-
1
-
-
28344456279
-
A genomic and functional inventory of deubiquitinating enzymes
-
Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R. 2005. A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773-786. http://dx.doi.org/10.1016/j.cell.2005.11.007.
-
(2005)
Cell
, vol.123
, pp. 773-786
-
-
Nijman, S.M.1
Luna-Vargas, M.P.2
Velds, A.3
Brummelkamp, T.R.4
Dirac, A.M.5
Sixma, T.K.6
Bernards, R.7
-
2
-
-
67649634849
-
Defining the human deubiquitinating enzyme interaction landscape
-
Sowa ME, Bennett EJ, Gygi SP, Harper JW. 2009. Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389-403. http://dx.doi.org/10.1016/j.cell.2009.04.042.
-
(2009)
Cell
, vol.138
, pp. 389-403
-
-
Sowa, M.E.1
Bennett, E.J.2
Gygi, S.P.3
Harper, J.W.4
-
3
-
-
84871031152
-
Ubiquitin chain conformation regulates recognition and activity of interacting proteins
-
Ye Y, Blaser G, Horrocks MH, Ruedas-Rama MJ, Ibrahim S, Zhukov AA, Orte A, Klenerman D, Jackson SE, Komander D. 2012. Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 492:266-270. http://dx.doi.org/10.1038/nature11722.
-
(2012)
Nature
, vol.492
, pp. 266-270
-
-
Ye, Y.1
Blaser, G.2
Horrocks, M.H.3
Ruedas-Rama, M.J.4
Ibrahim, S.5
Zhukov, A.A.6
Orte, A.7
Klenerman, D.8
Jackson, S.E.9
Komander, D.10
-
4
-
-
84555218153
-
The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types
-
Faesen AC, Luna-Vargas MP, Geurink PP, Clerici M, Merkx R, van Dijk WJ, Hameed DS, El Oualid F, Ovaa H, Sixma TK. 2011. The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem Biol 18:1550-1561. http://dx.doi.org/10.1016/j.chembiol.2011.10.017.
-
(2011)
Chem Biol
, vol.18
, pp. 1550-1561
-
-
Faesen, A.C.1
Luna-Vargas, M.P.2
Geurink, P.P.3
Clerici, M.4
Merkx, R.5
van Dijk, W.J.6
Hameed, D.S.7
El Oualid, F.8
Ovaa, H.9
Sixma, T.K.10
-
5
-
-
84878832998
-
OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis
-
Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund SM, Ovaa H, Komander D. 2013. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154:169-184. http://dx.doi.org/10.1016/j.cell.2013.05.046.
-
(2013)
Cell
, vol.154
, pp. 169-184
-
-
Mevissen, T.E.1
Hospenthal, M.K.2
Geurink, P.P.3
Elliott, P.R.4
Akutsu, M.5
Arnaudo, N.6
Ekkebus, R.7
Kulathu, Y.8
Wauer, T.9
El Oualid, F.10
Freund, S.M.11
Ovaa, H.12
Komander, D.13
-
6
-
-
84861877407
-
The ubiquitin code
-
Komander D, Rape M. 2012. The ubiquitin code. Annu Rev Biochem 81:203-229. http://dx.doi.org/10.1146/annurev-biochem-060310-170328.
-
(2012)
Annu Rev Biochem
, vol.81
, pp. 203-229
-
-
Komander, D.1
Rape, M.2
-
7
-
-
80052265841
-
Mechanism, specificity and structure of the deubiquitinases
-
Komander D. 2010. Mechanism, specificity and structure of the deubiquitinases. Subcell Biochem 54:69-87. http://dx.doi.org/10.1007/978-1-4419-6676-6_6.
-
(2010)
Subcell Biochem
, vol.54
, pp. 69-87
-
-
Komander, D.1
-
8
-
-
33646196532
-
Regulation of DNA repair by ubiquitylation
-
Huang TT, D'Andrea AD. 2006. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7:323-334. http://dx.doi.org/10.1038/nrm1908.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 323-334
-
-
Huang, T.T.1
D'Andrea, A.D.2
-
9
-
-
84865364870
-
Playing the end game: DNA double-strand break repair pathway choice
-
Chapman JR, Taylor MR, Boulton SJ. 2012. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497-510. http://dx.doi.org/10.1016/j.molcel.2012.07.029.
-
(2012)
Mol Cell
, vol.47
, pp. 497-510
-
-
Chapman, J.R.1
Taylor, M.R.2
Boulton, S.J.3
-
10
-
-
78649336706
-
The DNA damage response: making it safe to play with knives
-
Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Mol Cell 40:179-204. http://dx.doi.org/10.1016/j.molcel.2010.09.019.
-
(2010)
Mol Cell
, vol.40
, pp. 179-204
-
-
Ciccia, A.1
Elledge, S.J.2
-
11
-
-
0343280013
-
A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage
-
Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886-895. http://dx.doi.org/10.1016/S0960-9822(00)00610-2.
-
(2000)
Curr Biol
, vol.10
, pp. 886-895
-
-
Paull, T.T.1
Rogakou, E.P.2
Yamazaki, V.3
Kirchgessner, C.U.4
Gellert, M.5
Bonner, W.M.6
-
12
-
-
0037468192
-
MDC1 is a mediator of the mammalian DNA damage checkpoint
-
Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. 2003. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961-966. http://dx.doi.org/10.1038/nature01446.
-
(2003)
Nature
, vol.421
, pp. 961-966
-
-
Stewart, G.S.1
Wang, B.2
Bignell, C.R.3
Taylor, A.M.4
Elledge, S.J.5
-
13
-
-
36749025467
-
Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage
-
Wang B, Elledge SJ. 2007. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A 104:20759-20763. http://dx.doi.org/10.1073/pnas.0710061104.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 20759-20763
-
-
Wang, B.1
Elledge, S.J.2
-
14
-
-
36249031962
-
RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly
-
Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J. 2007. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131:901-914. http://dx.doi.org/10.1016/j.cell.2007.09.041.
-
(2007)
Cell
, vol.131
, pp. 901-914
-
-
Huen, M.S.1
Grant, R.2
Manke, I.3
Minn, K.4
Yu, X.5
Yaffe, M.B.6
Chen, J.7
-
15
-
-
36248966246
-
RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins
-
Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J. 2007. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131:887-900. http://dx.doi.org/10.1016/j.cell.2007.09.040.
-
(2007)
Cell
, vol.131
, pp. 887-900
-
-
Mailand, N.1
Bekker-Jensen, S.2
Faustrup, H.3
Melander, F.4
Bartek, J.5
Lukas, C.6
Lukas, J.7
-
16
-
-
59049091728
-
RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins
-
Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J, Lukas J, Lukas C. 2009. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136:435-446. http://dx.doi.org/10.1016/j.cell.2008.12.041.
-
(2009)
Cell
, vol.136
, pp. 435-446
-
-
Doil, C.1
Mailand, N.2
Bekker-Jensen, S.3
Menard, P.4
Larsen, D.H.5
Pepperkok, R.6
Ellenberg, J.7
Panier, S.8
Durocher, D.9
Bartek, J.10
Lukas, J.11
Lukas, C.12
-
17
-
-
59049103900
-
The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage
-
Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, Nakada S, Ylanko J, Olivarius S, Mendez M, Oldreive C, Wildenhain J, Tagliaferro A, Pelletier L, Taubenheim N, Durandy A, Byrd PJ, Stankovic T, Taylor AM, Durocher D. 2009. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136:420-434. http://dx.doi.org/10.1016/j.cell.2008.12.042.
-
(2009)
Cell
, vol.136
, pp. 420-434
-
-
Stewart, G.S.1
Panier, S.2
Townsend, K.3
Al-Hakim, A.K.4
Kolas, N.K.5
Miller, E.S.6
Nakada, S.7
Ylanko, J.8
Olivarius, S.9
Mendez, M.10
Oldreive, C.11
Wildenhain, J.12
Tagliaferro, A.13
Pelletier, L.14
Taubenheim, N.15
Durandy, A.16
Byrd, P.J.17
Stankovic, T.18
Taylor, A.M.19
Durocher, D.20
more..
-
18
-
-
36749084931
-
Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase
-
Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D. 2007. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318:1637-1640. http://dx.doi.org/10.1126/science.1150034.
-
(2007)
Science
, vol.318
, pp. 1637-1640
-
-
Kolas, N.K.1
Chapman, J.R.2
Nakada, S.3
Ylanko, J.4
Chahwan, R.5
Sweeney, F.D.6
Panier, S.7
Mendez, M.8
Wildenhain, J.9
Thomson, T.M.10
Pelletier, L.11
Jackson, S.P.12
Durocher, D.13
-
19
-
-
84946079065
-
Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage
-
Thorslund T, Ripplinger A, Hoffmann S, Wild T, Uckelmann M, Villumsen B, Narita T, Sixma TK, Choudhary C, Bekker-Jensen S, Mailand N. 2015. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature 527:389-393. http://dx.doi.org/10.1038/nature15401.
-
(2015)
Nature
, vol.527
, pp. 389-393
-
-
Thorslund, T.1
Ripplinger, A.2
Hoffmann, S.3
Wild, T.4
Uckelmann, M.5
Villumsen, B.6
Narita, T.7
Sixma, T.K.8
Choudhary, C.9
Bekker-Jensen, S.10
Mailand, N.11
-
20
-
-
33646036373
-
Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin
-
Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, Di Fiore PP, Polo S, Schneider TR. 2006. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124:1183-1195. http://dx.doi.org/10.1016/j.cell.2006.02.020.
-
(2006)
Cell
, vol.124
, pp. 1183-1195
-
-
Penengo, L.1
Mapelli, M.2
Murachelli, A.G.3
Confalonieri, S.4
Magri, L.5
Musacchio, A.6
Di Fiore, P.P.7
Polo, S.8
Schneider, T.R.9
-
21
-
-
63049101044
-
Regulatory ubiquitylation in response to DNA double-strand breaks
-
Panier S, Durocher D. 2009. Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst) 8:436-443. http://dx.doi.org/10.1016/j.dnarep.2009.01.013.
-
(2009)
DNA Repair (Amst)
, vol.8
, pp. 436-443
-
-
Panier, S.1
Durocher, D.2
-
22
-
-
84864919890
-
Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks
-
Panier S, Ichijima Y, Fradet-Turcotte A, Leung CC, Kaustov L, Arrowsmith CH, Durocher D. 2012. Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks. Mol Cell 47:383-395. http://dx.doi.org/10.1016/j.molcel.2012.05.045.
-
(2012)
Mol Cell
, vol.47
, pp. 383-395
-
-
Panier, S.1
Ichijima, Y.2
Fradet-Turcotte, A.3
Leung, C.C.4
Kaustov, L.5
Arrowsmith, C.H.6
Durocher, D.7
-
23
-
-
84859895529
-
RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites
-
Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S. 2012. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J 31:1865-1878. http://dx.doi.org/10.1038/emboj.2012.47.
-
(2012)
EMBO J
, vol.31
, pp. 1865-1878
-
-
Mallette, F.A.1
Mattiroli, F.2
Cui, G.3
Young, L.C.4
Hendzel, M.J.5
Mer, G.6
Sixma, T.K.7
Richard, S.8
-
24
-
-
84866388311
-
RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling
-
Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, Marteijn JA, Sixma TK. 2012. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell 150:1182-1195. http://dx.doi.org/10.1016/j.cell.2012.08.005.
-
(2012)
Cell
, vol.150
, pp. 1182-1195
-
-
Mattiroli, F.1
Vissers, J.H.2
van Dijk, W.J.3
Ikpa, P.4
Citterio, E.5
Vermeulen, W.6
Marteijn, J.A.7
Sixma, T.K.8
-
25
-
-
84897449829
-
Nucleosome acidic patch promotes RNF168- and RING1B/BMI1-dependent H2AX and H2A ubiquitination and DNA damage signaling
-
Leung JW, Agarwal P, Canny MD, Gong F, Robison AD, Finkelstein IJ, Durocher D, Miller KM. 2014. Nucleosome acidic patch promotes RNF168- and RING1B/BMI1-dependent H2AX and H2A ubiquitination and DNA damage signaling. PLoS Genet 10:e1004178. http://dx.doi.org/10.1371/journal.pgen.1004178.
-
(2014)
PLoS Genet
, vol.10
, pp. e1004178
-
-
Leung, J.W.1
Agarwal, P.2
Canny, M.D.3
Gong, F.4
Robison, A.D.5
Finkelstein, I.J.6
Durocher, D.7
Miller, K.M.8
-
26
-
-
84929102368
-
DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA crosslinks
-
Raschle M, Smeenk G, Hansen RK, Temu T, Oka Y, Hein MY, Nagaraj N, Long DT, Walter JC, Hofmann K, Storchova Z, Cox J, Bekker-Jensen S, Mailand N, Mann M. 2015. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA crosslinks. Science 348:1253671. http://dx.doi.org/10.1126/science.1253671.
-
(2015)
Science
, vol.348
, pp. 1253671
-
-
Raschle, M.1
Smeenk, G.2
Hansen, R.K.3
Temu, T.4
Oka, Y.5
Hein, M.Y.6
Nagaraj, N.7
Long, D.T.8
Walter, J.C.9
Hofmann, K.10
Storchova, Z.11
Cox, J.12
Bekker-Jensen, S.13
Mailand, N.14
Mann, M.15
-
27
-
-
0033525582
-
Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
-
Hofmann RM, Pickart CM. 1999. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645-653. http://dx.doi.org/10.1016/S0092-8674(00)80575-9.
-
(1999)
Cell
, vol.96
, pp. 645-653
-
-
Hofmann, R.M.1
Pickart, C.M.2
-
28
-
-
33847413700
-
A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination
-
Zhao GY, Sonoda E, Barber LJ, Oka H, Murakawa Y, Yamada K, Ikura T, Wang X, Kobayashi M, Yamamoto K, Boulton SJ, Takeda S. 2007. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol Cell 25:663-675. http://dx.doi.org/10.1016/j.molcel.2007.01.029.
-
(2007)
Mol Cell
, vol.25
, pp. 663-675
-
-
Zhao, G.Y.1
Sonoda, E.2
Barber, L.J.3
Oka, H.4
Murakawa, Y.5
Yamada, K.6
Ikura, T.7
Wang, X.8
Kobayashi, M.9
Yamamoto, K.10
Boulton, S.J.11
Takeda, S.12
-
29
-
-
84920936909
-
RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage
-
Gatti M, Pinato S, Maiolica A, Rocchio F, Prato MG, Aebersold R, Penengo L. 2015. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 10:226-238. http://dx.doi.org/10.1016/j.celrep.2014.12.021.
-
(2015)
Cell Rep
, vol.10
, pp. 226-238
-
-
Gatti, M.1
Pinato, S.2
Maiolica, A.3
Rocchio, F.4
Prato, M.G.5
Aebersold, R.6
Penengo, L.7
-
30
-
-
34249949779
-
RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites
-
Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, Livingston DM, Greenberg RA. 2007. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316:1198-1202. http://dx.doi.org/10.1126/science.1139516.
-
(2007)
Science
, vol.316
, pp. 1198-1202
-
-
Sobhian, B.1
Shao, G.2
Lilli, D.R.3
Culhane, A.C.4
Moreau, L.A.5
Xia, B.6
Livingston, D.M.7
Greenberg, R.A.8
-
31
-
-
34249946686
-
Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response
-
Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, Elledge SJ. 2007. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316:1194-1198. http://dx.doi.org/10.1126/science.1139476.
-
(2007)
Science
, vol.316
, pp. 1194-1198
-
-
Wang, B.1
Matsuoka, S.2
Ballif, B.A.3
Zhang, D.4
Smogorzewska, A.5
Gygi, S.P.6
Elledge, S.J.7
-
32
-
-
34249950879
-
Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response
-
Kim H, Chen J, Yu X. 2007. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316:1202-1205. http://dx.doi.org/10.1126/science.1139621.
-
(2007)
Science
, vol.316
, pp. 1202-1205
-
-
Kim, H.1
Chen, J.2
Yu, X.3
-
33
-
-
34547120473
-
The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response
-
Yan J, Kim YS, Yang XP, Li LP, Liao G, Xia F, Jetten AM. 2007. The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res 67:6647-6656. http://dx.doi.org/10.1158/0008-5472.CAN-07-0924.
-
(2007)
Cancer Res
, vol.67
, pp. 6647-6656
-
-
Yan, J.1
Kim, Y.S.2
Yang, X.P.3
Li, L.P.4
Liao, G.5
Xia, F.6
Jetten, A.M.7
-
34
-
-
84863315246
-
RAP80 protein is important for genomic stability and is required for stabilizing BRCA1-A complex at DNA damage sites in vivo
-
Wu J, Liu C, Chen J, Yu X. 2012. RAP80 protein is important for genomic stability and is required for stabilizing BRCA1-A complex at DNA damage sites in vivo. J Biol Chem 287:22919-22926. http://dx.doi.org/10.1074/jbc.M112.351007.
-
(2012)
J Biol Chem
, vol.287
, pp. 22919-22926
-
-
Wu, J.1
Liu, C.2
Chen, J.3
Yu, X.4
-
35
-
-
66349096607
-
PALB2 is an integral component of the BRCA complex required for homologous recombination repair
-
Sy SM, Huen MS, Chen J. 2009. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci U S A 106:7155-7160. http://dx.doi.org/10.1073/pnas.0811159106.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 7155-7160
-
-
Sy, S.M.1
Huen, M.S.2
Chen, J.3
-
36
-
-
67651166786
-
PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2
-
Zhang F, Fan Q, Ren K, Andreassen PR. 2009. PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 7:1110-1118. http://dx.doi.org/10.1158/1541-7786.MCR-09-0123.
-
(2009)
Mol Cancer Res
, vol.7
, pp. 1110-1118
-
-
Zhang, F.1
Fan, Q.2
Ren, K.3
Andreassen, P.R.4
-
37
-
-
77950958141
-
53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks
-
Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark JM, Nussenzweig A. 2010. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141:243-254. http://dx.doi.org/10.1016/j.cell.2010.03.012.
-
(2010)
Cell
, vol.141
, pp. 243-254
-
-
Bunting, S.F.1
Callen, E.2
Wong, N.3
Chen, H.T.4
Polato, F.5
Gunn, A.6
Bothmer, A.7
Feldhahn, N.8
Fernandez-Capetillo, O.9
Cao, L.10
Xu, X.11
Deng, C.X.12
Finkel, T.13
Nussenzweig, M.14
Stark, J.M.15
Nussenzweig, A.16
-
38
-
-
79954528832
-
RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci
-
Hu Y, Scully R, Sobhian B, Xie A, Shestakova E, Livingston DM. 2011. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 25:685-700. http://dx.doi.org/10.1101/gad.2011011.
-
(2011)
Genes Dev
, vol.25
, pp. 685-700
-
-
Hu, Y.1
Scully, R.2
Sobhian, B.3
Xie, A.4
Shestakova, E.5
Livingston, D.M.6
-
39
-
-
79953869356
-
The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection
-
Coleman KA, Greenberg RA. 2011. The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem 286:13669-13680. http://dx.doi.org/10.1074/jbc.M110.213728.
-
(2011)
J Biol Chem
, vol.286
, pp. 13669-13680
-
-
Coleman, K.A.1
Greenberg, R.A.2
-
40
-
-
9244252580
-
Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks
-
Huyen Y, Zgheib O, Ditullio RA, Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD. 2004. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406-411. http://dx.doi.org/10.1038/nature03114.
-
(2004)
Nature
, vol.432
, pp. 406-411
-
-
Huyen, Y.1
Zgheib, O.2
Ditullio, R.A.3
Gorgoulis, V.G.4
Zacharatos, P.5
Petty, T.J.6
Sheston, E.A.7
Mellert, H.S.8
Stavridi, E.S.9
Halazonetis, T.D.10
-
41
-
-
84879888213
-
53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark
-
Fradet-Turcotte A, Canny MD, Escribano-Diaz C, Orthwein A, Leung CC, Huang H, Landry MC, Kitevski-LeBlanc J, Noordermeer SM, Sicheri F, Durocher D. 2013. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499:50-54. http://dx.doi.org/10.1038/nature12318.
-
(2013)
Nature
, vol.499
, pp. 50-54
-
-
Fradet-Turcotte, A.1
Canny, M.D.2
Escribano-Diaz, C.3
Orthwein, A.4
Leung, C.C.5
Huang, H.6
Landry, M.C.7
Kitevski-LeBlanc, J.8
Noordermeer, S.M.9
Sicheri, F.10
Durocher, D.11
-
42
-
-
68949221567
-
A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency
-
Cao L, Xu X, Bunting SF, Liu J, Wang RH, Cao LL, Wu JJ, Peng TN, Chen J, Nussenzweig A, Deng CX, Finkel T. 2009. A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Mol Cell 35:534-541. http://dx.doi.org/10.1016/j.molcel.2009.06.037.
-
(2009)
Mol Cell
, vol.35
, pp. 534-541
-
-
Cao, L.1
Xu, X.2
Bunting, S.F.3
Liu, J.4
Wang, R.H.5
Cao, L.L.6
Wu, J.J.7
Peng, T.N.8
Chen, J.9
Nussenzweig, A.10
Deng, C.X.11
Finkel, T.12
-
43
-
-
79955502009
-
Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1
-
Bothmer A, Robbiani DF, Di Virgilio M, Bunting SF, Klein IA, Feldhahn N, Barlow J, Chen HT, Bosque D, Callen E, Nussenzweig A, Nussenzweig MC. 2011. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol Cell 42:319-329. http://dx.doi.org/10.1016/j.molcel.2011.03.019.
-
(2011)
Mol Cell
, vol.42
, pp. 319-329
-
-
Bothmer, A.1
Robbiani, D.F.2
Di Virgilio, M.3
Bunting, S.F.4
Klein, I.A.5
Feldhahn, N.6
Barlow, J.7
Chen, H.T.8
Bosque, D.9
Callen, E.10
Nussenzweig, A.11
Nussenzweig, M.C.12
-
44
-
-
84892983257
-
53BP1: pro choice in DNA repair
-
Zimmermann M, de Lange T. 2014. 53BP1: pro choice in DNA repair. Trends Cell Biol 24:108-117. http://dx.doi.org/10.1016/j.tcb.2013.09.003.
-
(2014)
Trends Cell Biol
, vol.24
, pp. 108-117
-
-
Zimmermann, M.1
de Lange, T.2
-
45
-
-
84873488846
-
53BP1 regulates DSB repair using Rif1 to control 5' end resection
-
Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T. 2013. 53BP1 regulates DSB repair using Rif1 to control 5' end resection. Science 339:700-704. http://dx.doi.org/10.1126/science.1231573.
-
(2013)
Science
, vol.339
, pp. 700-704
-
-
Zimmermann, M.1
Lottersberger, F.2
Buonomo, S.B.3
Sfeir, A.4
de Lange, T.5
-
46
-
-
84873526612
-
Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching
-
Di Virgilio M, Callen E, Yamane A, Zhang W, Jankovic M, Gitlin AD, Feldhahn N, Resch W, Oliveira TY, Chait BT, Nussenzweig A, Casellas R, Robbiani DF, Nussenzweig MC. 2013. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339:711-715. http://dx.doi.org/10.1126/science.1230624.
-
(2013)
Science
, vol.339
, pp. 711-715
-
-
Di Virgilio, M.1
Callen, E.2
Yamane, A.3
Zhang, W.4
Jankovic, M.5
Gitlin, A.D.6
Feldhahn, N.7
Resch, W.8
Oliveira, T.Y.9
Chait, B.T.10
Nussenzweig, A.11
Casellas, R.12
Robbiani, D.F.13
Nussenzweig, M.C.14
-
47
-
-
84876855215
-
RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection
-
Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, Sartori AA, Adams IR, Batista FD, Boulton SJ. 2013. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell 49:858-871. http://dx.doi.org/10.1016/j.molcel.2013.01.002.
-
(2013)
Mol Cell
, vol.49
, pp. 858-871
-
-
Chapman, J.R.1
Barral, P.2
Vannier, J.B.3
Borel, V.4
Steger, M.5
Tomas-Loba, A.6
Sartori, A.A.7
Adams, I.R.8
Batista, F.D.9
Boulton, S.J.10
-
48
-
-
84876877091
-
A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
-
Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkac J, Cook MA, Rosebrock AP, Munro M, Canny MD, Xu D, Durocher D. 2013. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49:872-883. http://dx.doi.org/10.1016/j.molcel.2013.01.001.
-
(2013)
Mol Cell
, vol.49
, pp. 872-883
-
-
Escribano-Diaz, C.1
Orthwein, A.2
Fradet-Turcotte, A.3
Xing, M.4
Young, J.T.5
Tkac, J.6
Cook, M.A.7
Rosebrock, A.P.8
Munro, M.9
Canny, M.D.10
Xu, D.11
Durocher, D.12
-
49
-
-
84876527317
-
RIF1 counteracts BRCA1-mediated end resection during DNA repair
-
Feng L, Fong KW, Wang J, Wang W, Chen J. 2013. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J Biol Chem 288:11135-11143. http://dx.doi.org/10.1074/jbc.M113.457440.
-
(2013)
J Biol Chem
, vol.288
, pp. 11135-11143
-
-
Feng, L.1
Fong, K.W.2
Wang, J.3
Wang, W.4
Chen, J.5
-
50
-
-
84930678981
-
REV7 counteracts DNA double-strand break resection and affects PARP inhibition
-
Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M, Bouwman P, Bartkova J, Gogola E, Warmerdam D, Barazas M, Jaspers JE, Watanabe K, Pieterse M, Kersbergen A, Sol W, Celie PH, Schouten PC, van den Broek B, Salman A, Nieuwland M, de Rink I, de Ronde J, Jalink K, Boulton SJ, Chen J, van Gent DC, Bartek J, Jonkers J, Borst P, Rottenberg S. 2015. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521:541-544. http://dx.doi.org/10.1038/nature14328.
-
(2015)
Nature
, vol.521
, pp. 541-544
-
-
Xu, G.1
Chapman, J.R.2
Brandsma, I.3
Yuan, J.4
Mistrik, M.5
Bouwman, P.6
Bartkova, J.7
Gogola, E.8
Warmerdam, D.9
Barazas, M.10
Jaspers, J.E.11
Watanabe, K.12
Pieterse, M.13
Kersbergen, A.14
Sol, W.15
Celie, P.H.16
Schouten, P.C.17
van den Broek, B.18
Salman, A.19
Nieuwland, M.20
de Rink, I.21
de Ronde, J.22
Jalink, K.23
Boulton, S.J.24
Chen, J.25
van Gent, D.C.26
Bartek, J.27
Jonkers, J.28
Borst, P.29
Rottenberg, S.30
more..
-
51
-
-
84930646986
-
MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5' end resection
-
Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J, Wevers BA, Orthwein A, Durocher D, Jacobs JJ. 2015. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5' end resection. Nature 521:537-540. http://dx.doi.org/10.1038/nature14216.
-
(2015)
Nature
, vol.521
, pp. 537-540
-
-
Boersma, V.1
Moatti, N.2
Segura-Bayona, S.3
Peuscher, M.H.4
van der Torre, J.5
Wevers, B.A.6
Orthwein, A.7
Durocher, D.8
Jacobs, J.J.9
-
52
-
-
84918555933
-
PTIP associates with Artemis to dictate DNA repair pathway choice
-
Wang J, Aroumougame A, Lobrich M, Li Y, Chen D, Chen J, Gong Z. 2014. PTIP associates with Artemis to dictate DNA repair pathway choice. Genes Dev 28:2693-2698. http://dx.doi.org/10.1101/gad.252478.114.
-
(2014)
Genes Dev
, vol.28
, pp. 2693-2698
-
-
Wang, J.1
Aroumougame, A.2
Lobrich, M.3
Li, Y.4
Chen, D.5
Chen, J.6
Gong, Z.7
-
53
-
-
84931291782
-
Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining
-
Zong D, Callen E, Pegoraro G, Lukas C, Lukas J, Nussenzweig A. 2015. Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining. Nucleic Acids Res 43:4950-4961. http://dx.doi.org/10.1093/nar/gkv336.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 4950-4961
-
-
Zong, D.1
Callen, E.2
Pegoraro, G.3
Lukas, C.4
Lukas, J.5
Nussenzweig, A.6
-
54
-
-
62649104153
-
K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1
-
Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. 2009. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 28:621-631. http://dx.doi.org/10.1038/emboj.2009.27.
-
(2009)
EMBO J
, vol.28
, pp. 621-631
-
-
Cooper, E.M.1
Cutcliffe, C.2
Kristiansen, T.Z.3
Pandey, A.4
Pickart, C.M.5
Cohen, R.E.6
-
55
-
-
34547662882
-
CCDC98 targets BRCA1 to DNA damage sites
-
Liu Z, Wu J, Yu X. 2007. CCDC98 targets BRCA1 to DNA damage sites. Nat Struct Mol Biol 14:716-720. http://dx.doi.org/10.1038/nsmb1279.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 716-720
-
-
Liu, Z.1
Wu, J.2
Yu, X.3
-
56
-
-
34547655427
-
CCDC98 is a BRCA1-BRCT domainbinding protein involved in the DNA damage response
-
Kim H, Huang J, Chen J. 2007. CCDC98 is a BRCA1-BRCT domainbinding protein involved in the DNA damage response. Nat Struct Mol Biol 14:710-715. http://dx.doi.org/10.1038/nsmb1277.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 710-715
-
-
Kim, H.1
Huang, J.2
Chen, J.3
-
57
-
-
63049138322
-
NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control
-
Wang B, Hurov K, Hofmann K, Elledge SJ. 2009. NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev 23:729-739. http://dx.doi.org/10.1101/gad.1770309.
-
(2009)
Genes Dev
, vol.23
, pp. 729-739
-
-
Wang, B.1
Hurov, K.2
Hofmann, K.3
Elledge, S.J.4
-
58
-
-
77957260099
-
The Lys63-specific deubiquitinating enzyme BRCC36 is regulated by two scaffold proteins localizing in different subcellular compartments
-
Feng L, Wang J, Chen J. 2010. The Lys63-specific deubiquitinating enzyme BRCC36 is regulated by two scaffold proteins localizing in different subcellular compartments. J Biol Chem 285:30982-30988. http://dx.doi.org/10.1074/jbc.M110.135392.
-
(2010)
J Biol Chem
, vol.285
, pp. 30982-30988
-
-
Feng, L.1
Wang, J.2
Chen, J.3
-
59
-
-
79953203601
-
NBA1/MERIT40 and BRE interaction is required for the integrity of two distinct deubiquitinating enzyme BRCC36-containing complexes
-
Hu X, Kim JA, Castillo A, Huang M, Liu J, Wang B. 2011. NBA1/MERIT40 and BRE interaction is required for the integrity of two distinct deubiquitinating enzyme BRCC36-containing complexes. J Biol Chem 286:11734-11745. http://dx.doi.org/10.1074/jbc.M110.200857.
-
(2011)
J Biol Chem
, vol.286
, pp. 11734-11745
-
-
Hu, X.1
Kim, J.A.2
Castillo, A.3
Huang, M.4
Liu, J.5
Wang, B.6
-
60
-
-
0345276495
-
Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair
-
Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, Shiekhattar R. 2003. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 12:1087-1099. http://dx.doi.org/10.1016/S1097-2765(03)00424-6.
-
(2003)
Mol Cell
, vol.12
, pp. 1087-1099
-
-
Dong, Y.1
Hakimi, M.A.2
Chen, X.3
Kumaraswamy, E.4
Cooch, N.S.5
Godwin, A.K.6
Shiekhattar, R.7
-
61
-
-
84885852890
-
A BRISC-SHMT complex deubiquitinates IFNAR1 and regulates interferon responses
-
Zheng H, Gupta V, Patterson-Fortin J, Bhattacharya S, Katlinski K, Wu J, Varghese B, Carbone CJ, Aressy B, Fuchs SY, Greenberg RA. 2013. A BRISC-SHMT complex deubiquitinates IFNAR1 and regulates interferon responses. Cell Rep 5:180-193. http://dx.doi.org/10.1016/j.celrep.2013.08.025.
-
(2013)
Cell Rep
, vol.5
, pp. 180-193
-
-
Zheng, H.1
Gupta, V.2
Patterson-Fortin, J.3
Bhattacharya, S.4
Katlinski, K.5
Wu, J.6
Varghese, B.7
Carbone, C.J.8
Aressy, B.9
Fuchs, S.Y.10
Greenberg, R.A.11
-
62
-
-
62549140202
-
The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks
-
Shao G, Lilli DR, Patterson-Fortin J, Coleman KA, Morrissey DE, Greenberg RA. 2009. The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc Natl Acad Sci U S A 106:3166-3171. http://dx.doi.org/10.1073/pnas.0807485106.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3166-3171
-
-
Shao, G.1
Lilli, D.R.2
Patterson-Fortin, J.3
Coleman, K.A.4
Morrissey, D.E.5
Greenberg, R.A.6
-
63
-
-
84874351566
-
A two-step mechanism for TRF2-mediated chromosome-end protection
-
Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR, III, Denchi EL. 2013. A two-step mechanism for TRF2-mediated chromosome-end protection. Nature 494:502-505. http://dx.doi.org/10.1038/nature11873.
-
(2013)
Nature
, vol.494
, pp. 502-505
-
-
Okamoto, K.1
Bartocci, C.2
Ouzounov, I.3
Diedrich, J.K.4
Yates, J.R.5
Denchi, E.L.6
-
64
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R, Aravind L, Oania R, McDonald WH, Yates JR, III, Koonin EV, Deshaies RJ. 2002. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611-615. http://dx.doi.org/10.1126/science.1075898.
-
(2002)
Science
, vol.298
, pp. 611-615
-
-
Verma, R.1
Aravind, L.2
Oania, R.3
McDonald, W.H.4
Yates, J.R.5
Koonin, E.V.6
Deshaies, R.J.7
-
65
-
-
0037179694
-
A cryptic protease couples deubiquitination and degradation by the proteasome
-
Yao T, Cohen RE. 2002. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403-407. http://dx.doi.org/10.1038/nature01071.
-
(2002)
Nature
, vol.419
, pp. 403-407
-
-
Yao, T.1
Cohen, R.E.2
-
66
-
-
84867101138
-
The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response
-
Butler LR, Densham RM, Jia J, Garvin AJ, Stone HR, Shah V, Weekes D, Festy F, Beesley J, Morris JR. 2012. The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response. EMBO J 31:3918-3934. http://dx.doi.org/10.1038/emboj.2012.232.
-
(2012)
EMBO J
, vol.31
, pp. 3918-3934
-
-
Butler, L.R.1
Densham, R.M.2
Jia, J.3
Garvin, A.J.4
Stone, H.R.5
Shah, V.6
Weekes, D.7
Festy, F.8
Beesley, J.9
Morris, J.R.10
-
67
-
-
84890324730
-
Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection
-
Kakarougkas A, Ismail A, Katsuki Y, Freire R, Shibata A, Jeggo PA. 2013. Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection. Nucleic Acids Res 41:10298-10311. http://dx.doi.org/10.1093/nar/gkt802.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 10298-10311
-
-
Kakarougkas, A.1
Ismail, A.2
Katsuki, Y.3
Freire, R.4
Shibata, A.5
Jeggo, P.A.6
-
68
-
-
84895868714
-
Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
-
Worden EJ, Padovani C, Martin A. 2014. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol 21:220-227. http://dx.doi.org/10.1038/nsmb.2771.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 220-227
-
-
Worden, E.J.1
Padovani, C.2
Martin, A.3
-
69
-
-
19944388882
-
Proteasome involvement in the repair of DNA double-strand breaks
-
Krogan NJ, Lam MH, Fillingham J, Keogh MC, Gebbia M, Li J, Datta N, Cagney G, Buratowski S, Emili A, Greenblatt JF. 2004. Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell 16:1027-1034. http://dx.doi.org/10.1016/j.molcel.2004.11.033.
-
(2004)
Mol Cell
, vol.16
, pp. 1027-1034
-
-
Krogan, N.J.1
Lam, M.H.2
Fillingham, J.3
Keogh, M.C.4
Gebbia, M.5
Li, J.6
Datta, N.7
Cagney, G.8
Buratowski, S.9
Emili, A.10
Greenblatt, J.F.11
-
70
-
-
77950418771
-
The 19S proteasomal lid subunit POH1 enhances the transcriptional activation by Mitf in osteoclasts
-
Schwarz T, Sohn C, Kaiser B, Jensen ED, Mansky KC. 2010. The 19S proteasomal lid subunit POH1 enhances the transcriptional activation by Mitf in osteoclasts. J Cell Biochem 109:967-974. http://dx.doi.org/10.1002/jcb.22475.
-
(2010)
J Cell Biochem
, vol.109
, pp. 967-974
-
-
Schwarz, T.1
Sohn, C.2
Kaiser, B.3
Jensen, E.D.4
Mansky, K.C.5
-
71
-
-
84898762983
-
The JAMM in the proteasome
-
Wauer T, Komander D. 2014. The JAMM in the proteasome. Nat Struct Mol Biol 21:346-348. http://dx.doi.org/10.1038/nsmb.2800.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 346-348
-
-
Wauer, T.1
Komander, D.2
-
72
-
-
0030746105
-
In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome
-
Amerik AY, Swaminathan S, Krantz BA, Wilkinson KD, Hochstrasser M. 1997. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J 16:4826-4838. http://dx.doi.org/10.1093/emboj/16.16.4826.
-
(1997)
EMBO J
, vol.16
, pp. 4826-4838
-
-
Amerik, A.Y.1
Swaminathan, S.2
Krantz, B.A.3
Wilkinson, K.D.4
Hochstrasser, M.5
-
73
-
-
84898015292
-
Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks
-
Nakajima S, Lan L, Wei L, Hsieh CL, Rapic-Otrin V, Yasui A, Levine AS. 2014. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks. PLoS One 9:e84899. http://dx.doi.org/10.1371/journal.pone.0084899.
-
(2014)
PLoS One
, vol.9
, pp. e84899
-
-
Nakajima, S.1
Lan, L.2
Wei, L.3
Hsieh, C.L.4
Rapic-Otrin, V.5
Yasui, A.6
Levine, A.S.7
-
74
-
-
33646066025
-
The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin
-
Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. 2006. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124:1197-1208. http://dx.doi.org/10.1016/j.cell.2006.02.038.
-
(2006)
Cell
, vol.124
, pp. 1197-1208
-
-
Reyes-Turcu, F.E.1
Horton, J.R.2
Mullally, J.E.3
Heroux, A.4
Cheng, X.5
Wilkinson, K.D.6
-
75
-
-
84922010371
-
Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity
-
Nishi R, Wijnhoven P, le Sage C, Tjeertes J, Galanty Y, Forment JV, Clague MJ, Urbe S, Jackson SP. 2014. Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nat Cell Biol 16:1016-1026. http://dx.doi.org/10.1038/ncb3028.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 1016-1026
-
-
Nishi, R.1
Wijnhoven, P.2
le Sage, C.3
Tjeertes, J.4
Galanty, Y.5
Forment, J.V.6
Clague, M.J.7
Urbe, S.8
Jackson, S.P.9
-
76
-
-
84894067659
-
Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice
-
Kato K, Nakajima K, Ui A, Muto-Terao Y, Ogiwara H, Nakada S. 2014. Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. Mol Cell 53:617-630. http://dx.doi.org/10.1016/j.molcel.2014.01.030.
-
(2014)
Mol Cell
, vol.53
, pp. 617-630
-
-
Kato, K.1
Nakajima, K.2
Ui, A.3
Muto-Terao, Y.4
Ogiwara, H.5
Nakada, S.6
-
77
-
-
84920973221
-
The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages
-
Altun M, Walter TS, Kramer HB, Herr P, Iphofer A, Bostrom J, David Y, Komsany A, Ternette N, Navon A, Stuart DI, Ren J, Kessler BM. 2015. The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages. PLoS One 10: e0115344. http://dx.doi.org/10.1371/journal.pone.0115344.
-
(2015)
PLoS One
, vol.10
, pp. e0115344
-
-
Altun, M.1
Walter, T.S.2
Kramer, H.B.3
Herr, P.4
Iphofer, A.5
Bostrom, J.6
David, Y.7
Komsany, A.8
Ternette, N.9
Navon, A.10
Stuart, D.I.11
Ren, J.12
Kessler, B.M.13
-
78
-
-
0242361623
-
Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8
-
Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL. 2003. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648-2663. http://dx.doi.org/10.1101/gad.1144003.
-
(2003)
Genes Dev
, vol.17
, pp. 2648-2663
-
-
Henry, K.W.1
Wyce, A.2
Lo, W.S.3
Duggan, L.J.4
Emre, N.C.5
Kao, C.F.6
Pillus, L.7
Shilatifard, A.8
Osley, M.A.9
Berger, S.L.10
-
79
-
-
0033578890
-
Characterization and chromosomal localization of USP3, a novel human ubiquitin-specific protease
-
Sloper-Mould KE, Eyre HJ, Wang XW, Sutherland GR, Baker RT. 1999. Characterization and chromosomal localization of USP3, a novel human ubiquitin-specific protease. J Biol Chem 274:26878-26884. http://dx.doi.org/10.1074/jbc.274.38.26878.
-
(1999)
J Biol Chem
, vol.274
, pp. 26878-26884
-
-
Sloper-Mould, K.E.1
Eyre, H.J.2
Wang, X.W.3
Sutherland, G.R.4
Baker, R.T.5
-
80
-
-
36049036216
-
Human USP3 is a chromatin modifier required for S phase progression and genome stability
-
Nicassio F, Corrado N, Vissers JH, Areces LB, Bergink S, Marteijn JA, Geverts B, Houtsmuller AB, Vermeulen W, Di Fiore PP, Citterio E. 2007. Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr Biol 17:1972-1977. http://dx.doi.org/10.1016/j.cub.2007.10.034.
-
(2007)
Curr Biol
, vol.17
, pp. 1972-1977
-
-
Nicassio, F.1
Corrado, N.2
Vissers, J.H.3
Areces, L.B.4
Bergink, S.5
Marteijn, J.A.6
Geverts, B.7
Houtsmuller, A.B.8
Vermeulen, W.9
Di Fiore, P.P.10
Citterio, E.11
-
81
-
-
84892562030
-
USP3 counteracts RNF168 via deubiquitinating H2A and gamma H2AX at lysine 13 and 15
-
Sharma N, Zhu Q, Wani G, He J, Wang QE, Wani AA. 2014. USP3 counteracts RNF168 via deubiquitinating H2A and gamma H2AX at lysine 13 and 15. Cell Cycle 13:106-114. http://dx.doi.org/10.4161/cc.26814.
-
(2014)
Cell Cycle
, vol.13
, pp. 106-114
-
-
Sharma, N.1
Zhu, Q.2
Wani, G.3
He, J.4
Wang, Q.E.5
Wani, A.A.6
-
82
-
-
84878758649
-
The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases
-
Mosbech A, Lukas C, Bekker-Jensen S, Mailand N. 2013. The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J Biol Chem 288:16579-16587. http://dx.doi.org/10.1074/jbc.M113.459917.
-
(2013)
J Biol Chem
, vol.288
, pp. 16579-16587
-
-
Mosbech, A.1
Lukas, C.2
Bekker-Jensen, S.3
Mailand, N.4
-
83
-
-
84906552235
-
Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells
-
Lancini C, van den Berk PC, Vissers JH, Gargiulo G, Song JY, Hulsman D, Serresi M, Tanger E, Blom M, Vens C, van Lohuizen M, Jacobs H, Citterio E. 2014. Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells. J Exp Med 211:1759-1777. http://dx.doi.org/10.1084/jem.20131436.
-
(2014)
J Exp Med
, vol.211
, pp. 1759-1777
-
-
Lancini, C.1
van den Berk, P.C.2
Vissers, J.H.3
Gargiulo, G.4
Song, J.Y.5
Hulsman, D.6
Serresi, M.7
Tanger, E.8
Blom, M.9
Vens, C.10
van Lohuizen, M.11
Jacobs, H.12
Citterio, E.13
-
84
-
-
84903536551
-
Dub3 controls DNA damage signalling by direct deubiquitination of H2AX
-
Delgado-Diaz MR, Martin Y, Berg A, Freire R, Smits VA. 2014. Dub3 controls DNA damage signalling by direct deubiquitination of H2AX. Mol Oncol 8:884-893. http://dx.doi.org/10.1016/j.molonc.2014.03.003.
-
(2014)
Mol Oncol
, vol.8
, pp. 884-893
-
-
Delgado-Diaz, M.R.1
Martin, Y.2
Berg, A.3
Freire, R.4
Smits, V.A.5
-
85
-
-
84861968321
-
RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation
-
Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S, Golomb L, Pribluda A, Zhang F, Haj-Yahya M, Feldmesser E, Brik A, Yu X, Hanna J, Aberdam D, Domany E, Oren M. 2012. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell 46:662-673. http://dx.doi.org/10.1016/j.molcel.2012.05.023.
-
(2012)
Mol Cell
, vol.46
, pp. 662-673
-
-
Fuchs, G.1
Shema, E.2
Vesterman, R.3
Kotler, E.4
Wolchinsky, Z.5
Wilder, S.6
Golomb, L.7
Pribluda, A.8
Zhang, F.9
Haj-Yahya, M.10
Feldmesser, E.11
Brik, A.12
Yu, X.13
Hanna, J.14
Aberdam, D.15
Domany, E.16
Oren, M.17
-
86
-
-
34247376926
-
Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities
-
Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, McDonald ER, III, Li MZ, Hannon GJ, Sorger PK, Kirschner MW, Harper JW, Elledge SJ. 2007. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446:876-881. http://dx.doi.org/10.1038/nature05694.
-
(2007)
Nature
, vol.446
, pp. 876-881
-
-
Stegmeier, F.1
Rape, M.2
Draviam, V.M.3
Nalepa, G.4
Sowa, M.E.5
Ang, X.L.6
McDonald, E.R.7
Li, M.Z.8
Hannon, G.J.9
Sorger, P.K.10
Kirschner, M.W.11
Harper, J.W.12
Elledge, S.J.13
-
87
-
-
84870562210
-
USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis
-
Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, van Deursen J, Galardy PJ. 2012. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest 122:4362-4374. http://dx.doi.org/10.1172/JCI63084.
-
(2012)
J Clin Invest
, vol.122
, pp. 4362-4374
-
-
Zhang, Y.1
Foreman, O.2
Wigle, D.A.3
Kosari, F.4
Vasmatzis, G.5
Salisbury, J.L.6
van Deursen, J.7
Galardy, P.J.8
-
88
-
-
80051654271
-
Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia
-
Zhang Y, van Deursen J, Galardy PJ. 2011. Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia. PLoS One 6:e23389. http://dx.doi.org/10.1371/journal.pone.0023389.
-
(2011)
PLoS One
, vol.6
, pp. e23389
-
-
Zhang, Y.1
van Deursen, J.2
Galardy, P.J.3
-
89
-
-
84870536691
-
The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation
-
Holland AJ, Cleveland DW. 2012. The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation. J Clin Invest 122:4325-4328. http://dx.doi.org/10.1172/JCI66420.
-
(2012)
J Clin Invest
, vol.122
, pp. 4325-4328
-
-
Holland, A.J.1
Cleveland, D.W.2
-
90
-
-
84957912666
-
The de-ubiquitylating enzymes USP26 and USP37 regulate homologous recombination by counteracting RAP80
-
Typas D, Luijsterburg MS, Wiegant WW, Diakatou M, Helfricht A, Thijssen PE, van de Broek B, Mullenders LH, van Attikum H. 2015. The de-ubiquitylating enzymes USP26 and USP37 regulate homologous recombination by counteracting RAP80. Nucleic Acids Res 43:6919-6933. http://dx.doi.org/10.1093/nar/gkv613.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 6919-6933
-
-
Typas, D.1
Luijsterburg, M.S.2
Wiegant, W.W.3
Diakatou, M.4
Helfricht, A.5
Thijssen, P.E.6
van de Broek, B.7
Mullenders, L.H.8
van Attikum, H.9
-
91
-
-
84954111112
-
USP11 is a negative regulator to gamma H2AX ubiquitylation by RNF8/RNF168
-
27 October
-
Yu M, Liu K, Mao Z, Luo J, Gu W, Zhao W. 27 October 2015. USP11 is a negative regulator to gamman H2AX ubiquitylation by RNF8/RNF168. J Biol Chem http://dx.doi.org/10.1074/jbc.M114.624478.
-
(2015)
J Biol Chem
-
-
Yu, M.1
Liu, K.2
Mao, Z.3
Luo, J.4
Gu, W.5
Zhao, W.6
-
92
-
-
4344717012
-
BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage
-
Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA. 2004. BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol Cell Biol 24:7444-7455. http://dx.doi.org/10.1128/MCB.24.17.7444-7455.2004.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 7444-7455
-
-
Schoenfeld, A.R.1
Apgar, S.2
Dolios, G.3
Wang, R.4
Aaronson, S.A.5
-
93
-
-
77951985779
-
Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair
-
Wiltshire TD, Lovejoy CA, Wang T, Xia F, O'Connor MJ, Cortez D. 2010. Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair. J Biol Chem 285:14565-14571. http://dx.doi.org/10.1074/jbc.M110.104745.
-
(2010)
J Biol Chem
, vol.285
, pp. 14565-14571
-
-
Wiltshire, T.D.1
Lovejoy, C.A.2
Wang, T.3
Xia, F.4
O'Connor, M.J.5
Cortez, D.6
-
94
-
-
84940056533
-
Ubiquitin-specific protease 11 (USP11) deubiquitinates hybrid small ubiquitin-like modifier (SUMO)-ubiquitin chains to counteract RING finger protein 4 (RNF4)
-
Hendriks IA, Schimmel J, Eifler K, Olsen JV, Vertegaal AC. 2015. Ubiquitin-specific protease 11 (USP11) deubiquitinates hybrid small ubiquitin-like modifier (SUMO)-ubiquitin chains to counteract RING finger protein 4 (RNF4). J Biol Chem 290:15526-15537. http://dx.doi.org/10.1074/jbc.M114.618132.
-
(2015)
J Biol Chem
, vol.290
, pp. 15526-15537
-
-
Hendriks, I.A.1
Schimmel, J.2
Eifler, K.3
Olsen, J.V.4
Vertegaal, A.C.5
-
95
-
-
84873704658
-
RNF4 is required for DNA double-strand break repair in vivo
-
Vyas R, Kumar R, Clermont F, Helfricht A, Kalev P, Sotiropoulou P, Hendriks IA, Radaelli E, Hochepied T, Blanpain C, Sablina A, van Attikum H, Olsen JV, Jochemsen AG, Vertegaal AC, Marine JC. 2013. RNF4 is required for DNA double-strand break repair in vivo. Cell Death Differ 20:490-502. http://dx.doi.org/10.1038/cdd.2012.145.
-
(2013)
Cell Death Differ
, vol.20
, pp. 490-502
-
-
Vyas, R.1
Kumar, R.2
Clermont, F.3
Helfricht, A.4
Kalev, P.5
Sotiropoulou, P.6
Hendriks, I.A.7
Radaelli, E.8
Hochepied, T.9
Blanpain, C.10
Sablina, A.11
van Attikum, H.12
Olsen, J.V.13
Jochemsen, A.G.14
Vertegaal, A.C.15
Marine, J.C.16
-
96
-
-
84870760201
-
RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage
-
Guzzo CM, Berndsen CE, Zhu J, Gupta V, Datta A, Greenberg RA, Wolberger C, Matunis MJ. 2012. RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci Signal 5:ra88. http://dx.doi.org/10.1126/scisignal.2003485.
-
(2012)
Sci Signal
, vol.5
, pp. ra88
-
-
Guzzo, C.M.1
Berndsen, C.E.2
Zhu, J.3
Gupta, V.4
Datta, A.5
Greenberg, R.A.6
Wolberger, C.7
Matunis, M.J.8
-
97
-
-
84863846456
-
Sumoylation of MDC1 is important for proper DNA damage response
-
Luo K, Zhang H, Wang L, Yuan J, Lou Z. 2012. Sumoylation of MDC1 is important for proper DNA damage response. EMBO J 31:3008-3019. http://dx.doi.org/10.1038/emboj.2012.158.
-
(2012)
EMBO J
, vol.31
, pp. 3008-3019
-
-
Luo, K.1
Zhang, H.2
Wang, L.3
Yuan, J.4
Lou, Z.5
-
98
-
-
84861765707
-
RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair
-
Galanty Y, Belotserkovskaya R, Coates J, Jackson SP. 2012. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev 26:1179-1195. http://dx.doi.org/10.1101/gad.188284.112.
-
(2012)
Genes Dev
, vol.26
, pp. 1179-1195
-
-
Galanty, Y.1
Belotserkovskaya, R.2
Coates, J.3
Jackson, S.P.4
-
99
-
-
84861784690
-
SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage
-
Yin Y, Seifert A, Chua JS, Maure JF, Golebiowski F, Hay RT. 2012. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Dev 26:1196-1208. http://dx.doi.org/10.1101/gad.189274.112.
-
(2012)
Genes Dev
, vol.26
, pp. 1196-1208
-
-
Yin, Y.1
Seifert, A.2
Chua, J.S.3
Maure, J.F.4
Golebiowski, F.5
Hay, R.T.6
-
100
-
-
77955867565
-
Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1
-
Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang YC, O'Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras AC, Natsume T, Suda T, Durocher D. 2010. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466:941-946. http://dx.doi.org/10.1038/nature09297.
-
(2010)
Nature
, vol.466
, pp. 941-946
-
-
Nakada, S.1
Tai, I.2
Panier, S.3
Al-Hakim, A.4
Iemura, S.5
Juang, Y.C.6
O'Donnell, L.7
Kumakubo, A.8
Munro, M.9
Sicheri, F.10
Gingras, A.C.11
Natsume, T.12
Suda, T.13
Durocher, D.14
-
101
-
-
84856801739
-
OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function
-
Juang YC, Landry MC, Sanches M, Vittal V, Leung CC, Ceccarelli DF, Mateo AR, Pruneda JN, Mao DY, Szilard RK, Orlicky S, Munro M, Brzovic PS, Klevit RE, Sicheri F, Durocher D. 2012. OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol Cell 45:384-397. http://dx.doi.org/10.1016/j.molcel.2012.01.011.
-
(2012)
Mol Cell
, vol.45
, pp. 384-397
-
-
Juang, Y.C.1
Landry, M.C.2
Sanches, M.3
Vittal, V.4
Leung, C.C.5
Ceccarelli, D.F.6
Mateo, A.R.7
Pruneda, J.N.8
Mao, D.Y.9
Szilard, R.K.10
Orlicky, S.11
Munro, M.12
Brzovic, P.S.13
Klevit, R.E.14
Sicheri, F.15
Durocher, D.16
-
102
-
-
84883740585
-
E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1
-
Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X, Matunis MJ, Wolberger C. 2013. E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol 20:1033-1039. http://dx.doi.org/10.1038/nsmb.2655.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 1033-1039
-
-
Wiener, R.1
DiBello, A.T.2
Lombardi, P.M.3
Guzzo, C.M.4
Zhang, X.5
Matunis, M.J.6
Wolberger, C.7
-
103
-
-
84983490951
-
USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168
-
Zhu Q, Sharma N, He J, Wani G, Wani AA. 2015. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168. Cell Cycle 14:1413-1425. http://dx.doi.org/10.1080/15384101.2015.1007785.
-
(2015)
Cell Cycle
, vol.14
, pp. 1413-1425
-
-
Zhu, Q.1
Sharma, N.2
He, J.3
Wani, G.4
Wani, A.A.5
-
104
-
-
84885940995
-
The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks
-
Sy SM, Jiang J, O WS, Deng Y, Huen MS. 2013. The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks. Nucleic Acids Res 41:8572-8580. http://dx.doi.org/10.1093/nar/gkt622.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 8572-8580
-
-
Sy, S.M.1
Jiang, J.2
Deng, Y.3
Huen, M.S.4
-
105
-
-
84865232294
-
TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes
-
Gudjonsson T, Altmeyer M, Savic V, Toledo L, Dinant C, Grofte M, Bartkova J, Poulsen M, Oka Y, Bekker-Jensen S, Mailand N, Neumann B, Heriche JK, Shearer R, Saunders D, Bartek J, Lukas J, Lukas C. 2012. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150:697-709. http://dx.doi.org/10.1016/j.cell.2012.06.039.
-
(2012)
Cell
, vol.150
, pp. 697-709
-
-
Gudjonsson, T.1
Altmeyer, M.2
Savic, V.3
Toledo, L.4
Dinant, C.5
Grofte, M.6
Bartkova, J.7
Poulsen, M.8
Oka, Y.9
Bekker-Jensen, S.10
Mailand, N.11
Neumann, B.12
Heriche, J.K.13
Shearer, R.14
Saunders, D.15
Bartek, J.16
Lukas, J.17
Lukas, C.18
-
106
-
-
22744456248
-
The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme
-
Kee Y, Lyon N, Huibregtse JM. 2005. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J 24:2414-2424. http://dx.doi.org/10.1038/sj.emboj.7600710.
-
(2005)
EMBO J
, vol.24
, pp. 2414-2424
-
-
Kee, Y.1
Lyon, N.2
Huibregtse, J.M.3
-
107
-
-
33845970909
-
The deubiquitinating enzyme Ubp2 modulates Rsp5-dependent Lys63-linked polyubiquitin conjugates in Saccharomyces cerevisiae
-
Kee Y, Munoz W, Lyon N, Huibregtse JM. 2006. The deubiquitinating enzyme Ubp2 modulates Rsp5-dependent Lys63-linked polyubiquitin conjugates in Saccharomyces cerevisiae. J Biol Chem 281:36724-36731. http://dx.doi.org/10.1074/jbc.M608756200.
-
(2006)
J Biol Chem
, vol.281
, pp. 36724-36731
-
-
Kee, Y.1
Munoz, W.2
Lyon, N.3
Huibregtse, J.M.4
-
108
-
-
84884395606
-
Ubp2 regulates Rsp5 ubiquitination activity in vivo and in vitro
-
Lam MH, Emili A. 2013. Ubp2 regulates Rsp5 ubiquitination activity in vivo and in vitro. PLoS One 8:e75372. http://dx.doi.org/10.1371/journal.pone.0075372.
-
(2013)
PLoS One
, vol.8
, pp. e75372
-
-
Lam, M.H.1
Emili, A.2
-
109
-
-
84881290170
-
Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway
-
Dar A, Shibata E, Dutta A. 2013. Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway. Mol Cell Biol 33:3309-3320. http://dx.doi.org/10.1128/MCB.00358-13.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 3309-3320
-
-
Dar, A.1
Shibata, E.2
Dutta, A.3
-
110
-
-
24944516931
-
A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM
-
Sun Y, Jiang X, Chen S, Fernandes N, Price BD. 2005. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 102:13182-13187. http://dx.doi.org/10.1073/pnas.0504211102.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 13182-13187
-
-
Sun, Y.1
Jiang, X.2
Chen, S.3
Fernandes, N.4
Price, B.D.5
-
111
-
-
84885393469
-
Transcriptional regulation by Polycomb group proteins
-
Di Croce L, Helin K. 2013. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 20:1147-1155. http://dx.doi.org/10.1038/nsmb.2669.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 1147-1155
-
-
Di Croce, L.1
Helin, K.2
-
112
-
-
79956086415
-
BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair
-
Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ, Yao M, Citterio E, van Lohuizen M, Ganesan S. 2011. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 31:1972-1982. http://dx.doi.org/10.1128/MCB.00981-10.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 1972-1982
-
-
Ginjala, V.1
Nacerddine, K.2
Kulkarni, A.3
Oza, J.4
Hill, S.J.5
Yao, M.6
Citterio, E.7
van Lohuizen, M.8
Ganesan, S.9
-
113
-
-
77957748289
-
BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair
-
Ismail IH, Andrin C, McDonald D, Hendzel MJ. 2010. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol 191:45-60. http://dx.doi.org/10.1083/jcb.201003034.
-
(2010)
J Cell Biol
, vol.191
, pp. 45-60
-
-
Ismail, I.H.1
Andrin, C.2
McDonald, D.3
Hendzel, M.J.4
-
114
-
-
80051494784
-
Monoubiquitination of H2AX protein regulates DNA damage response signaling
-
Pan MR, Peng G, Hung WC, Lin SY. 2011. Monoubiquitination of H2AX protein regulates DNA damage response signaling. J Biol Chem 286:28599-28607. http://dx.doi.org/10.1074/jbc.M111.256297.
-
(2011)
J Biol Chem
, vol.286
, pp. 28599-28607
-
-
Pan, M.R.1
Peng, G.2
Hung, W.C.3
Lin, S.Y.4
-
115
-
-
15144342687
-
BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression
-
Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, Ishov AM, Tommerup N, Vissing H, Sekido Y, Minna J, Borodovsky A, Schultz DC, Wilkinson KD, Maul GG, Barlev N, Berger SL, Prendergast GC, Rauscher FJ, III. 1998. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16:1097-1112. http://dx.doi.org/10.1038/sj.onc.1201861.
-
(1998)
Oncogene
, vol.16
, pp. 1097-1112
-
-
Jensen, D.E.1
Proctor, M.2
Marquis, S.T.3
Gardner, H.P.4
Ha, S.I.5
Chodosh, L.A.6
Ishov, A.M.7
Tommerup, N.8
Vissing, H.9
Sekido, Y.10
Minna, J.11
Borodovsky, A.12
Schultz, D.C.13
Wilkinson, K.D.14
Maul, G.G.15
Barlev, N.16
Berger, S.L.17
Prendergast, G.C.18
Rauscher, F.J.19
-
116
-
-
52049085265
-
BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization
-
Ventii KH, Devi NS, Friedrich KL, Chernova TA, Tighiouart M, Van Meir EG, Wilkinson KD. 2008. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res 68:6953-6962. http://dx.doi.org/10.1158/0008-5472.CAN-08-0365.
-
(2008)
Cancer Res
, vol.68
, pp. 6953-6962
-
-
Ventii, K.H.1
Devi, N.S.2
Friedrich, K.L.3
Chernova, T.A.4
Tighiouart, M.5
Van Meir, E.G.6
Wilkinson, K.D.7
-
117
-
-
84905995383
-
Germline mutations in BAP1 impair its function in DNA double-strand break repair
-
Ismail IH, Davidson R, Gagne JP, Xu ZZ, Poirier GG, Hendzel MJ. 2014. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 74:4282-4294. http://dx.doi.org/10.1158/0008-5472.CAN-13-3109.
-
(2014)
Cancer Res
, vol.74
, pp. 4282-4294
-
-
Ismail, I.H.1
Davidson, R.2
Gagne, J.P.3
Xu, Z.Z.4
Poirier, G.G.5
Hendzel, M.J.6
-
118
-
-
84891912266
-
Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair
-
Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, Barbour H, Corbeil L, Hebert J, Drobetsky E, Masson JY, Di Noia JM, Affar EB. 2014. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A 111:285-290. http://dx.doi.org/10.1073/pnas.1309085110.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 285-290
-
-
Yu, H.1
Pak, H.2
Hammond-Martel, I.3
Ghram, M.4
Rodrigue, A.5
Daou, S.6
Barbour, H.7
Corbeil, L.8
Hebert, J.9
Drobetsky, E.10
Masson, J.Y.11
Di Noia, J.M.12
Affar, E.B.13
-
119
-
-
77952429798
-
Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB
-
Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW, Muller J. 2010. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465:243-247. http://dx.doi.org/10.1038/nature08966.
-
(2010)
Nature
, vol.465
, pp. 243-247
-
-
Scheuermann, J.C.1
de Ayala Alonso, A.G.2
Oktaba, K.3
Ly-Hartig, N.4
McGinty, R.K.5
Fraterman, S.6
Wilm, M.7
Muir, T.W.8
Muller, J.9
-
120
-
-
35548986309
-
Regulation of cell cycle progression and gene expression by H2A deubiquitination
-
Joo HY, Zhai L, Yang C, Nie S, Erdjument-Bromage H, Tempst P, Chang C, Wang H. 2007. Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449:1068-1072. http://dx.doi.org/10.1038/nature06256.
-
(2007)
Nature
, vol.449
, pp. 1068-1072
-
-
Joo, H.Y.1
Zhai, L.2
Yang, C.3
Nie, S.4
Erdjument-Bromage, H.5
Tempst, P.6
Chang, C.7
Wang, H.8
-
121
-
-
84897968795
-
RPA antagonizes microhomology-mediated repair of DNA double-strand breaks
-
Deng SK, Gibb B, de Almeida MJ, Greene EC, Symington LS. 2014. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol 21:405-412. http://dx.doi.org/10.1038/nsmb.2786.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 405-412
-
-
Deng, S.K.1
Gibb, B.2
de Almeida, M.J.3
Greene, E.C.4
Symington, L.S.5
-
122
-
-
84947709302
-
Mre11-Sae2 and RPA collaborate to prevent palindromic gene amplification
-
Deng SK, Yin Y, Petes TD, Symington LS. 2015. Mre11-Sae2 and RPA collaborate to prevent palindromic gene amplification. Mol Cell 60:500-508. http://dx.doi.org/10.1016/j.molcel.2015.09.027.
-
(2015)
Mol Cell
, vol.60
, pp. 500-508
-
-
Deng, S.K.1
Yin, Y.2
Petes, T.D.3
Symington, L.S.4
-
123
-
-
0037567268
-
Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
-
Zou L, Elledge SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542-1548. http://dx.doi.org/10.1126/science.1083430.
-
(2003)
Science
, vol.300
, pp. 1542-1548
-
-
Zou, L.1
Elledge, S.J.2
-
124
-
-
0029791693
-
The 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast
-
Longhese MP, Neecke H, Paciotti V, Lucchini G, Plevani P. 1996. The 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast. Nucleic Acids Res 24:3533-3537. http://dx.doi.org/10.1093/nar/24.18.3533.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 3533-3537
-
-
Longhese, M.P.1
Neecke, H.2
Paciotti, V.3
Lucchini, G.4
Plevani, P.5
-
125
-
-
0032493889
-
Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
-
Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE. 1998. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399-409. http://dx.doi.org/10.1016/S0092-8674(00)81482-8.
-
(1998)
Cell
, vol.94
, pp. 399-409
-
-
Lee, S.E.1
Moore, J.K.2
Holmes, A.3
Umezu, K.4
Kolodner, R.D.5
Haber, J.E.6
-
126
-
-
0031004885
-
A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein
-
Sugiyama T, Zaitseva EM, Kowalczykowski SC. 1997. A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem 272:7940-7945. http://dx.doi.org/10.1074/jbc.272.12.7940.
-
(1997)
J Biol Chem
, vol.272
, pp. 7940-7945
-
-
Sugiyama, T.1
Zaitseva, E.M.2
Kowalczykowski, S.C.3
-
127
-
-
0030995362
-
Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase
-
Sung P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11:1111-1121. http://dx.doi.org/10.1101/gad.11.9.1111.
-
(1997)
Genes Dev
, vol.11
, pp. 1111-1121
-
-
Sung, P.1
-
128
-
-
35648986560
-
Ctp1/CtIP and the MRN complex collaborate in the initial steps of homologous recombination
-
Takeda S, Nakamura K, Taniguchi Y, Paull TT. 2007. Ctp1/CtIP and the MRN complex collaborate in the initial steps of homologous recombination. Mol Cell 28:351-352. http://dx.doi.org/10.1016/j.molcel.2007.10.016.
-
(2007)
Mol Cell
, vol.28
, pp. 351-352
-
-
Takeda, S.1
Nakamura, K.2
Taniguchi, Y.3
Paull, T.T.4
-
129
-
-
36248942617
-
Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex
-
Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT. 2007. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell 28:638-651. http://dx.doi.org/10.1016/j.molcel.2007.11.001.
-
(2007)
Mol Cell
, vol.28
, pp. 638-651
-
-
Lengsfeld, B.M.1
Rattray, A.J.2
Bhaskara, V.3
Ghirlando, R.4
Paull, T.T.5
-
130
-
-
36549060102
-
Human CtIP promotes DNA end resection
-
Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP. 2007. Human CtIP promotes DNA end resection. Nature 450:509-514. http://dx.doi.org/10.1038/nature06337.
-
(2007)
Nature
, vol.450
, pp. 509-514
-
-
Sartori, A.A.1
Lukas, C.2
Coates, J.3
Mistrik, M.4
Fu, S.5
Bartek, J.6
Baer, R.7
Lukas, J.8
Jackson, S.P.9
-
131
-
-
68249116573
-
DNA end resection: many nucleases make light work
-
Mimitou EP, Symington LS. 2009. DNA end resection: many nucleases make light work. DNA Repair (Amst) 8:983-995. http://dx.doi.org/10.1016/j.dnarep.2009.04.017.
-
(2009)
DNA Repair (Amst)
, vol.8
, pp. 983-995
-
-
Mimitou, E.P.1
Symington, L.S.2
-
132
-
-
84938089266
-
MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex
-
Lee KY, Im JS, Shibata E, Park J, Handa N, Kowalczykowski SC, Dutta A. 2015. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun 6:7744. http://dx.doi.org/10.1038/ncomms8744.
-
(2015)
Nat Commun
, vol.6
, pp. 7744
-
-
Lee, K.Y.1
Im, J.S.2
Shibata, E.3
Park, J.4
Handa, N.5
Kowalczykowski, S.C.6
Dutta, A.7
-
133
-
-
53649104599
-
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770-774. http://dx.doi.org/10.1038/nature07312.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
134
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
-
Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134:981-994. http://dx.doi.org/10.1016/j.cell.2008.08.037.
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
Chung, W.H.2
Shim, E.Y.3
Lee, S.E.4
Ira, G.5
-
135
-
-
55949105327
-
Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair
-
Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC. 2008. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A 105:16906-16911. http://dx.doi.org/10.1073/pnas.0809380105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 16906-16911
-
-
Nimonkar, A.V.1
Ozsoy, A.Z.2
Genschel, J.3
Modrich, P.4
Kowalczykowski, S.C.5
-
136
-
-
17644375501
-
Inactivation of CtIP leads to early embryonic lethality mediated by G1 restraint and to tumorigenesis by haploid insufficiency
-
Chen PL, Liu F, Cai S, Lin X, Li A, Chen Y, Gu B, Lee EY, Lee WH. 2005. Inactivation of CtIP leads to early embryonic lethality mediated by G1 restraint and to tumorigenesis by haploid insufficiency. Mol Cell Biol 25:3535-3542. http://dx.doi.org/10.1128/MCB.25.9.3535-3542.2005.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 3535-3542
-
-
Chen, P.L.1
Liu, F.2
Cai, S.3
Lin, X.4
Li, A.5
Chen, Y.6
Gu, B.7
Lee, E.Y.8
Lee, W.H.9
-
137
-
-
84901766946
-
CtIP-mediated resection is essential for viability and can operate independently of BRCA1
-
Polato F, Callen E, Wong N, Faryabi R, Bunting S, Chen HT, Kozak M, Kruhlak MJ, Reczek CR, Lee WH, Ludwig T, Baer R, Feigenbaum L, Jackson S, Nussenzweig A. 2014. CtIP-mediated resection is essential for viability and can operate independently of BRCA1. J Exp Med 211:1027-1036. http://dx.doi.org/10.1084/jem.20131939.
-
(2014)
J Exp Med
, vol.211
, pp. 1027-1036
-
-
Polato, F.1
Callen, E.2
Wong, N.3
Faryabi, R.4
Bunting, S.5
Chen, H.T.6
Kozak, M.7
Kruhlak, M.J.8
Reczek, C.R.9
Lee, W.H.10
Ludwig, T.11
Baer, R.12
Feigenbaum, L.13
Jackson, S.14
Nussenzweig, A.15
-
138
-
-
84903628980
-
Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection
-
Makharashvili N, Tubbs AT, Yang SH, Wang H, Barton O, Zhou Y, Deshpande RA, Lee JH, Lobrich M, Sleckman BP, Wu X, Paull TT. 2014. Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol Cell 54:1022-1033. http://dx.doi.org/10.1016/j.molcel.2014.04.011.
-
(2014)
Mol Cell
, vol.54
, pp. 1022-1033
-
-
Makharashvili, N.1
Tubbs, A.T.2
Yang, S.H.3
Wang, H.4
Barton, O.5
Zhou, Y.6
Deshpande, R.A.7
Lee, J.H.8
Lobrich, M.9
Sleckman, B.P.10
Wu, X.11
Paull, T.T.12
-
139
-
-
84907801263
-
Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1
-
Barton O, Naumann SC, Diemer-Biehs R, Kunzel J, Steinlage M, Conrad S, Makharashvili N, Wang J, Feng L, Lopez BS, Paull TT, Chen J, Jeggo PA, Lobrich M. 2014. Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. J Cell Biol 206:877-894. http://dx.doi.org/10.1083/jcb.201401146.
-
(2014)
J Cell Biol
, vol.206
, pp. 877-894
-
-
Barton, O.1
Naumann, S.C.2
Diemer-Biehs, R.3
Kunzel, J.4
Steinlage, M.5
Conrad, S.6
Makharashvili, N.7
Wang, J.8
Feng, L.9
Lopez, B.S.10
Paull, T.T.11
Chen, J.12
Jeggo, P.A.13
Lobrich, M.14
-
140
-
-
84874243900
-
Activation of DSB processing requires phosphorylation of CtIP by ATR
-
Peterson SE, Li Y, Wu-Baer F, Chait BT, Baer R, Yan H, Gottesman ME, Gautier J. 2013. Activation of DSB processing requires phosphorylation of CtIP by ATR. Mol Cell 49:657-667. http://dx.doi.org/10.1016/j.molcel.2012.11.020.
-
(2013)
Mol Cell
, vol.49
, pp. 657-667
-
-
Peterson, S.E.1
Li, Y.2
Wu-Baer, F.3
Chait, B.T.4
Baer, R.5
Yan, H.6
Gottesman, M.E.7
Gautier, J.8
-
141
-
-
53349162987
-
CDK targets Sae2 to control DNA-end resection and homologous recombination
-
Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP. 2008. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689-692. http://dx.doi.org/10.1038/nature07215.
-
(2008)
Nature
, vol.455
, pp. 689-692
-
-
Huertas, P.1
Cortes-Ledesma, F.2
Sartori, A.A.3
Aguilera, A.4
Jackson, S.P.5
-
142
-
-
77956550868
-
Human SIRT6 promotes DNA end resection through CtIP deacetylation
-
Kaidi A, Weinert BT, Choudhary C, Jackson SP. 2010. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348-1353. http://dx.doi.org/10.1126/science.1192049.
-
(2010)
Science
, vol.329
, pp. 1348-1353
-
-
Kaidi, A.1
Weinert, B.T.2
Choudhary, C.3
Jackson, S.P.4
-
143
-
-
84891691403
-
HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates
-
Rajendran P, Kidane AI, Yu TW, Dashwood WM, Bisson WH, Lohr CV, Ho E, Williams DE, Dashwood RH. 2013. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics 8:612-623. http://dx.doi.org/10.4161/epi.24710.
-
(2013)
Epigenetics
, vol.8
, pp. 612-623
-
-
Rajendran, P.1
Kidane, A.I.2
Yu, T.W.3
Dashwood, W.M.4
Bisson, W.H.5
Lohr, C.V.6
Ho, E.7
Williams, D.E.8
Dashwood, R.H.9
-
144
-
-
33745614048
-
BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP
-
Yu X, Fu S, Lai M, Baer R, Chen J. 2006. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev 20:1721-1726. http://dx.doi.org/10.1101/gad.1431006.
-
(2006)
Genes Dev
, vol.20
, pp. 1721-1726
-
-
Yu, X.1
Fu, S.2
Lai, M.3
Baer, R.4
Chen, J.5
-
145
-
-
84883599853
-
Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection
-
Steger M, Murina O, Huhn D, Ferretti LP, Walser R, Hanggi K, Lafranchi L, Neugebauer C, Paliwal S, Janscak P, Gerrits B, Del Sal G, Zerbe O, Sartori AA. 2013. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol Cell 50:333-343. http://dx.doi.org/10.1016/j.molcel.2013.03.023.
-
(2013)
Mol Cell
, vol.50
, pp. 333-343
-
-
Steger, M.1
Murina, O.2
Huhn, D.3
Ferretti, L.P.4
Walser, R.5
Hanggi, K.6
Lafranchi, L.7
Neugebauer, C.8
Paliwal, S.9
Janscak, P.10
Gerrits, B.11
Del Sal, G.12
Zerbe, O.13
Sartori, A.A.14
-
146
-
-
84945937533
-
Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair
-
Schmidt CK, Galanty Y, Sczaniecka-Clift M, Coates J, Jhujh S, Demir M, Cornwell M, Beli P, Jackson SP. 2015. Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair. Nat Cell Biol 17:1458-1470. http://dx.doi.org/10.1038/ncb3260.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 1458-1470
-
-
Schmidt, C.K.1
Galanty, Y.2
Sczaniecka-Clift, M.3
Coates, J.4
Jhujh, S.5
Demir, M.6
Cornwell, M.7
Beli, P.8
Jackson, S.P.9
-
147
-
-
84919359385
-
APC/C(Cdh1) controls CtIP stability during the cell cycle and in response to DNA damage
-
Lafranchi L, de Boer HR, de Vries EG, Ong SE, Sartori AA, van Vugt MA. 2014. APC/C(Cdh1) controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J 33:2860-2879. http://dx.doi.org/10.15252/embj.201489017.
-
(2014)
EMBO J
, vol.33
, pp. 2860-2879
-
-
Lafranchi, L.1
de Boer, H.R.2
de Vries, E.G.3
Ong, S.E.4
Sartori, A.A.5
van Vugt, M.A.6
-
148
-
-
84943363184
-
The deubiquitylating enzyme USP4 cooperates with CtIP in DNA double-strand break end resection
-
Liu H, Zhang H, Wang X, Tian Q, Hu Z, Peng C, Jiang P, Wang T, Guo W, Chen Y, Li X, Zhang P, Pei H. 2015. The deubiquitylating enzyme USP4 cooperates with CtIP in DNA double-strand break end resection. Cell Rep 13:93-107. http://dx.doi.org/10.1016/j.celrep.2015.08.056.
-
(2015)
Cell Rep
, vol.13
, pp. 93-107
-
-
Liu, H.1
Zhang, H.2
Wang, X.3
Tian, Q.4
Hu, Z.5
Peng, C.6
Jiang, P.7
Wang, T.8
Guo, W.9
Chen, Y.10
Li, X.11
Zhang, P.12
Pei, H.13
-
149
-
-
84947815576
-
USP4 auto-deubiquitylation promotes homologous recombination
-
Wijnhoven P, Konietzny R, Blackford AN, Travers J, Kessler BM, Nishi R, Jackson SP. 2015. USP4 auto-deubiquitylation promotes homologous recombination. Mol Cell 60:362-373. http://dx.doi.org/10.1016/j.molcel.2015.09.019.
-
(2015)
Mol Cell
, vol.60
, pp. 362-373
-
-
Wijnhoven, P.1
Konietzny, R.2
Blackford, A.N.3
Travers, J.4
Kessler, B.M.5
Nishi, R.6
Jackson, S.P.7
-
150
-
-
84959162610
-
Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11
-
Vlasschaert C, Xia X, Coulombe J, Gray DA. 2015. Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11. BMC Evol Biol 15:230. http://dx.doi.org/10.1186/s12862-015-0511-1.
-
(2015)
BMC Evol Biol
, vol.15
, pp. 230
-
-
Vlasschaert, C.1
Xia, X.2
Coulombe, J.3
Gray, D.A.4
-
151
-
-
77954523079
-
The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome
-
Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M. 2010. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 24:1434-1447. http://dx.doi.org/10.1101/gad.1925010.
-
(2010)
Genes Dev
, vol.24
, pp. 1434-1447
-
-
Song, E.J.1
Werner, S.L.2
Neubauer, J.3
Stegmeier, F.4
Aspden, J.5
Rio, D.6
Harper, J.W.7
Elledge, S.J.8
Kirschner, M.W.9
Rape, M.10
-
152
-
-
52049112825
-
Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex
-
Yao T, Song L, Jin J, Cai Y, Takahashi H, Swanson SK, Washburn MP, Florens L, Conaway RC, Cohen RE, Conaway JW. 2008. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell 31:909-917. http://dx.doi.org/10.1016/j.molcel.2008.08.027.
-
(2008)
Mol Cell
, vol.31
, pp. 909-917
-
-
Yao, T.1
Song, L.2
Jin, J.3
Cai, Y.4
Takahashi, H.5
Swanson, S.K.6
Washburn, M.P.7
Florens, L.8
Conaway, R.C.9
Cohen, R.E.10
Conaway, J.W.11
-
153
-
-
83255185774
-
Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection
-
Gospodinov A, Vaissiere T, Krastev DB, Legube G, Anachkova B, Herceg Z. 2011. Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection. Mol Cell Biol 31:4735-4745. http://dx.doi.org/10.1128/MCB.06182-11.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4735-4745
-
-
Gospodinov, A.1
Vaissiere, T.2
Krastev, D.B.3
Legube, G.4
Anachkova, B.5
Herceg, Z.6
-
154
-
-
34648834736
-
Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks
-
van Attikum H, Fritsch O, Gasser SM. 2007. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J 26:4113-4125. http://dx.doi.org/10.1038/sj.emboj.7601835.
-
(2007)
EMBO J
, vol.26
, pp. 4113-4125
-
-
van Attikum, H.1
Fritsch, O.2
Gasser, S.M.3
-
155
-
-
77955889790
-
Expanded roles of the Fanconi anemia pathway in preserving genomic stability
-
Kee Y, D'Andrea AD. 2010. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev 24:1680-1694. http://dx.doi.org/10.1101/gad.1955310.
-
(2010)
Genes Dev
, vol.24
, pp. 1680-1694
-
-
Kee, Y.1
D'Andrea, A.D.2
-
156
-
-
0035105291
-
Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway
-
Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD. 2001. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7:249-262. http://dx.doi.org/10.1016/S1097-2765(01)00173-3.
-
(2001)
Mol Cell
, vol.7
, pp. 249-262
-
-
Garcia-Higuera, I.1
Taniguchi, T.2
Ganesan, S.3
Meyn, M.S.4
Timmers, C.5
Hejna, J.6
Grompe, M.7
D'Andrea, A.D.8
-
157
-
-
34247110291
-
Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair
-
Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER, III, Hurov KE, Luo J, Ballif BA, Gygi SP, Hofmann K, D'Andrea AD, Elledge SJ. 2007. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129:289-301. http://dx.doi.org/10.1016/j.cell.2007.03.009.
-
(2007)
Cell
, vol.129
, pp. 289-301
-
-
Smogorzewska, A.1
Matsuoka, S.2
Vinciguerra, P.3
McDonald, E.R.4
Hurov, K.E.5
Luo, J.6
Ballif, B.A.7
Gygi, S.P.8
Hofmann, K.9
D'Andrea, A.D.10
Elledge, S.J.11
-
158
-
-
34249281152
-
FANCI is a second monoubiquitinated member of the Fanconi anemia pathway
-
Sims AE, Spiteri E, Sims RJ, III, Arita AG, Lach FP, Landers T, Wurm M, Freund M, Neveling K, Hanenberg H, Auerbach AD, Huang TT. 2007. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat Struct Mol Biol 14:564-567. http://dx.doi.org/10.1038/nsmb1252.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 564-567
-
-
Sims, A.E.1
Spiteri, E.2
Sims, R.J.3
Arita, A.G.4
Lach, F.P.5
Landers, T.6
Wurm, M.7
Freund, M.8
Neveling, K.9
Hanenberg, H.10
Auerbach, A.D.11
Huang, T.T.12
-
159
-
-
77954274685
-
Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2
-
MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, MacArtney TJ, Hofmann K, Gartner A, West SC, Helleday T, Lilley DM, Rouse J. 2010. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142:65-76. http://dx.doi.org/10.1016/j.cell.2010.06.021.
-
(2010)
Cell
, vol.142
, pp. 65-76
-
-
MacKay, C.1
Declais, A.C.2
Lundin, C.3
Agostinho, A.4
Deans, A.J.5
MacArtney, T.J.6
Hofmann, K.7
Gartner, A.8
West, S.C.9
Helleday, T.10
Lilley, D.M.11
Rouse, J.12
-
160
-
-
77954279611
-
Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents
-
Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C, Cannavo E, Sartori AA, Hengartner MO, Jiricny J. 2010. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142:77-88. http://dx.doi.org/10.1016/j.cell.2010.06.022.
-
(2010)
Cell
, vol.142
, pp. 77-88
-
-
Kratz, K.1
Schopf, B.2
Kaden, S.3
Sendoel, A.4
Eberhard, R.5
Lademann, C.6
Cannavo, E.7
Sartori, A.A.8
Hengartner, M.O.9
Jiricny, J.10
-
161
-
-
77955290719
-
FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
-
Liu T, Ghosal G, Yuan J, Chen J, Huang J. 2010. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329:693-696. http://dx.doi.org/10.1126/science.1192656.
-
(2010)
Science
, vol.329
, pp. 693-696
-
-
Liu, T.1
Ghosal, G.2
Yuan, J.3
Chen, J.4
Huang, J.5
-
162
-
-
77954286076
-
A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair
-
Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME, Clark AB, Kunkel TA, Harper JW, Colaiacovo MP, Elledge SJ. 2010. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell 39:36-47. http://dx.doi.org/10.1016/j.molcel.2010.06.023.
-
(2010)
Mol Cell
, vol.39
, pp. 36-47
-
-
Smogorzewska, A.1
Desetty, R.2
Saito, T.T.3
Schlabach, M.4
Lach, F.P.5
Sowa, M.E.6
Clark, A.B.7
Kunkel, T.A.8
Harper, J.W.9
Colaiacovo, M.P.10
Elledge, S.J.11
-
163
-
-
84899991195
-
XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4
-
Klein Douwel D, Boonen RA, Long DT, Szypowska AA, Raschle M, Walter JC, Knipscheer P. 2014. XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol Cell 54:460-471. http://dx.doi.org/10.1016/j.molcel.2014.03.015.
-
(2014)
Mol Cell
, vol.54
, pp. 460-471
-
-
Klein Douwel, D.1
Boonen, R.A.2
Long, D.T.3
Szypowska, A.A.4
Raschle, M.5
Walter, J.C.6
Knipscheer, P.7
-
164
-
-
84899918056
-
Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA crosslink repair
-
Hodskinson MR, Silhan J, Crossan GP, Garaycoechea JI, Mukherjee S, Johnson CM, Scharer OD, Patel KJ. 2014. Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA crosslink repair. Mol Cell 54:472-484. http://dx.doi.org/10.1016/j.molcel.2014.03.014.
-
(2014)
Mol Cell
, vol.54
, pp. 472-484
-
-
Hodskinson, M.R.1
Silhan, J.2
Crossan, G.P.3
Garaycoechea, J.I.4
Mukherjee, S.5
Johnson, C.M.6
Scharer, O.D.7
Patel, K.J.8
-
165
-
-
84874612000
-
Recruitment of DNA polymerase eta by FANCD2 in the early response to DNA damage
-
Fu D, Dudimah FD, Zhang J, Pickering A, Paneerselvam J, Palrasu M, Wang H, Fei P. 2013. Recruitment of DNA polymerase eta by FANCD2 in the early response to DNA damage. Cell Cycle 12:803-809. http://dx.doi.org/10.4161/cc.23755.
-
(2013)
Cell Cycle
, vol.12
, pp. 803-809
-
-
Fu, D.1
Dudimah, F.D.2
Zhang, J.3
Pickering, A.4
Paneerselvam, J.5
Palrasu, M.6
Wang, H.7
Fei, P.8
-
166
-
-
84901281433
-
FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks
-
Murina O, von Aesch C, Karakus U, Ferretti LP, Bolck HA, Hanggi K, Sartori AA. 2014. FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks. Cell Rep 7:1030-1038. http://dx.doi.org/10.1016/j.celrep.2014.03.069.
-
(2014)
Cell Rep
, vol.7
, pp. 1030-1038
-
-
Murina, O.1
von Aesch, C.2
Karakus, U.3
Ferretti, L.P.4
Bolck, H.A.5
Hanggi, K.6
Sartori, A.A.7
-
167
-
-
84901263371
-
FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair
-
Unno J, Itaya A, Taoka M, Sato K, Tomida J, Sakai W, Sugasawa K, Ishiai M, Ikura T, Isobe T, Kurumizaka H, Takata M. 2014. FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair. Cell Rep 7:1039-1047. http://dx.doi.org/10.1016/j.celrep.2014.04.005.
-
(2014)
Cell Rep
, vol.7
, pp. 1039-1047
-
-
Unno, J.1
Itaya, A.2
Taoka, M.3
Sato, K.4
Tomida, J.5
Sakai, W.6
Sugasawa, K.7
Ishiai, M.8
Ikura, T.9
Isobe, T.10
Kurumizaka, H.11
Takata, M.12
-
168
-
-
84902997827
-
CtIP mediates replication fork recovery in a FANCD2-regulated manner
-
Yeo JE, Lee EH, Hendrickson EA, Sobeck A. 2014. CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum Mol Genet 23:3695-3705. http://dx.doi.org/10.1093/hmg/ddu078.
-
(2014)
Hum Mol Genet
, vol.23
, pp. 3695-3705
-
-
Yeo, J.E.1
Lee, E.H.2
Hendrickson, E.A.3
Sobeck, A.4
-
169
-
-
84928209773
-
ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress
-
Chen YH, Jones MJ, Yin Y, Crist SB, Colnaghi L, Sims RJ, III, Rothenberg E, Jallepalli PV, Huang TT. 2015. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol Cell 58:323-338. http://dx.doi.org/10.1016/j.molcel.2015.02.031.
-
(2015)
Mol Cell
, vol.58
, pp. 323-338
-
-
Chen, Y.H.1
Jones, M.J.2
Yin, Y.3
Crist, S.B.4
Colnaghi, L.5
Sims, R.J.6
Rothenberg, E.7
Jallepalli, P.V.8
Huang, T.T.9
-
170
-
-
84880534493
-
FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery
-
Chaudhury I, Sareen A, Raghunandan M, Sobeck A. 2013. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res 41:6444-6459. http://dx.doi.org/10.1093/nar/gkt348.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 6444-6459
-
-
Chaudhury, I.1
Sareen, A.2
Raghunandan, M.3
Sobeck, A.4
-
171
-
-
13244291457
-
The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway
-
Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM, D'Andrea AD, Bernards R. 2005. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 17:331-339. http://dx.doi.org/10.1016/j.molcel.2005.01.008.
-
(2005)
Mol Cell
, vol.17
, pp. 331-339
-
-
Nijman, S.M.1
Huang, T.T.2
Dirac, A.M.3
Brummelkamp, T.R.4
Kerkhoven, R.M.5
D'Andrea, A.D.6
Bernards, R.7
-
172
-
-
59649114341
-
Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype
-
Kim JM, Parmar K, Huang M, Weinstock DM, Ruit CA, Kutok JL, D'Andrea AD. 2009. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev Cell 16:314-320. http://dx.doi.org/10.1016/j.devcel.2009.01.001.
-
(2009)
Dev Cell
, vol.16
, pp. 314-320
-
-
Kim, J.M.1
Parmar, K.2
Huang, M.3
Weinstock, D.M.4
Ruit, C.A.5
Kutok, J.L.6
D'Andrea, A.D.7
-
173
-
-
36749100034
-
Deubiquitination of FANCD2 is required for DNA crosslink repair
-
Oestergaard VH, Langevin F, Kuiken HJ, Pace P, Niedzwiedz W, Simpson LJ, Ohzeki M, Takata M, Sale JE, Patel KJ. 2007. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol Cell 28:798-809. http://dx.doi.org/10.1016/j.molcel.2007.09.020.
-
(2007)
Mol Cell
, vol.28
, pp. 798-809
-
-
Oestergaard, V.H.1
Langevin, F.2
Kuiken, H.J.3
Pace, P.4
Niedzwiedz, W.5
Simpson, L.J.6
Ohzeki, M.7
Takata, M.8
Sale, J.E.9
Patel, K.J.10
-
174
-
-
79961109743
-
APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage
-
Cotto-Rios XM, Jones MJ, Busino L, Pagano M, Huang TT. 2011. APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage. J Cell Biol 194:177-186. http://dx.doi.org/10.1083/jcb.201101062.
-
(2011)
J Cell Biol
, vol.194
, pp. 177-186
-
-
Cotto-Rios, X.M.1
Jones, M.J.2
Busino, L.3
Pagano, M.4
Huang, T.T.5
-
175
-
-
64149129169
-
UAF1 is a subunit of multiple deubiquitinating enzyme complexes
-
Cohn MA, Kee Y, Haas W, Gygi SP, D'Andrea AD. 2009. UAF1 is a subunit of multiple deubiquitinating enzyme complexes. J Biol Chem 284:5343-5351. http://dx.doi.org/10.1074/jbc.M808430200.
-
(2009)
J Biol Chem
, vol.284
, pp. 5343-5351
-
-
Cohn, M.A.1
Kee, Y.2
Haas, W.3
Gygi, S.P.4
D'Andrea, A.D.5
-
176
-
-
84886997828
-
Inactivation of Uaf1 causes defective homologous recombination and early embryonic lethality in mice
-
Park E, Kim JM, Primack B, Weinstock DM, Moreau LA, Parmar K, D'Andrea AD. 2013. Inactivation of Uaf1 causes defective homologous recombination and early embryonic lethality in mice. Mol Cell Biol 33:4360-4370. http://dx.doi.org/10.1128/MCB.00870-13.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 4360-4370
-
-
Park, E.1
Kim, J.M.2
Primack, B.3
Weinstock, D.M.4
Moreau, L.A.5
Parmar, K.6
D'Andrea, A.D.7
-
177
-
-
36749082959
-
A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway
-
Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP, D'Andrea AD. 2007. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol Cell 28:786-797. http://dx.doi.org/10.1016/j.molcel.2007.09.031.
-
(2007)
Mol Cell
, vol.28
, pp. 786-797
-
-
Cohn, M.A.1
Kowal, P.2
Yang, K.3
Haas, W.4
Huang, T.T.5
Gygi, S.P.6
D'Andrea, A.D.7
-
178
-
-
80052437062
-
Regulation of the Fanconi anemia pathway by a SUMO-like delivery network
-
Yang K, Moldovan GL, Vinciguerra P, Murai J, Takeda S, D'Andrea AD. 2011. Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes Dev 25:1847-1858. http://dx.doi.org/10.1101/gad.17020911.
-
(2011)
Genes Dev
, vol.25
, pp. 1847-1858
-
-
Yang, K.1
Moldovan, G.L.2
Vinciguerra, P.3
Murai, J.4
Takeda, S.5
D'Andrea, A.D.6
-
179
-
-
77951210668
-
Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through its interactions with PCNA and USP1
-
Lee KY, Yang K, Cohn MA, Sikdar N, D'Andrea AD, Myung K. 2010. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through its interactions with PCNA and USP1. J Biol Chem 285:10362-10369. http://dx.doi.org/10.1074/jbc.M109.092544.
-
(2010)
J Biol Chem
, vol.285
, pp. 10362-10369
-
-
Lee, K.Y.1
Yang, K.2
Cohn, M.A.3
Sikdar, N.4
D'Andrea, A.D.5
Myung, K.6
-
180
-
-
84857411787
-
Y-family DNA polymerases and their role in tolerance of cellular DNA damage
-
Sale JE, Lehmann AR, Woodgate R. 2012. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13:141-152. http://dx.doi.org/10.1038/nrm3289.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 141-152
-
-
Sale, J.E.1
Lehmann, A.R.2
Woodgate, R.3
-
181
-
-
44449138846
-
Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme
-
Zhuang Z, Johnson RE, Haracska L, Prakash L, Prakash S, Benkovic SJ. 2008. Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc Natl Acad Sci U S A 105:5361-5366. http://dx.doi.org/10.1073/pnas.0801310105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 5361-5366
-
-
Zhuang, Z.1
Johnson, R.E.2
Haracska, L.3
Prakash, L.4
Prakash, S.5
Benkovic, S.J.6
-
182
-
-
84857064783
-
Dysregulation of DNA polymerase kappa recruitment to replication forks results in genomic instability
-
Jones MJ, Colnaghi L, Huang TT. 2012. Dysregulation of DNA polymerase kappa recruitment to replication forks results in genomic instability. EMBO J 31:908-918. http://dx.doi.org/10.1038/emboj.2011.457.
-
(2012)
EMBO J
, vol.31
, pp. 908-918
-
-
Jones, M.J.1
Colnaghi, L.2
Huang, T.T.3
-
183
-
-
33645708319
-
Regulation of monoubiquitinated PCNA by DUB autocleavage
-
Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R, D'Andrea AD. 2006. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8:339-347.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 339-347
-
-
Huang, T.T.1
Nijman, S.M.2
Mirchandani, K.D.3
Galardy, P.J.4
Cohn, M.A.5
Haas, W.6
Gygi, S.P.7
Ploegh, H.L.8
Bernards, R.9
D'Andrea, A.D.10
-
184
-
-
84871675699
-
The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway
-
Piatkov KI, Colnaghi L, Bekes M, Varshavsky A, Huang TT. 2012. The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway. Mol Cell 48:926-933. http://dx.doi.org/10.1016/j.molcel.2012.10.012.
-
(2012)
Mol Cell
, vol.48
, pp. 926-933
-
-
Piatkov, K.I.1
Colnaghi, L.2
Bekes, M.3
Varshavsky, A.4
Huang, T.T.5
-
185
-
-
80052919716
-
USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma
-
Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC, Carano RA, Dixit VM. 2011. USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell 146:918-930. http://dx.doi.org/10.1016/j.cell.2011.07.040.
-
(2011)
Cell
, vol.146
, pp. 918-930
-
-
Williams, S.A.1
Maecker, H.L.2
French, D.M.3
Liu, J.4
Gregg, A.5
Silverstein, L.B.6
Cao, T.C.7
Carano, R.A.8
Dixit, V.M.9
-
186
-
-
84959474434
-
USP7 is essential for maintaining Rad18 stability and DNA damage tolerance
-
11 May
-
Zlatanou A, Sabbioneda S, Miller ES, Greenwalt A, Aggathanggelou A, Maurice MM, Lehmann AR, Stankovic T, Reverdy C, Colland F, Vaziri C, Stewart GS. 11 May 2015. USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene http://dx.doi.org/10.1038/onc.2015.149.
-
(2015)
Oncogene
-
-
Zlatanou, A.1
Sabbioneda, S.2
Miller, E.S.3
Greenwalt, A.4
Aggathanggelou, A.5
Maurice, M.M.6
Lehmann, A.R.7
Stankovic, T.8
Reverdy, C.9
Colland, F.10
Vaziri, C.11
Stewart, G.S.12
-
187
-
-
84940961729
-
USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability
-
Qian J, Pentz K, Zhu Q, Wang Q, He J, Srivastava AK, Wani AA. 2015. USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability. Oncogene 34:4791-4796. http://dx.doi.org/10.1038/onc.2014.394.
-
(2015)
Oncogene
, vol.34
, pp. 4791-4796
-
-
Qian, J.1
Pentz, K.2
Zhu, Q.3
Wang, Q.4
He, J.5
Srivastava, A.K.6
Wani, A.A.7
-
189
-
-
33750299450
-
Protein tyrosine phosphatases: from genes, to function, to disease
-
Tonks NK. 2006. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833-846. http://dx.doi.org/10.1038/nrm2039.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, pp. 833-846
-
-
Tonks, N.K.1
-
190
-
-
20444400257
-
Redox redux: revisiting PTPs and the control of cell signaling
-
Tonks NK. 2005. Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667-670. http://dx.doi.org/10.1016/j.cell.2005.05.016.
-
(2005)
Cell
, vol.121
, pp. 667-670
-
-
Tonks, N.K.1
-
191
-
-
59249109389
-
Methods for preparing crystals of reversibly oxidized proteins: crystallization of protein tyrosine phosphatase 1B as an example
-
Salmeen A, Barford D. 2008. Methods for preparing crystals of reversibly oxidized proteins: crystallization of protein tyrosine phosphatase 1B as an example. Methods Mol Biol 476:101-116.
-
(2008)
Methods Mol Biol
, vol.476
, pp. 101-116
-
-
Salmeen, A.1
Barford, D.2
-
192
-
-
11144342740
-
Redox regulation of protein-tyrosine phosphatases
-
den Hertog J, Groen A, van der Wijk T. 2005. Redox regulation of protein-tyrosine phosphatases. Arch Biochem Biophys 434:11-15. http://dx.doi.org/10.1016/j.abb.2004.05.024.
-
(2005)
Arch Biochem Biophys
, vol.434
, pp. 11-15
-
-
den Hertog, J.1
Groen, A.2
van der Wijk, T.3
-
193
-
-
84871699184
-
Deubiquitinases as a signaling target of oxidative stress
-
Cotto-Rios XM, Bekes M, Chapman J, Ueberheide B, Huang TT. 2012. Deubiquitinases as a signaling target of oxidative stress. Cell Rep 2:1475-1484. http://dx.doi.org/10.1016/j.celrep.2012.11.011.
-
(2012)
Cell Rep
, vol.2
, pp. 1475-1484
-
-
Cotto-Rios, X.M.1
Bekes, M.2
Chapman, J.3
Ueberheide, B.4
Huang, T.T.5
-
194
-
-
84875912087
-
Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells
-
Lee JG, Baek K, Soetandyo N, Ye Y. 2013. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 4:1568. http://dx.doi.org/10.1038/ncomms2532.
-
(2013)
Nat Commun
, vol.4
, pp. 1568
-
-
Lee, J.G.1
Baek, K.2
Soetandyo, N.3
Ye, Y.4
-
195
-
-
84875886251
-
Regulation of A20 and other OTU deubiquitinases by reversible oxidation
-
Kulathu Y, Garcia FJ, Mevissen TE, Busch M, Arnaudo N, Carroll KS, Barford D, Komander D. 2013. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat Commun 4:1569. http://dx.doi.org/10.1038/ncomms2567.
-
(2013)
Nat Commun
, vol.4
, pp. 1569
-
-
Kulathu, Y.1
Garcia, F.J.2
Mevissen, T.E.3
Busch, M.4
Arnaudo, N.5
Carroll, K.S.6
Barford, D.7
Komander, D.8
-
196
-
-
80051744669
-
The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol eta in response to oxidative DNA damage in human cells
-
Zlatanou A, Despras E, Braz-Petta T, Boubakour-Azzouz I, Pouvelle C, Stewart GS, Nakajima S, Yasui A, Ishchenko AA, Kannouche PL. 2011. The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol eta in response to oxidative DNA damage in human cells. Mol Cell 43:649-662. http://dx.doi.org/10.1016/j.molcel.2011.06.023.
-
(2011)
Mol Cell
, vol.43
, pp. 649-662
-
-
Zlatanou, A.1
Despras, E.2
Braz-Petta, T.3
Boubakour-Azzouz, I.4
Pouvelle, C.5
Stewart, G.S.6
Nakajima, S.7
Yasui, A.8
Ishchenko, A.A.9
Kannouche, P.L.10
-
197
-
-
84923364710
-
Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis
-
Lee HS, Lee SA, Hur SK, Seo JW, Kwon J. 2014. Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nat Commun 5:5128. http://dx.doi.org/10.1038/ncomms6128.
-
(2014)
Nat Commun
, vol.5
, pp. 5128
-
-
Lee, H.S.1
Lee, S.A.2
Hur, S.K.3
Seo, J.W.4
Kwon, J.5
-
198
-
-
10944224673
-
INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair
-
Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X. 2004. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767-775. http://dx.doi.org/10.1016/j.cell.2004.11.037.
-
(2004)
Cell
, vol.119
, pp. 767-775
-
-
Morrison, A.J.1
Highland, J.2
Krogan, N.J.3
Arbel-Eden, A.4
Greenblatt, J.F.5
Haber, J.E.6
Shen, X.7
-
199
-
-
10944233962
-
Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair
-
van Attikum H, Fritsch O, Hohn B, Gasser SM. 2004. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119:777-788. http://dx.doi.org/10.1016/j.cell.2004.11.033.
-
(2004)
Cell
, vol.119
, pp. 777-788
-
-
van Attikum, H.1
Fritsch, O.2
Hohn, B.3
Gasser, S.M.4
-
200
-
-
38049178545
-
Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects
-
Fousteri M, Mullenders LH. 2008. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 18:73-84. http://dx.doi.org/10.1038/cr.2008.6.
-
(2008)
Cell Res
, vol.18
, pp. 73-84
-
-
Fousteri, M.1
Mullenders, L.H.2
-
201
-
-
56749157389
-
Transcription-coupled DNA repair: two decades of progress and surprises
-
Hanawalt PC, Spivak G. 2008. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958-970. http://dx.doi.org/10.1038/nrm2549.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 958-970
-
-
Hanawalt, P.C.1
Spivak, G.2
-
202
-
-
84878011067
-
The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair
-
Saijo M. 2013. The role of Cockayne syndrome group A (CSA) protein in transcription-coupled nucleotide excision repair. Mech Ageing Dev 134:196-201. http://dx.doi.org/10.1016/j.mad.2013.03.008.
-
(2013)
Mech Ageing Dev
, vol.134
, pp. 196-201
-
-
Saijo, M.1
-
203
-
-
33744795969
-
CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome
-
Groisman R, Kuraoka I, Chevallier O, Gaye N, Magnaldo T, Tanaka K, Kisselev AF, Harel-Bellan A, Nakatani Y. 2006. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev 20:1429-1434. http://dx.doi.org/10.1101/gad.378206.
-
(2006)
Genes Dev
, vol.20
, pp. 1429-1434
-
-
Groisman, R.1
Kuraoka, I.2
Chevallier, O.3
Gaye, N.4
Magnaldo, T.5
Tanaka, K.6
Kisselev, A.F.7
Harel-Bellan, A.8
Nakatani, Y.9
-
204
-
-
84860330462
-
UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair
-
Schwertman P, Lagarou A, Dekkers DH, Raams A, van der Hoek AC, Laffeber C, Hoeijmakers JH, Demmers JA, Fousteri M, Vermeulen W, Marteijn JA. 2012. UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat Genet 44:598-602. http://dx.doi.org/10.1038/ng.2230.
-
(2012)
Nat Genet
, vol.44
, pp. 598-602
-
-
Schwertman, P.1
Lagarou, A.2
Dekkers, D.H.3
Raams, A.4
van der Hoek, A.C.5
Laffeber, C.6
Hoeijmakers, J.H.7
Demmers, J.A.8
Fousteri, M.9
Vermeulen, W.10
Marteijn, J.A.11
-
205
-
-
84860336243
-
Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair
-
Zhang X, Horibata K, Saijo M, Ishigami C, Ukai A, Kanno S, Tahara H, Neilan EG, Honma M, Nohmi T, Yasui A, Tanaka K. 2012. Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat Genet 44:593-597. http://dx.doi.org/10.1038/ng.2228.
-
(2012)
Nat Genet
, vol.44
, pp. 593-597
-
-
Zhang, X.1
Horibata, K.2
Saijo, M.3
Ishigami, C.4
Ukai, A.5
Kanno, S.6
Tahara, H.7
Neilan, E.G.8
Honma, M.9
Nohmi, T.10
Yasui, A.11
Tanaka, K.12
-
206
-
-
84860330507
-
Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotideexcision repair
-
Nakazawa Y, Sasaki K, Mitsutake N, Matsuse M, Shimada M, Nardo T, Takahashi Y, Ohyama K, Ito K, Mishima H, Nomura M, Kinoshita A, Ono S, Takenaka K, Masuyama R, Kudo T, Slor H, Utani A, Tateishi S, Yamashita S, Stefanini M, Lehmann AR, Yoshiura K, Ogi T. 2012. Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotideexcision repair. Nat Genet 44:586-592. http://dx.doi.org/10.1038/ng.2229.
-
(2012)
Nat Genet
, vol.44
, pp. 586-592
-
-
Nakazawa, Y.1
Sasaki, K.2
Mitsutake, N.3
Matsuse, M.4
Shimada, M.5
Nardo, T.6
Takahashi, Y.7
Ohyama, K.8
Ito, K.9
Mishima, H.10
Nomura, M.11
Kinoshita, A.12
Ono, S.13
Takenaka, K.14
Masuyama, R.15
Kudo, T.16
Slor, H.17
Utani, A.18
Tateishi, S.19
Yamashita, S.20
Stefanini, M.21
Lehmann, A.R.22
Yoshiura, K.23
Ogi, T.24
more..
-
207
-
-
84880798866
-
UVSSA and USP7, a new couple in transcription-coupled DNA repair
-
Schwertman P, Vermeulen W, Marteijn JA. 2013. UVSSA and USP7, a new couple in transcription-coupled DNA repair. Chromosoma 122:275-284. http://dx.doi.org/10.1007/s00412-013-0420-2.
-
(2013)
Chromosoma
, vol.122
, pp. 275-284
-
-
Schwertman, P.1
Vermeulen, W.2
Marteijn, J.A.3
-
208
-
-
21044442126
-
UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex
-
Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Hanaoka F. 2005. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121:387-400. http://dx.doi.org/10.1016/j.cell.2005.02.035.
-
(2005)
Cell
, vol.121
, pp. 387-400
-
-
Sugasawa, K.1
Okuda, Y.2
Saijo, M.3
Nishi, R.4
Matsuda, N.5
Chu, G.6
Mori, T.7
Iwai, S.8
Tanaka, K.9
Hanaoka, F.10
-
209
-
-
84880032059
-
RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response
-
Poulsen SL, Hansen RK, Wagner SA, van Cuijk L, van Belle GJ, Streicher W, Wikstrom M, Choudhary C, Houtsmuller AB, Marteijn JA, Bekker-Jensen S, Mailand N. 2013. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J Cell Biol 201:797-807. http://dx.doi.org/10.1083/jcb.201212075.
-
(2013)
J Cell Biol
, vol.201
, pp. 797-807
-
-
Poulsen, S.L.1
Hansen, R.K.2
Wagner, S.A.3
van Cuijk, L.4
van Belle, G.J.5
Streicher, W.6
Wikstrom, M.7
Choudhary, C.8
Houtsmuller, A.B.9
Marteijn, J.A.10
Bekker-Jensen, S.11
Mailand, N.12
-
210
-
-
84936745419
-
SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair
-
van Cuijk L, van Belle GJ, Turkyilmaz Y, Poulsen SL, Janssens RC, Theil AF, Sabatella M, Lans H, Mailand N, Houtsmuller AB, Vermeulen W, Marteijn JA. 2015. SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair. Nat Commun 6:7499. http://dx.doi.org/10.1038/ncomms8499.
-
(2015)
Nat Commun
, vol.6
, pp. 7499
-
-
van Cuijk, L.1
van Belle, G.J.2
Turkyilmaz, Y.3
Poulsen, S.L.4
Janssens, R.C.5
Theil, A.F.6
Sabatella, M.7
Lans, H.8
Mailand, N.9
Houtsmuller, A.B.10
Vermeulen, W.11
Marteijn, J.A.12
-
211
-
-
84907478478
-
Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis
-
He J, Zhu Q, Wani G, Sharma N, Han C, Qian J, Pentz K, Wang QE, Wani AA. 2014. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem 289:27278-27289. http://dx.doi.org/10.1074/jbc.M114.589812.
-
(2014)
J Biol Chem
, vol.289
, pp. 27278-27289
-
-
He, J.1
Zhu, Q.2
Wani, G.3
Sharma, N.4
Han, C.5
Qian, J.6
Pentz, K.7
Wang, Q.E.8
Wani, A.A.9
-
212
-
-
84870862277
-
The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability
-
Zhang L, Lubin A, Chen H, Sun Z, Gong F. 2012. The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 11:4378-4384. http://dx.doi.org/10.4161/cc.22688.
-
(2012)
Cell Cycle
, vol.11
, pp. 4378-4384
-
-
Zhang, L.1
Lubin, A.2
Chen, H.3
Sun, Z.4
Gong, F.5
-
213
-
-
84920937287
-
The deubiquitinating enzyme USP24 is a regulator of the UV damage response
-
Zhang L, Nemzow L, Chen H, Lubin A, Rong X, Sun Z, Harris TK, Gong F. 2015. The deubiquitinating enzyme USP24 is a regulator of the UV damage response. Cell Rep 10:140-147. http://dx.doi.org/10.1016/j.celrep.2014.12.024.
-
(2015)
Cell Rep
, vol.10
, pp. 140-147
-
-
Zhang, L.1
Nemzow, L.2
Chen, H.3
Lubin, A.4
Rong, X.5
Sun, Z.6
Harris, T.K.7
Gong, F.8
-
214
-
-
84876730678
-
Co-ordination of base excision repair and genome stability
-
Parsons JL, Dianov GL. 2013. Co-ordination of base excision repair and genome stability. DNA Repair (Amst) 12:326-333. http://dx.doi.org/10.1016/j.dnarep.2013.02.001.
-
(2013)
DNA Repair (Amst)
, vol.12
, pp. 326-333
-
-
Parsons, J.L.1
Dianov, G.L.2
-
215
-
-
33847630719
-
Co-ordination of DNA single strand break repair
-
Dianov GL, Parsons JL. 2007. Co-ordination of DNA single strand break repair. DNA Repair (Amst) 6:454-460. http://dx.doi.org/10.1016/j.dnarep.2006.10.009.
-
(2007)
DNA Repair (Amst)
, vol.6
, pp. 454-460
-
-
Dianov, G.L.1
Parsons, J.L.2
-
216
-
-
38049183244
-
XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks
-
Horton JK, Watson M, Stefanick DF, Shaughnessy DT, Taylor JA, Wilson SH. 2008. XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks. Cell Res 18:48-63. http://dx.doi.org/10.1038/cr.2008.7.
-
(2008)
Cell Res
, vol.18
, pp. 48-63
-
-
Horton, J.K.1
Watson, M.2
Stefanick, D.F.3
Shaughnessy, D.T.4
Taylor, J.A.5
Wilson, S.H.6
-
217
-
-
0033118432
-
Cells deficient in DNA polymerase beta are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage
-
Ochs K, Sobol RW, Wilson SH, Kaina B. 1999. Cells deficient in DNA polymerase beta are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage. Cancer Res 59:1544-1551.
-
(1999)
Cancer Res
, vol.59
, pp. 1544-1551
-
-
Ochs, K.1
Sobol, R.W.2
Wilson, S.H.3
Kaina, B.4
-
218
-
-
0141731310
-
Base excision repair deficiency caused by polymerase beta haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens
-
Cabelof DC, Guo Z, Raffoul JJ, Sobol RW, Wilson SH, Richardson A, Heydari AR. 2003. Base excision repair deficiency caused by polymerase beta haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens. Cancer Res 63:5799-5807.
-
(2003)
Cancer Res
, vol.63
, pp. 5799-5807
-
-
Cabelof, D.C.1
Guo, Z.2
Raffoul, J.J.3
Sobol, R.W.4
Wilson, S.H.5
Richardson, A.6
Heydari, A.R.7
-
219
-
-
0345620782
-
Overexpression of DNA polymerase beta: a genomic instability enhancer process
-
Canitrot Y, Frechet M, Servant L, Cazaux C, Hoffmann JS. 1999. Overexpression of DNA polymerase beta: a genomic instability enhancer process. FASEB J 13:1107-1111.
-
(1999)
FASEB J
, vol.13
, pp. 1107-1111
-
-
Canitrot, Y.1
Frechet, M.2
Servant, L.3
Cazaux, C.4
Hoffmann, J.S.5
-
220
-
-
34548379865
-
Overexpression of DNA polymerase beta results in an increased rate of frameshift mutations during base excision repair
-
Chan K, Houlbrook S, Zhang QM, Harrison M, Hickson ID, Dianov GL. 2007. Overexpression of DNA polymerase beta results in an increased rate of frameshift mutations during base excision repair. Mutagenesis 22:183-188. http://dx.doi.org/10.1093/mutage/gel070.
-
(2007)
Mutagenesis
, vol.22
, pp. 183-188
-
-
Chan, K.1
Houlbrook, S.2
Zhang, Q.M.3
Harrison, M.4
Hickson, I.D.5
Dianov, G.L.6
-
221
-
-
39549106043
-
CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins
-
Parsons JL, Tait PS, Finch D, Dianova II, Allinson SL, Dianov GL. 2008. CHIP-mediated degradation and DNA damage-dependent stabilization regulate base excision repair proteins. Mol Cell 29:477-487. http://dx.doi.org/10.1016/j.molcel.2007.12.027.
-
(2008)
Mol Cell
, vol.29
, pp. 477-487
-
-
Parsons, J.L.1
Tait, P.S.2
Finch, D.3
Dianova, I.I.4
Allinson, S.L.5
Dianov, G.L.6
-
222
-
-
70350340291
-
Ubiquitin ligase ARF-BP1/Mule modulates base excision repair
-
Parsons JL, Tait PS, Finch D, Dianova II, Edelmann MJ, Khoronenkova SV, Kessler BM, Sharma RA, McKenna WG, Dianov GL. 2009. Ubiquitin ligase ARF-BP1/Mule modulates base excision repair. EMBOJ 28:3207-3215. http://dx.doi.org/10.1038/emboj.2009.243.
-
(2009)
EMBOJ
, vol.28
, pp. 3207-3215
-
-
Parsons, J.L.1
Tait, P.S.2
Finch, D.3
Dianova, I.I.4
Edelmann, M.J.5
Khoronenkova, S.V.6
Kessler, B.M.7
Sharma, R.A.8
McKenna, W.G.9
Dianov, G.L.10
-
223
-
-
79951997444
-
USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta
-
Parsons JL, Dianova II, Khoronenkova SV, Edelmann MJ, Kessler BM, Dianov GL. 2011. USP47 is a deubiquitylating enzyme that regulates base excision repair by controlling steady-state levels of DNA polymerase beta. Mol Cell 41:609-615. http://dx.doi.org/10.1016/j.molcel.2011.02.016.
-
(2011)
Mol Cell
, vol.41
, pp. 609-615
-
-
Parsons, J.L.1
Dianova, I.I.2
Khoronenkova, S.V.3
Edelmann, M.J.4
Kessler, B.M.5
Dianov, G.L.6
-
224
-
-
84873696103
-
USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair
-
Khoronenkova SV, Dianov GL. 2013. USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair. Nucleic Acids Res 41:1750-1756. http://dx.doi.org/10.1093/nar/gks1359.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 1750-1756
-
-
Khoronenkova, S.V.1
Dianov, G.L.2
-
225
-
-
84859111172
-
ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage
-
Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Parsons JL, Dianov GL. 2012. ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell 45:801-813. http://dx.doi.org/10.1016/j.molcel.2012.01.021.
-
(2012)
Mol Cell
, vol.45
, pp. 801-813
-
-
Khoronenkova, S.V.1
Dianova, I.I.2
Ternette, N.3
Kessler, B.M.4
Parsons, J.L.5
Dianov, G.L.6
-
226
-
-
84919393011
-
Regulation of base excision repair proteins by ubiquitylation
-
Edmonds MJ, Parsons JL. 2014. Regulation of base excision repair proteins by ubiquitylation. Exp Cell Res 329:132-138. http://dx.doi.org/10.1016/j.yexcr.2014.07.031.
-
(2014)
Exp Cell Res
, vol.329
, pp. 132-138
-
-
Edmonds, M.J.1
Parsons, J.L.2
-
227
-
-
2942523593
-
Endogenous DNA damage in humans: a review of quantitative data
-
De Bont R, van Larebeke N. 2004. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169-185. http://dx.doi.org/10.1093/mutage/geh025.
-
(2004)
Mutagenesis
, vol.19
, pp. 169-185
-
-
De Bont, R.1
van Larebeke, N.2
-
228
-
-
33847688859
-
Repair of alkylated DNA: recent advances
-
Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T. 2007. Repair of alkylated DNA: recent advances. DNA Repair (Amst) 6:429-442. http://dx.doi.org/10.1016/j.dnarep.2006.10.005.
-
(2007)
DNA Repair (Amst)
, vol.6
, pp. 429-442
-
-
Sedgwick, B.1
Bates, P.A.2
Paik, J.3
Jacobs, S.C.4
Lindahl, T.5
-
229
-
-
84931281713
-
Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase
-
Zhao Y, Majid MC, Soll JM, Brickner JR, Dango S, Mosammaparast N. 2015. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase. EMBO J 34:1687-1703. http://dx.doi.org/10.15252/embj.201490497.
-
(2015)
EMBO J
, vol.34
, pp. 1687-1703
-
-
Zhao, Y.1
Majid, M.C.2
Soll, J.M.3
Brickner, J.R.4
Dango, S.5
Mosammaparast, N.6
-
230
-
-
77957284673
-
Differential regulation of JAMM domain deubiquitinating enzyme activity within the RAP80 complex
-
Patterson-Fortin J, Shao G, Bretscher H, Messick TE, Greenberg RA. 2010. Differential regulation of JAMM domain deubiquitinating enzyme activity within the RAP80 complex. J Biol Chem 285:30971-30981. http://dx.doi.org/10.1074/jbc.M110.135319.
-
(2010)
J Biol Chem
, vol.285
, pp. 30971-30981
-
-
Patterson-Fortin, J.1
Shao, G.2
Bretscher, H.3
Messick, T.E.4
Greenberg, R.A.5
-
231
-
-
63049112033
-
MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks
-
Shao G, Patterson-Fortin J, Messick TE, Feng D, Shanbhag N, Wang Y, Greenberg RA. 2009. MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. Genes Dev 23:740-754. http://dx.doi.org/10.1101/gad.1739609.
-
(2009)
Genes Dev
, vol.23
, pp. 740-754
-
-
Shao, G.1
Patterson-Fortin, J.2
Messick, T.E.3
Feng, D.4
Shanbhag, N.5
Wang, Y.6
Greenberg, R.A.7
-
232
-
-
77951247308
-
WDR20regulates activity of the USP12 x UAF1 deubiquitinating enzyme complex
-
Kee Y, Yang K, Cohn MA, Haas W, Gygi SP, D'Andrea AD. 2010. WDR20regulates activity of the USP12 x UAF1 deubiquitinating enzyme complex. J Biol Chem 285:11252-11257. http://dx.doi.org/10.1074/jbc.M109.095141.
-
(2010)
J Biol Chem
, vol.285
, pp. 11252-11257
-
-
Kee, Y.1
Yang, K.2
Cohn, M.A.3
Haas, W.4
Gygi, S.P.5
D'Andrea, A.D.6
-
233
-
-
84880966633
-
Deubiquitinating enzymes as therapeutic targets in cancer
-
Lim KH, Baek KH. 2013. Deubiquitinating enzymes as therapeutic targets in cancer. Curr Pharm Des 19:4039-4052. http://dx.doi.org/10.2174/1381612811319220013.
-
(2013)
Curr Pharm Des
, vol.19
, pp. 4039-4052
-
-
Lim, K.H.1
Baek, K.H.2
-
234
-
-
79956107843
-
Ubiquitin-specific proteases as cancer drug targets
-
Sippl W, Collura V, Colland F. 2011. Ubiquitin-specific proteases as cancer drug targets. Future Oncol 7:619-632. http://dx.doi.org/10.2217/fon.11.39.
-
(2011)
Future Oncol
, vol.7
, pp. 619-632
-
-
Sippl, W.1
Collura, V.2
Colland, F.3
-
235
-
-
79955938866
-
The multifaceted roles of USP7: new therapeutic opportunities
-
Nicholson B, Suresh Kumar KG. 2011. The multifaceted roles of USP7: new therapeutic opportunities. Cell Biochem Biophys 60:61-68. http://dx.doi.org/10.1007/s12013-011-9185-5.
-
(2011)
Cell Biochem Biophys
, vol.60
, pp. 61-68
-
-
Nicholson, B.1
Suresh Kumar, K.G.2
-
236
-
-
73849083434
-
Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival
-
Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, Maecker H, O'Rourke K, Bazan F, Eastham-Anderson J, Yue P, Dornan D, Huang DC, Dixit VM. 2010. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463:103-107. http://dx.doi.org/10.1038/nature08646.
-
(2010)
Nature
, vol.463
, pp. 103-107
-
-
Schwickart, M.1
Huang, X.2
Lill, J.R.3
Liu, J.4
Ferrando, R.5
French, D.M.6
Maecker, H.7
O'Rourke, K.8
Bazan, F.9
Eastham-Anderson, J.10
Yue, P.11
Dornan, D.12
Huang, D.C.13
Dixit, V.M.14
-
237
-
-
84896603075
-
A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses
-
Liang Q, Dexheimer TS, Zhang P, Rosenthal AS, Villamil MA, You C, Zhang Q, Chen J, Ott CA, Sun H, Luci DK, Yuan B, Simeonov A, Jadhav A, Xiao H, Wang Y, Maloney DJ, Zhuang Z. 2014. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol 10:298-304. http://dx.doi.org/10.1038/nchembio.1455.
-
(2014)
Nat Chem Biol
, vol.10
, pp. 298-304
-
-
Liang, Q.1
Dexheimer, T.S.2
Zhang, P.3
Rosenthal, A.S.4
Villamil, M.A.5
You, C.6
Zhang, Q.7
Chen, J.8
Ott, C.A.9
Sun, H.10
Luci, D.K.11
Yuan, B.12
Simeonov, A.13
Jadhav, A.14
Xiao, H.15
Wang, Y.16
Maloney, D.J.17
Zhuang, Z.18
-
238
-
-
84880768870
-
FANCD2 activates transcription of TAp63 and suppresses tumorigenesis
-
Park E, Kim H, Kim JM, Primack B, Vidal-Cardenas S, Xu Y, Price BD, Mills AA, D'Andrea AD. 2013. FANCD2 activates transcription of TAp63 and suppresses tumorigenesis. Mol Cell 50:908-918. http://dx.doi.org/10.1016/j.molcel.2013.05.017.
-
(2013)
Mol Cell
, vol.50
, pp. 908-918
-
-
Park, E.1
Kim, H.2
Kim, J.M.3
Primack, B.4
Vidal-Cardenas, S.5
Xu, Y.6
Price, B.D.7
Mills, A.A.8
D'Andrea, A.D.9
-
239
-
-
77953720192
-
ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks
-
Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. 2010. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141:970-981. http://dx.doi.org/10.1016/j.cell.2010.04.038.
-
(2010)
Cell
, vol.141
, pp. 970-981
-
-
Shanbhag, N.M.1
Rafalska-Metcalf, I.U.2
Balane-Bolivar, C.3
Janicki, S.M.4
Greenberg, R.A.5
-
240
-
-
84945973395
-
The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice
-
Ismail IH, Gagne JP, Genois MM, Strickfaden H, McDonald D, Xu Z, Poirier GG, Masson JY, Hendzel MJ. 2015. The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nat Cell Biol 17:1446-1457. http://dx.doi.org/10.1038/ncb3259.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 1446-1457
-
-
Ismail, I.H.1
Gagne, J.P.2
Genois, M.M.3
Strickfaden, H.4
McDonald, D.5
Xu, Z.6
Poirier, G.G.7
Masson, J.Y.8
Hendzel, M.J.9
-
241
-
-
84954231982
-
Ubiquitin-activated interaction traps (UBAITs) identify E3 ligase binding partners
-
O'Connor HF, Lyon N, Leung JW, Agarwal P, Swaim CD, Miller KM, Huibregtse JM. 2015. Ubiquitin-activated interaction traps (UBAITs) identify E3 ligase binding partners. EMBO Rep 16:1699-1712. http://dx.doi.org/10.15252/embr.201540620.
-
(2015)
EMBO Rep
, vol.16
, pp. 1699-1712
-
-
O'Connor, H.F.1
Lyon, N.2
Leung, J.W.3
Agarwal, P.4
Swaim, C.D.5
Miller, K.M.6
Huibregtse, J.M.7
-
242
-
-
84900337781
-
Enhanced protein degradation by branched ubiquitin chains
-
Meyer HJ, Rape M. 2014. Enhanced protein degradation by branched ubiquitin chains. Cell 157:910-921. http://dx.doi.org/10.1016/j.cell.2014.03.037.
-
(2014)
Cell
, vol.157
, pp. 910-921
-
-
Meyer, H.J.1
Rape, M.2
-
243
-
-
84926417515
-
K63 polyubiquitination is a new modulator of the oxidative stress response
-
Silva GM, Finley D, Vogel C. 2015. K63 polyubiquitination is a new modulator of the oxidative stress response. Nat Struct Mol Biol 22:116-123. http://dx.doi.org/10.1038/nsmb.2955.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 116-123
-
-
Silva, G.M.1
Finley, D.2
Vogel, C.3
|