99
    • 84861784690 scopus 로고    scopus 로고
    • SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage
    • Yin Y, Seifert A, Chua JS, Maure JF, Golebiowski F, Hay RT. 2012. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Dev 26:1196-1208. http://dx.doi.org/10.1101/gad.189274.112.
    • (2012) Genes Dev , vol.26 , pp. 1196-1208
    • Yin, Y.1    Seifert, A.2    Chua, J.S.3    Maure, J.F.4    Golebiowski, F.5    Hay, R.T.6
  • 103
    • 84983490951 scopus 로고    scopus 로고
    • USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168
    • Zhu Q, Sharma N, He J, Wani G, Wani AA. 2015. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168. Cell Cycle 14:1413-1425. http://dx.doi.org/10.1080/15384101.2015.1007785.
    • (2015) Cell Cycle , vol.14 , pp. 1413-1425
    • Zhu, Q.1    Sharma, N.2    He, J.3    Wani, G.4    Wani, A.A.5
  • 104
    • 84885940995 scopus 로고    scopus 로고
    • The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks
    • Sy SM, Jiang J, O WS, Deng Y, Huen MS. 2013. The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks. Nucleic Acids Res 41:8572-8580. http://dx.doi.org/10.1093/nar/gkt622.
    • (2013) Nucleic Acids Res , vol.41 , pp. 8572-8580
    • Sy, S.M.1    Jiang, J.2    Deng, Y.3    Huen, M.S.4
  • 106
    • 22744456248 scopus 로고    scopus 로고
    • The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme
    • Kee Y, Lyon N, Huibregtse JM. 2005. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J 24:2414-2424. http://dx.doi.org/10.1038/sj.emboj.7600710.
    • (2005) EMBO J , vol.24 , pp. 2414-2424
    • Kee, Y.1    Lyon, N.2    Huibregtse, J.M.3
  • 107
    • 33845970909 scopus 로고    scopus 로고
    • The deubiquitinating enzyme Ubp2 modulates Rsp5-dependent Lys63-linked polyubiquitin conjugates in Saccharomyces cerevisiae
    • Kee Y, Munoz W, Lyon N, Huibregtse JM. 2006. The deubiquitinating enzyme Ubp2 modulates Rsp5-dependent Lys63-linked polyubiquitin conjugates in Saccharomyces cerevisiae. J Biol Chem 281:36724-36731. http://dx.doi.org/10.1074/jbc.M608756200.
    • (2006) J Biol Chem , vol.281 , pp. 36724-36731
    • Kee, Y.1    Munoz, W.2    Lyon, N.3    Huibregtse, J.M.4
  • 108
    • 84884395606 scopus 로고    scopus 로고
    • Ubp2 regulates Rsp5 ubiquitination activity in vivo and in vitro
    • Lam MH, Emili A. 2013. Ubp2 regulates Rsp5 ubiquitination activity in vivo and in vitro. PLoS One 8:e75372. http://dx.doi.org/10.1371/journal.pone.0075372.
    • (2013) PLoS One , vol.8 , pp. e75372
    • Lam, M.H.1    Emili, A.2
  • 109
    • 84881290170 scopus 로고    scopus 로고
    • Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway
    • Dar A, Shibata E, Dutta A. 2013. Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway. Mol Cell Biol 33:3309-3320. http://dx.doi.org/10.1128/MCB.00358-13.
    • (2013) Mol Cell Biol , vol.33 , pp. 3309-3320
    • Dar, A.1    Shibata, E.2    Dutta, A.3
  • 110
    • 24944516931 scopus 로고    scopus 로고
    • A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM
    • Sun Y, Jiang X, Chen S, Fernandes N, Price BD. 2005. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 102:13182-13187. http://dx.doi.org/10.1073/pnas.0504211102.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 13182-13187
    • Sun, Y.1    Jiang, X.2    Chen, S.3    Fernandes, N.4    Price, B.D.5
  • 111
    • 84885393469 scopus 로고    scopus 로고
    • Transcriptional regulation by Polycomb group proteins
    • Di Croce L, Helin K. 2013. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 20:1147-1155. http://dx.doi.org/10.1038/nsmb.2669.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 1147-1155
    • Di Croce, L.1    Helin, K.2
  • 113
    • 77957748289 scopus 로고    scopus 로고
    • BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair
    • Ismail IH, Andrin C, McDonald D, Hendzel MJ. 2010. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol 191:45-60. http://dx.doi.org/10.1083/jcb.201003034.
    • (2010) J Cell Biol , vol.191 , pp. 45-60
    • Ismail, I.H.1    Andrin, C.2    McDonald, D.3    Hendzel, M.J.4
  • 114
    • 80051494784 scopus 로고    scopus 로고
    • Monoubiquitination of H2AX protein regulates DNA damage response signaling
    • Pan MR, Peng G, Hung WC, Lin SY. 2011. Monoubiquitination of H2AX protein regulates DNA damage response signaling. J Biol Chem 286:28599-28607. http://dx.doi.org/10.1074/jbc.M111.256297.
    • (2011) J Biol Chem , vol.286 , pp. 28599-28607
    • Pan, M.R.1    Peng, G.2    Hung, W.C.3    Lin, S.Y.4
  • 116
    • 52049085265 scopus 로고    scopus 로고
    • BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization
    • Ventii KH, Devi NS, Friedrich KL, Chernova TA, Tighiouart M, Van Meir EG, Wilkinson KD. 2008. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res 68:6953-6962. http://dx.doi.org/10.1158/0008-5472.CAN-08-0365.
    • (2008) Cancer Res , vol.68 , pp. 6953-6962
    • Ventii, K.H.1    Devi, N.S.2    Friedrich, K.L.3    Chernova, T.A.4    Tighiouart, M.5    Van Meir, E.G.6    Wilkinson, K.D.7
  • 117
    • 84905995383 scopus 로고    scopus 로고
    • Germline mutations in BAP1 impair its function in DNA double-strand break repair
    • Ismail IH, Davidson R, Gagne JP, Xu ZZ, Poirier GG, Hendzel MJ. 2014. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 74:4282-4294. http://dx.doi.org/10.1158/0008-5472.CAN-13-3109.
    • (2014) Cancer Res , vol.74 , pp. 4282-4294
    • Ismail, I.H.1    Davidson, R.2    Gagne, J.P.3    Xu, Z.Z.4    Poirier, G.G.5    Hendzel, M.J.6
  • 120
    • 35548986309 scopus 로고    scopus 로고
    • Regulation of cell cycle progression and gene expression by H2A deubiquitination
    • Joo HY, Zhai L, Yang C, Nie S, Erdjument-Bromage H, Tempst P, Chang C, Wang H. 2007. Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449:1068-1072. http://dx.doi.org/10.1038/nature06256.
    • (2007) Nature , vol.449 , pp. 1068-1072
    • Joo, H.Y.1    Zhai, L.2    Yang, C.3    Nie, S.4    Erdjument-Bromage, H.5    Tempst, P.6    Chang, C.7    Wang, H.8
  • 121
    • 84897968795 scopus 로고    scopus 로고
    • RPA antagonizes microhomology-mediated repair of DNA double-strand breaks
    • Deng SK, Gibb B, de Almeida MJ, Greene EC, Symington LS. 2014. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol 21:405-412. http://dx.doi.org/10.1038/nsmb.2786.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 405-412
    • Deng, S.K.1    Gibb, B.2    de Almeida, M.J.3    Greene, E.C.4    Symington, L.S.5
  • 122
    • 84947709302 scopus 로고    scopus 로고
    • Mre11-Sae2 and RPA collaborate to prevent palindromic gene amplification
    • Deng SK, Yin Y, Petes TD, Symington LS. 2015. Mre11-Sae2 and RPA collaborate to prevent palindromic gene amplification. Mol Cell 60:500-508. http://dx.doi.org/10.1016/j.molcel.2015.09.027.
    • (2015) Mol Cell , vol.60 , pp. 500-508
    • Deng, S.K.1    Yin, Y.2    Petes, T.D.3    Symington, L.S.4
  • 123
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou L, Elledge SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542-1548. http://dx.doi.org/10.1126/science.1083430.
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 124
    • 0029791693 scopus 로고    scopus 로고
    • The 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast
    • Longhese MP, Neecke H, Paciotti V, Lucchini G, Plevani P. 1996. The 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast. Nucleic Acids Res 24:3533-3537. http://dx.doi.org/10.1093/nar/24.18.3533.
    • (1996) Nucleic Acids Res , vol.24 , pp. 3533-3537
    • Longhese, M.P.1    Neecke, H.2    Paciotti, V.3    Lucchini, G.4    Plevani, P.5
  • 125
    • 0032493889 scopus 로고    scopus 로고
    • Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
    • Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE. 1998. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399-409. http://dx.doi.org/10.1016/S0092-8674(00)81482-8.
    • (1998) Cell , vol.94 , pp. 399-409
    • Lee, S.E.1    Moore, J.K.2    Holmes, A.3    Umezu, K.4    Kolodner, R.D.5    Haber, J.E.6
  • 126
    • 0031004885 scopus 로고    scopus 로고
    • A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein
    • Sugiyama T, Zaitseva EM, Kowalczykowski SC. 1997. A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem 272:7940-7945. http://dx.doi.org/10.1074/jbc.272.12.7940.
    • (1997) J Biol Chem , vol.272 , pp. 7940-7945
    • Sugiyama, T.1    Zaitseva, E.M.2    Kowalczykowski, S.C.3
  • 127
    • 0030995362 scopus 로고    scopus 로고
    • Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase
    • Sung P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11:1111-1121. http://dx.doi.org/10.1101/gad.11.9.1111.
    • (1997) Genes Dev , vol.11 , pp. 1111-1121
    • Sung, P.1
  • 128
    • 35648986560 scopus 로고    scopus 로고
    • Ctp1/CtIP and the MRN complex collaborate in the initial steps of homologous recombination
    • Takeda S, Nakamura K, Taniguchi Y, Paull TT. 2007. Ctp1/CtIP and the MRN complex collaborate in the initial steps of homologous recombination. Mol Cell 28:351-352. http://dx.doi.org/10.1016/j.molcel.2007.10.016.
    • (2007) Mol Cell , vol.28 , pp. 351-352
    • Takeda, S.1    Nakamura, K.2    Taniguchi, Y.3    Paull, T.T.4
  • 129
    • 36248942617 scopus 로고    scopus 로고
    • Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex
    • Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT. 2007. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell 28:638-651. http://dx.doi.org/10.1016/j.molcel.2007.11.001.
    • (2007) Mol Cell , vol.28 , pp. 638-651
    • Lengsfeld, B.M.1    Rattray, A.J.2    Bhaskara, V.3    Ghirlando, R.4    Paull, T.T.5
  • 131
    • 68249116573 scopus 로고    scopus 로고
    • DNA end resection: many nucleases make light work
    • Mimitou EP, Symington LS. 2009. DNA end resection: many nucleases make light work. DNA Repair (Amst) 8:983-995. http://dx.doi.org/10.1016/j.dnarep.2009.04.017.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 983-995
    • Mimitou, E.P.1    Symington, L.S.2
  • 132
    • 84938089266 scopus 로고    scopus 로고
    • MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex
    • Lee KY, Im JS, Shibata E, Park J, Handa N, Kowalczykowski SC, Dutta A. 2015. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun 6:7744. http://dx.doi.org/10.1038/ncomms8744.
    • (2015) Nat Commun , vol.6 , pp. 7744
    • Lee, K.Y.1    Im, J.S.2    Shibata, E.3    Park, J.4    Handa, N.5    Kowalczykowski, S.C.6    Dutta, A.7
  • 133
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770-774. http://dx.doi.org/10.1038/nature07312.
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 134
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
    • Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134:981-994. http://dx.doi.org/10.1016/j.cell.2008.08.037.
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5
  • 135
    • 55949105327 scopus 로고    scopus 로고
    • Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair
    • Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC. 2008. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A 105:16906-16911. http://dx.doi.org/10.1073/pnas.0809380105.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 16906-16911
    • Nimonkar, A.V.1    Ozsoy, A.Z.2    Genschel, J.3    Modrich, P.4    Kowalczykowski, S.C.5
  • 136
    • 17644375501 scopus 로고    scopus 로고
    • Inactivation of CtIP leads to early embryonic lethality mediated by G1 restraint and to tumorigenesis by haploid insufficiency
    • Chen PL, Liu F, Cai S, Lin X, Li A, Chen Y, Gu B, Lee EY, Lee WH. 2005. Inactivation of CtIP leads to early embryonic lethality mediated by G1 restraint and to tumorigenesis by haploid insufficiency. Mol Cell Biol 25:3535-3542. http://dx.doi.org/10.1128/MCB.25.9.3535-3542.2005.
    • (2005) Mol Cell Biol , vol.25 , pp. 3535-3542
    • Chen, P.L.1    Liu, F.2    Cai, S.3    Lin, X.4    Li, A.5    Chen, Y.6    Gu, B.7    Lee, E.Y.8    Lee, W.H.9
  • 141
    • 53349162987 scopus 로고    scopus 로고
    • CDK targets Sae2 to control DNA-end resection and homologous recombination
    • Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP. 2008. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689-692. http://dx.doi.org/10.1038/nature07215.
    • (2008) Nature , vol.455 , pp. 689-692
    • Huertas, P.1    Cortes-Ledesma, F.2    Sartori, A.A.3    Aguilera, A.4    Jackson, S.P.5
  • 142
    • 77956550868 scopus 로고    scopus 로고
    • Human SIRT6 promotes DNA end resection through CtIP deacetylation
    • Kaidi A, Weinert BT, Choudhary C, Jackson SP. 2010. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348-1353. http://dx.doi.org/10.1126/science.1192049.
    • (2010) Science , vol.329 , pp. 1348-1353
    • Kaidi, A.1    Weinert, B.T.2    Choudhary, C.3    Jackson, S.P.4
  • 143
    • 84891691403 scopus 로고    scopus 로고
    • HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates
    • Rajendran P, Kidane AI, Yu TW, Dashwood WM, Bisson WH, Lohr CV, Ho E, Williams DE, Dashwood RH. 2013. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics 8:612-623. http://dx.doi.org/10.4161/epi.24710.
    • (2013) Epigenetics , vol.8 , pp. 612-623
    • Rajendran, P.1    Kidane, A.I.2    Yu, T.W.3    Dashwood, W.M.4    Bisson, W.H.5    Lohr, C.V.6    Ho, E.7    Williams, D.E.8    Dashwood, R.H.9
  • 144
    • 33745614048 scopus 로고    scopus 로고
    • BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP
    • Yu X, Fu S, Lai M, Baer R, Chen J. 2006. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev 20:1721-1726. http://dx.doi.org/10.1101/gad.1431006.
    • (2006) Genes Dev , vol.20 , pp. 1721-1726
    • Yu, X.1    Fu, S.2    Lai, M.3    Baer, R.4    Chen, J.5
  • 147
    • 84919359385 scopus 로고    scopus 로고
    • APC/C(Cdh1) controls CtIP stability during the cell cycle and in response to DNA damage
    • Lafranchi L, de Boer HR, de Vries EG, Ong SE, Sartori AA, van Vugt MA. 2014. APC/C(Cdh1) controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J 33:2860-2879. http://dx.doi.org/10.15252/embj.201489017.
    • (2014) EMBO J , vol.33 , pp. 2860-2879
    • Lafranchi, L.1    de Boer, H.R.2    de Vries, E.G.3    Ong, S.E.4    Sartori, A.A.5    van Vugt, M.A.6
  • 150
    • 84959162610 scopus 로고    scopus 로고
    • Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11
    • Vlasschaert C, Xia X, Coulombe J, Gray DA. 2015. Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11. BMC Evol Biol 15:230. http://dx.doi.org/10.1186/s12862-015-0511-1.
    • (2015) BMC Evol Biol , vol.15 , pp. 230
    • Vlasschaert, C.1    Xia, X.2    Coulombe, J.3    Gray, D.A.4
  • 152
  • 153
    • 83255185774 scopus 로고    scopus 로고
    • Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection
    • Gospodinov A, Vaissiere T, Krastev DB, Legube G, Anachkova B, Herceg Z. 2011. Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection. Mol Cell Biol 31:4735-4745. http://dx.doi.org/10.1128/MCB.06182-11.
    • (2011) Mol Cell Biol , vol.31 , pp. 4735-4745
    • Gospodinov, A.1    Vaissiere, T.2    Krastev, D.B.3    Legube, G.4    Anachkova, B.5    Herceg, Z.6
  • 154
    • 34648834736 scopus 로고    scopus 로고
    • Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks
    • van Attikum H, Fritsch O, Gasser SM. 2007. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J 26:4113-4125. http://dx.doi.org/10.1038/sj.emboj.7601835.
    • (2007) EMBO J , vol.26 , pp. 4113-4125
    • van Attikum, H.1    Fritsch, O.2    Gasser, S.M.3
  • 155
    • 77955889790 scopus 로고    scopus 로고
    • Expanded roles of the Fanconi anemia pathway in preserving genomic stability
    • Kee Y, D'Andrea AD. 2010. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 24:1680-1694. http://dx.doi.org/10.1101/gad.1955310.
    • (2010) Genes Dev , vol.24 , pp. 1680-1694
    • Kee, Y.1    D'Andrea, A.D.2
  • 161
    • 77955290719 scopus 로고    scopus 로고
    • FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
    • Liu T, Ghosal G, Yuan J, Chen J, Huang J. 2010. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329:693-696. http://dx.doi.org/10.1126/science.1192656.
    • (2010) Science , vol.329 , pp. 693-696
    • Liu, T.1    Ghosal, G.2    Yuan, J.3    Chen, J.4    Huang, J.5
  • 163
    • 84899991195 scopus 로고    scopus 로고
    • XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4
    • Klein Douwel D, Boonen RA, Long DT, Szypowska AA, Raschle M, Walter JC, Knipscheer P. 2014. XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol Cell 54:460-471. http://dx.doi.org/10.1016/j.molcel.2014.03.015.
    • (2014) Mol Cell , vol.54 , pp. 460-471
    • Klein Douwel, D.1    Boonen, R.A.2    Long, D.T.3    Szypowska, A.A.4    Raschle, M.5    Walter, J.C.6    Knipscheer, P.7
  • 168
    • 84902997827 scopus 로고    scopus 로고
    • CtIP mediates replication fork recovery in a FANCD2-regulated manner
    • Yeo JE, Lee EH, Hendrickson EA, Sobeck A. 2014. CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum Mol Genet 23:3695-3705. http://dx.doi.org/10.1093/hmg/ddu078.
    • (2014) Hum Mol Genet , vol.23 , pp. 3695-3705
    • Yeo, J.E.1    Lee, E.H.2    Hendrickson, E.A.3    Sobeck, A.4
  • 169
  • 170
    • 84880534493 scopus 로고    scopus 로고
    • FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery
    • Chaudhury I, Sareen A, Raghunandan M, Sobeck A. 2013. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res 41:6444-6459. http://dx.doi.org/10.1093/nar/gkt348.
    • (2013) Nucleic Acids Res , vol.41 , pp. 6444-6459
    • Chaudhury, I.1    Sareen, A.2    Raghunandan, M.3    Sobeck, A.4
  • 172
    • 59649114341 scopus 로고    scopus 로고
    • Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype
    • Kim JM, Parmar K, Huang M, Weinstock DM, Ruit CA, Kutok JL, D'Andrea AD. 2009. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev Cell 16:314-320. http://dx.doi.org/10.1016/j.devcel.2009.01.001.
    • (2009) Dev Cell , vol.16 , pp. 314-320
    • Kim, J.M.1    Parmar, K.2    Huang, M.3    Weinstock, D.M.4    Ruit, C.A.5    Kutok, J.L.6    D'Andrea, A.D.7
  • 174
    • 79961109743 scopus 로고    scopus 로고
    • APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage
    • Cotto-Rios XM, Jones MJ, Busino L, Pagano M, Huang TT. 2011. APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage. J Cell Biol 194:177-186. http://dx.doi.org/10.1083/jcb.201101062.
    • (2011) J Cell Biol , vol.194 , pp. 177-186
    • Cotto-Rios, X.M.1    Jones, M.J.2    Busino, L.3    Pagano, M.4    Huang, T.T.5
  • 175
    • 64149129169 scopus 로고    scopus 로고
    • UAF1 is a subunit of multiple deubiquitinating enzyme complexes
    • Cohn MA, Kee Y, Haas W, Gygi SP, D'Andrea AD. 2009. UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J Biol Chem 284:5343-5351. http://dx.doi.org/10.1074/jbc.M808430200.
    • (2009) J Biol Chem , vol.284 , pp. 5343-5351
    • Cohn, M.A.1    Kee, Y.2    Haas, W.3    Gygi, S.P.4    D'Andrea, A.D.5
  • 176
    • 84886997828 scopus 로고    scopus 로고
    • Inactivation of Uaf1 causes defective homologous recombination and early embryonic lethality in mice
    • Park E, Kim JM, Primack B, Weinstock DM, Moreau LA, Parmar K, D'Andrea AD. 2013. Inactivation of Uaf1 causes defective homologous recombination and early embryonic lethality in mice. Mol Cell Biol 33:4360-4370. http://dx.doi.org/10.1128/MCB.00870-13.
    • (2013) Mol Cell Biol , vol.33 , pp. 4360-4370
    • Park, E.1    Kim, J.M.2    Primack, B.3    Weinstock, D.M.4    Moreau, L.A.5    Parmar, K.6    D'Andrea, A.D.7
  • 177
    • 36749082959 scopus 로고    scopus 로고
    • A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway
    • Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP, D'Andrea AD. 2007. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol Cell 28:786-797. http://dx.doi.org/10.1016/j.molcel.2007.09.031.
    • (2007) Mol Cell , vol.28 , pp. 786-797
    • Cohn, M.A.1    Kowal, P.2    Yang, K.3    Haas, W.4    Huang, T.T.5    Gygi, S.P.6    D'Andrea, A.D.7
  • 178
    • 80052437062 scopus 로고    scopus 로고
    • Regulation of the Fanconi anemia pathway by a SUMO-like delivery network
    • Yang K, Moldovan GL, Vinciguerra P, Murai J, Takeda S, D'Andrea AD. 2011. Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes Dev 25:1847-1858. http://dx.doi.org/10.1101/gad.17020911.
    • (2011) Genes Dev , vol.25 , pp. 1847-1858
    • Yang, K.1    Moldovan, G.L.2    Vinciguerra, P.3    Murai, J.4    Takeda, S.5    D'Andrea, A.D.6
  • 179
    • 77951210668 scopus 로고    scopus 로고
    • Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through its interactions with PCNA and USP1
    • Lee KY, Yang K, Cohn MA, Sikdar N, D'Andrea AD, Myung K. 2010. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through its interactions with PCNA and USP1. J Biol Chem 285:10362-10369. http://dx.doi.org/10.1074/jbc.M109.092544.
    • (2010) J Biol Chem , vol.285 , pp. 10362-10369
    • Lee, K.Y.1    Yang, K.2    Cohn, M.A.3    Sikdar, N.4    D'Andrea, A.D.5    Myung, K.6
  • 180
    • 84857411787 scopus 로고    scopus 로고
    • Y-family DNA polymerases and their role in tolerance of cellular DNA damage
    • Sale JE, Lehmann AR, Woodgate R. 2012. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13:141-152. http://dx.doi.org/10.1038/nrm3289.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 141-152
    • Sale, J.E.1    Lehmann, A.R.2    Woodgate, R.3
  • 181
    • 44449138846 scopus 로고    scopus 로고
    • Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme
    • Zhuang Z, Johnson RE, Haracska L, Prakash L, Prakash S, Benkovic SJ. 2008. Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc Natl Acad Sci U S A 105:5361-5366. http://dx.doi.org/10.1073/pnas.0801310105.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 5361-5366
    • Zhuang, Z.1    Johnson, R.E.2    Haracska, L.3    Prakash, L.4    Prakash, S.5    Benkovic, S.J.6
  • 182
    • 84857064783 scopus 로고    scopus 로고
    • Dysregulation of DNA polymerase kappa recruitment to replication forks results in genomic instability
    • Jones MJ, Colnaghi L, Huang TT. 2012. Dysregulation of DNA polymerase kappa recruitment to replication forks results in genomic instability. EMBO J 31:908-918. http://dx.doi.org/10.1038/emboj.2011.457.
    • (2012) EMBO J , vol.31 , pp. 908-918
    • Jones, M.J.1    Colnaghi, L.2    Huang, T.T.3
  • 184
    • 84871675699 scopus 로고    scopus 로고
    • The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway
    • Piatkov KI, Colnaghi L, Bekes M, Varshavsky A, Huang TT. 2012. The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway. Mol Cell 48:926-933. http://dx.doi.org/10.1016/j.molcel.2012.10.012.
    • (2012) Mol Cell , vol.48 , pp. 926-933
    • Piatkov, K.I.1    Colnaghi, L.2    Bekes, M.3    Varshavsky, A.4    Huang, T.T.5
  • 187
    • 84940961729 scopus 로고    scopus 로고
    • USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability
    • Qian J, Pentz K, Zhu Q, Wang Q, He J, Srivastava AK, Wani AA. 2015. USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability. Oncogene 34:4791-4796. http://dx.doi.org/10.1038/onc.2014.394.
    • (2015) Oncogene , vol.34 , pp. 4791-4796
    • Qian, J.1    Pentz, K.2    Zhu, Q.3    Wang, Q.4    He, J.5    Srivastava, A.K.6    Wani, A.A.7
  • 188
    • 84858279884 scopus 로고    scopus 로고
    • Overview of peroxiredoxins in oxidant defense and redox regulation
    • Poole LB, Hall A, Nelson KJ. 2011. Overview of peroxiredoxins in oxidant defense and redox regulation. Curr Protoc Toxicol Chapter 7:Unit 7.9. http://dx.doi.org/10.1002/0471140856.tx0709s49.
    • (2011) Curr Protoc Toxicol Chapter 7:Unit 7.9
    • Poole, L.B.1    Hall, A.2    Nelson, K.J.3
  • 189
    • 33750299450 scopus 로고    scopus 로고
    • Protein tyrosine phosphatases: from genes, to function, to disease
    • Tonks NK. 2006. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833-846. http://dx.doi.org/10.1038/nrm2039.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 833-846
    • Tonks, N.K.1
  • 190
    • 20444400257 scopus 로고    scopus 로고
    • Redox redux: revisiting PTPs and the control of cell signaling
    • Tonks NK. 2005. Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667-670. http://dx.doi.org/10.1016/j.cell.2005.05.016.
    • (2005) Cell , vol.121 , pp. 667-670
    • Tonks, N.K.1
  • 191
    • 59249109389 scopus 로고    scopus 로고
    • Methods for preparing crystals of reversibly oxidized proteins: crystallization of protein tyrosine phosphatase 1B as an example
    • Salmeen A, Barford D. 2008. Methods for preparing crystals of reversibly oxidized proteins: crystallization of protein tyrosine phosphatase 1B as an example. Methods Mol Biol 476:101-116.
    • (2008) Methods Mol Biol , vol.476 , pp. 101-116
    • Salmeen, A.1    Barford, D.2
  • 192
    • 11144342740 scopus 로고    scopus 로고
    • Redox regulation of protein-tyrosine phosphatases
    • den Hertog J, Groen A, van der Wijk T. 2005. Redox regulation of protein-tyrosine phosphatases. Arch Biochem Biophys 434:11-15. http://dx.doi.org/10.1016/j.abb.2004.05.024.
    • (2005) Arch Biochem Biophys , vol.434 , pp. 11-15
    • den Hertog, J.1    Groen, A.2    van der Wijk, T.3
  • 193
    • 84871699184 scopus 로고    scopus 로고
    • Deubiquitinases as a signaling target of oxidative stress
    • Cotto-Rios XM, Bekes M, Chapman J, Ueberheide B, Huang TT. 2012. Deubiquitinases as a signaling target of oxidative stress. Cell Rep 2:1475-1484. http://dx.doi.org/10.1016/j.celrep.2012.11.011.
    • (2012) Cell Rep , vol.2 , pp. 1475-1484
    • Cotto-Rios, X.M.1    Bekes, M.2    Chapman, J.3    Ueberheide, B.4    Huang, T.T.5
  • 194
    • 84875912087 scopus 로고    scopus 로고
    • Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells
    • Lee JG, Baek K, Soetandyo N, Ye Y. 2013. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 4:1568. http://dx.doi.org/10.1038/ncomms2532.
    • (2013) Nat Commun , vol.4 , pp. 1568
    • Lee, J.G.1    Baek, K.2    Soetandyo, N.3    Ye, Y.4
  • 197
    • 84923364710 scopus 로고    scopus 로고
    • Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis
    • Lee HS, Lee SA, Hur SK, Seo JW, Kwon J. 2014. Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nat Commun 5:5128. http://dx.doi.org/10.1038/ncomms6128.
    • (2014) Nat Commun , vol.5 , pp. 5128
    • Lee, H.S.1    Lee, S.A.2    Hur, S.K.3    Seo, J.W.4    Kwon, J.5
  • 198
    • 10944224673 scopus 로고    scopus 로고
    • INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair
    • Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X. 2004. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767-775. http://dx.doi.org/10.1016/j.cell.2004.11.037.
    • (2004) Cell , vol.119 , pp. 767-775
    • Morrison, A.J.1    Highland, J.2    Krogan, N.J.3    Arbel-Eden, A.4    Greenblatt, J.F.5    Haber, J.E.6    Shen, X.7
  • 199
    • 10944233962 scopus 로고    scopus 로고
    • Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair
    • van Attikum H, Fritsch O, Hohn B, Gasser SM. 2004. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777-788. http://dx.doi.org/10.1016/j.cell.2004.11.033.
    • (2004) Cell , vol.119 , pp. 777-788
    • van Attikum, H.1    Fritsch, O.2    Hohn, B.3    Gasser, S.M.4
  • 200
    • 38049178545 scopus 로고    scopus 로고
    • Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects
    • Fousteri M, Mullenders LH. 2008. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18:73-84. http://dx.doi.org/10.1038/cr.2008.6.
    • (2008) Cell Res , vol.18 , pp. 73-84
    • Fousteri, M.1    Mullenders, L.H.2
  • 201
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: two decades of progress and surprises
    • Hanawalt PC, Spivak G. 2008. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958-970. http://dx.doi.org/10.1038/nrm2549.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 202
    • 84878011067 scopus 로고    scopus 로고
    • The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair
    • Saijo M. 2013. The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair. Mech Ageing Dev 134:196-201. http://dx.doi.org/10.1016/j.mad.2013.03.008.
    • (2013) Mech Ageing Dev , vol.134 , pp. 196-201
    • Saijo, M.1
  • 203
    • 33744795969 scopus 로고    scopus 로고
    • CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
    • Groisman R, Kuraoka I, Chevallier O, Gaye N, Magnaldo T, Tanaka K, Kisselev AF, Harel-Bellan A, Nakatani Y. 2006. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev 20:1429-1434. http://dx.doi.org/10.1101/gad.378206.
    • (2006) Genes Dev , vol.20 , pp. 1429-1434
    • Groisman, R.1    Kuraoka, I.2    Chevallier, O.3    Gaye, N.4    Magnaldo, T.5    Tanaka, K.6    Kisselev, A.F.7    Harel-Bellan, A.8    Nakatani, Y.9
  • 207
    • 84880798866 scopus 로고    scopus 로고
    • UVSSA and USP7, a new couple in transcription-coupled DNA repair
    • Schwertman P, Vermeulen W, Marteijn JA. 2013. UVSSA and USP7, a new couple in transcription-coupled DNA repair. Chromosoma 122:275-284. http://dx.doi.org/10.1007/s00412-013-0420-2.
    • (2013) Chromosoma , vol.122 , pp. 275-284
    • Schwertman, P.1    Vermeulen, W.2    Marteijn, J.A.3
  • 211
    • 84907478478 scopus 로고    scopus 로고
    • Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis
    • He J, Zhu Q, Wani G, Sharma N, Han C, Qian J, Pentz K, Wang QE, Wani AA. 2014. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem 289:27278-27289. http://dx.doi.org/10.1074/jbc.M114.589812.
    • (2014) J Biol Chem , vol.289 , pp. 27278-27289
    • He, J.1    Zhu, Q.2    Wani, G.3    Sharma, N.4    Han, C.5    Qian, J.6    Pentz, K.7    Wang, Q.E.8    Wani, A.A.9
  • 212
    • 84870862277 scopus 로고    scopus 로고
    • The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability
    • Zhang L, Lubin A, Chen H, Sun Z, Gong F. 2012. The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 11:4378-4384. http://dx.doi.org/10.4161/cc.22688.
    • (2012) Cell Cycle , vol.11 , pp. 4378-4384
    • Zhang, L.1    Lubin, A.2    Chen, H.3    Sun, Z.4    Gong, F.5
  • 213
    • 84920937287 scopus 로고    scopus 로고
    • The deubiquitinating enzyme USP24 is a regulator of the UV damage response
    • Zhang L, Nemzow L, Chen H, Lubin A, Rong X, Sun Z, Harris TK, Gong F. 2015. The deubiquitinating enzyme USP24 is a regulator of the UV damage response. Cell Rep 10:140-147. http://dx.doi.org/10.1016/j.celrep.2014.12.024.
    • (2015) Cell Rep , vol.10 , pp. 140-147
    • Zhang, L.1    Nemzow, L.2    Chen, H.3    Lubin, A.4    Rong, X.5    Sun, Z.6    Harris, T.K.7    Gong, F.8
  • 214
    • 84876730678 scopus 로고    scopus 로고
    • Co-ordination of base excision repair and genome stability
    • Parsons JL, Dianov GL. 2013. Co-ordination of base excision repair and genome stability. DNA Repair (Amst) 12:326-333. http://dx.doi.org/10.1016/j.dnarep.2013.02.001.
    • (2013) DNA Repair (Amst) , vol.12 , pp. 326-333
    • Parsons, J.L.1    Dianov, G.L.2
  • 215
    • 33847630719 scopus 로고    scopus 로고
    • Co-ordination of DNA single strand break repair
    • Dianov GL, Parsons JL. 2007. Co-ordination of DNA single strand break repair. DNA Repair (Amst) 6:454-460. http://dx.doi.org/10.1016/j.dnarep.2006.10.009.
    • (2007) DNA Repair (Amst) , vol.6 , pp. 454-460
    • Dianov, G.L.1    Parsons, J.L.2
  • 216
    • 38049183244 scopus 로고    scopus 로고
    • XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks
    • Horton JK, Watson M, Stefanick DF, Shaughnessy DT, Taylor JA, Wilson SH. 2008. XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. Cell Res 18:48-63. http://dx.doi.org/10.1038/cr.2008.7.
    • (2008) Cell Res , vol.18 , pp. 48-63
    • Horton, J.K.1    Watson, M.2    Stefanick, D.F.3    Shaughnessy, D.T.4    Taylor, J.A.5    Wilson, S.H.6
  • 217
    • 0033118432 scopus 로고    scopus 로고
    • Cells deficient in DNA polymerase beta are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage
    • Ochs K, Sobol RW, Wilson SH, Kaina B. 1999. Cells deficient in DNA polymerase beta are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage. Cancer Res 59:1544-1551.
    • (1999) Cancer Res , vol.59 , pp. 1544-1551
    • Ochs, K.1    Sobol, R.W.2    Wilson, S.H.3    Kaina, B.4
  • 218
    • 0141731310 scopus 로고    scopus 로고
    • Base excision repair deficiency caused by polymerase beta haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens
    • Cabelof DC, Guo Z, Raffoul JJ, Sobol RW, Wilson SH, Richardson A, Heydari AR. 2003. Base excision repair deficiency caused by polymerase beta haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens. Cancer Res 63:5799-5807.
    • (2003) Cancer Res , vol.63 , pp. 5799-5807
    • Cabelof, D.C.1    Guo, Z.2    Raffoul, J.J.3    Sobol, R.W.4    Wilson, S.H.5    Richardson, A.6    Heydari, A.R.7
  • 219
    • 0345620782 scopus 로고    scopus 로고
    • Overexpression of DNA polymerase beta: a genomic instability enhancer process
    • Canitrot Y, Frechet M, Servant L, Cazaux C, Hoffmann JS. 1999. Overexpression of DNA polymerase beta: a genomic instability enhancer process. FASEB J 13:1107-1111.
    • (1999) FASEB J , vol.13 , pp. 1107-1111
    • Canitrot, Y.1    Frechet, M.2    Servant, L.3    Cazaux, C.4    Hoffmann, J.S.5
  • 220
    • 34548379865 scopus 로고    scopus 로고
    • Overexpression of DNA polymerase beta results in an increased rate of frameshift mutations during base excision repair
    • Chan K, Houlbrook S, Zhang QM, Harrison M, Hickson ID, Dianov GL. 2007. Overexpression of DNA polymerase beta results in an increased rate of frameshift mutations during base excision repair. Mutagenesis 22:183-188. http://dx.doi.org/10.1093/mutage/gel070.
    • (2007) Mutagenesis , vol.22 , pp. 183-188
    • Chan, K.1    Houlbrook, S.2    Zhang, Q.M.3    Harrison, M.4    Hickson, I.D.5    Dianov, G.L.6
  • 221
    • 39549106043 scopus 로고    scopus 로고
    • CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins
    • Parsons JL, Tait PS, Finch D, Dianova II, Allinson SL, Dianov GL. 2008. CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol Cell 29:477-487. http://dx.doi.org/10.1016/j.molcel.2007.12.027.
    • (2008) Mol Cell , vol.29 , pp. 477-487
    • Parsons, J.L.1    Tait, P.S.2    Finch, D.3    Dianova, I.I.4    Allinson, S.L.5    Dianov, G.L.6
  • 223
    • 79951997444 scopus 로고    scopus 로고
    • USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta
    • Parsons JL, Dianova II, Khoronenkova SV, Edelmann MJ, Kessler BM, Dianov GL. 2011. USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta. Mol Cell 41:609-615. http://dx.doi.org/10.1016/j.molcel.2011.02.016.
    • (2011) Mol Cell , vol.41 , pp. 609-615
    • Parsons, J.L.1    Dianova, I.I.2    Khoronenkova, S.V.3    Edelmann, M.J.4    Kessler, B.M.5    Dianov, G.L.6
  • 224
    • 84873696103 scopus 로고    scopus 로고
    • USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair
    • Khoronenkova SV, Dianov GL. 2013. USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair. Nucleic Acids Res 41:1750-1756. http://dx.doi.org/10.1093/nar/gks1359.
    • (2013) Nucleic Acids Res , vol.41 , pp. 1750-1756
    • Khoronenkova, S.V.1    Dianov, G.L.2
  • 225
    • 84859111172 scopus 로고    scopus 로고
    • ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage
    • Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Parsons JL, Dianov GL. 2012. ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell 45:801-813. http://dx.doi.org/10.1016/j.molcel.2012.01.021.
    • (2012) Mol Cell , vol.45 , pp. 801-813
    • Khoronenkova, S.V.1    Dianova, I.I.2    Ternette, N.3    Kessler, B.M.4    Parsons, J.L.5    Dianov, G.L.6
  • 226
    • 84919393011 scopus 로고    scopus 로고
    • Regulation of base excision repair proteins by ubiquitylation
    • Edmonds MJ, Parsons JL. 2014. Regulation of base excision repair proteins by ubiquitylation. Exp Cell Res 329:132-138. http://dx.doi.org/10.1016/j.yexcr.2014.07.031.
    • (2014) Exp Cell Res , vol.329 , pp. 132-138
    • Edmonds, M.J.1    Parsons, J.L.2
  • 227
    • 2942523593 scopus 로고    scopus 로고
    • Endogenous DNA damage in humans: a review of quantitative data
    • De Bont R, van Larebeke N. 2004. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169-185. http://dx.doi.org/10.1093/mutage/geh025.
    • (2004) Mutagenesis , vol.19 , pp. 169-185
    • De Bont, R.1    van Larebeke, N.2
  • 229
    • 84931281713 scopus 로고    scopus 로고
    • Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase
    • Zhao Y, Majid MC, Soll JM, Brickner JR, Dango S, Mosammaparast N. 2015. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase. EMBO J 34:1687-1703. http://dx.doi.org/10.15252/embj.201490497.
    • (2015) EMBO J , vol.34 , pp. 1687-1703
    • Zhao, Y.1    Majid, M.C.2    Soll, J.M.3    Brickner, J.R.4    Dango, S.5    Mosammaparast, N.6
  • 230
    • 77957284673 scopus 로고    scopus 로고
    • Differential regulation of JAMM domain deubiquitinating enzyme activity within the RAP80 complex
    • Patterson-Fortin J, Shao G, Bretscher H, Messick TE, Greenberg RA. 2010. Differential regulation of JAMM domain deubiquitinating enzyme activity within the RAP80 complex. J Biol Chem 285:30971-30981. http://dx.doi.org/10.1074/jbc.M110.135319.
    • (2010) J Biol Chem , vol.285 , pp. 30971-30981
    • Patterson-Fortin, J.1    Shao, G.2    Bretscher, H.3    Messick, T.E.4    Greenberg, R.A.5
  • 231
    • 63049112033 scopus 로고    scopus 로고
    • MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks
    • Shao G, Patterson-Fortin J, Messick TE, Feng D, Shanbhag N, Wang Y, Greenberg RA. 2009. MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. Genes Dev 23:740-754. http://dx.doi.org/10.1101/gad.1739609.
    • (2009) Genes Dev , vol.23 , pp. 740-754
    • Shao, G.1    Patterson-Fortin, J.2    Messick, T.E.3    Feng, D.4    Shanbhag, N.5    Wang, Y.6    Greenberg, R.A.7
  • 232
    • 77951247308 scopus 로고    scopus 로고
    • WDR20regulates activity of the USP12 x UAF1 deubiquitinating enzyme complex
    • Kee Y, Yang K, Cohn MA, Haas W, Gygi SP, D'Andrea AD. 2010. WDR20regulates activity of the USP12 x UAF1 deubiquitinating enzyme complex. J Biol Chem 285:11252-11257. http://dx.doi.org/10.1074/jbc.M109.095141.
    • (2010) J Biol Chem , vol.285 , pp. 11252-11257
    • Kee, Y.1    Yang, K.2    Cohn, M.A.3    Haas, W.4    Gygi, S.P.5    D'Andrea, A.D.6
  • 233
    • 84880966633 scopus 로고    scopus 로고
    • Deubiquitinating enzymes as therapeutic targets in cancer
    • Lim KH, Baek KH. 2013. Deubiquitinating enzymes as therapeutic targets in cancer. Curr Pharm Des 19:4039-4052. http://dx.doi.org/10.2174/1381612811319220013.
    • (2013) Curr Pharm Des , vol.19 , pp. 4039-4052
    • Lim, K.H.1    Baek, K.H.2
  • 234
    • 79956107843 scopus 로고    scopus 로고
    • Ubiquitin-specific proteases as cancer drug targets
    • Sippl W, Collura V, Colland F. 2011. Ubiquitin-specific proteases as cancer drug targets. Future Oncol 7:619-632. http://dx.doi.org/10.2217/fon.11.39.
    • (2011) Future Oncol , vol.7 , pp. 619-632
    • Sippl, W.1    Collura, V.2    Colland, F.3
  • 235
    • 79955938866 scopus 로고    scopus 로고
    • The multifaceted roles of USP7: new therapeutic opportunities
    • Nicholson B, Suresh Kumar KG. 2011. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys 60:61-68. http://dx.doi.org/10.1007/s12013-011-9185-5.
    • (2011) Cell Biochem Biophys , vol.60 , pp. 61-68
    • Nicholson, B.1    Suresh Kumar, K.G.2
  • 239
    • 77953720192 scopus 로고    scopus 로고
    • ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks
    • Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. 2010. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141:970-981. http://dx.doi.org/10.1016/j.cell.2010.04.038.
    • (2010) Cell , vol.141 , pp. 970-981
    • Shanbhag, N.M.1    Rafalska-Metcalf, I.U.2    Balane-Bolivar, C.3    Janicki, S.M.4    Greenberg, R.A.5
  • 241
    • 84954231982 scopus 로고    scopus 로고
    • Ubiquitin-activated interaction traps (UBAITs) identify E3 ligase binding partners
    • O'Connor HF, Lyon N, Leung JW, Agarwal P, Swaim CD, Miller KM, Huibregtse JM. 2015. Ubiquitin-activated interaction traps (UBAITs) identify E3 ligase binding partners. EMBO Rep 16:1699-1712. http://dx.doi.org/10.15252/embr.201540620.
    • (2015) EMBO Rep , vol.16 , pp. 1699-1712
    • O'Connor, H.F.1    Lyon, N.2    Leung, J.W.3    Agarwal, P.4    Swaim, C.D.5    Miller, K.M.6    Huibregtse, J.M.7
  • 242
    • 84900337781 scopus 로고    scopus 로고
    • Enhanced protein degradation by branched ubiquitin chains
    • Meyer HJ, Rape M. 2014. Enhanced protein degradation by branched ubiquitin chains. Cell 157:910-921. http://dx.doi.org/10.1016/j.cell.2014.03.037.
    • (2014) Cell , vol.157 , pp. 910-921
    • Meyer, H.J.1    Rape, M.2
  • 243
    • 84926417515 scopus 로고    scopus 로고
    • K63 polyubiquitination is a new modulator of the oxidative stress response
    • Silva GM, Finley D, Vogel C. 2015. K63 polyubiquitination is a new modulator of the oxidative stress response. Nat Struct Mol Biol 22:116-123. http://dx.doi.org/10.1038/nsmb.2955.
    • (2015) Nat Struct Mol Biol , vol.22 , pp. 116-123
    • Silva, G.M.1    Finley, D.2    Vogel, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.