메뉴 건너뛰기




Volumn 7, Issue 5, 2006, Pages 323-334

Regulation of DNA repair by ubiquitylation

Author keywords

[No Author keywords available]

Indexed keywords

PROTEASOME;

EID: 33646196532     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm1908     Document Type: Review
Times cited : (227)

References (104)
  • 1
    • 3943107573 scopus 로고    scopus 로고
    • Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
    • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39-85 (2004).
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 39-85
    • Sancar, A.1    Lindsey-Boltz, L.A.2    Unsal-Kacmaz, K.3    Linn, S.4
  • 2
    • 0035902108 scopus 로고    scopus 로고
    • Genome maintenance mechanisms for preventing cancer
    • Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374 (2001). An excellent overview of mammalian DNA-repair pathways.
    • (2001) Nature , vol.411 , pp. 366-374
    • Hoeijmakers, J.H.1
  • 3
    • 29144506137 scopus 로고    scopus 로고
    • The Fanconi Anemia/BRCA pathway: New faces in the crowd
    • Kennedy, R. D. & D'Andrea, A. D. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 19, 2925-2940 (2005).
    • (2005) Genes Dev. , vol.19 , pp. 2925-2940
    • Kennedy, R.D.1    D'Andrea, A.D.2
  • 4
    • 0347624597 scopus 로고    scopus 로고
    • Repair kinetics of genomic interstrand DNA cross-links: Evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway
    • Rothfuss, A. & Grompe, M. Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol. Cell. Biol. 24, 123-134 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 123-134
    • Rothfuss, A.1    Grompe, M.2
  • 5
    • 4344597147 scopus 로고    scopus 로고
    • The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair
    • Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15, 607-620 (2004).
    • (2004) Mol. Cell , vol.15 , pp. 607-620
    • Niedzwiedz, W.1
  • 6
    • 0042161939 scopus 로고    scopus 로고
    • The Fanconi road to cancer
    • D'Andrea, A. D. The Fanconi road to cancer. Genes Dev. 17, 1933-1936 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 1933-1936
    • D'Andrea, A.D.1
  • 7
  • 8
    • 29244489543 scopus 로고    scopus 로고
    • Fanconi anemia (cross)linked to DNA repair
    • Niedernhofer, L. J., Lalai, A. S. & Hoeijmakers, J. H. Fanconi anemia (cross)linked to DNA repair. Cell 123, 1191-1198 (2005).
    • (2005) Cell , vol.123 , pp. 1191-1198
    • Niedernhofer, L.J.1    Lalai, A.S.2    Hoeijmakers, J.H.3
  • 9
    • 0035105291 scopus 로고    scopus 로고
    • Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway
    • Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249-262 (2001). Provides the first evidence that FA proteins are involved in a common pathway to monoubiquitylate FANCD2.
    • (2001) Mol. Cell , vol.7 , pp. 249-262
    • Garcia-Higuera, I.1
  • 10
    • 18444362122 scopus 로고    scopus 로고
    • Biallelic inactivation of BRCA2 in Fanconi anemia
    • Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606-609 (2002).
    • (2002) Science , vol.297 , pp. 606-609
    • Howlett, N.G.1
  • 11
    • 2942705849 scopus 로고    scopus 로고
    • Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin
    • Wang, X., Andreassen, P. R. & D'Andrea, A. D. Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol. Cell. Biol. 24, 5850-5862 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 5850-5862
    • Wang, X.1    Andreassen, P.R.2    D'Andrea, A.D.3
  • 12
    • 0141484612 scopus 로고    scopus 로고
    • A novel ubiquitin ligase is deficient in Fanconi anemia
    • Meetei, A. R. et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nature Genet. 35, 165-170 (2003). Reports the identification of a ubiquitin-ligase catalytic subunit in the FA core complex.
    • (2003) Nature Genet. , vol.35 , pp. 165-170
    • Meetei, A.R.1
  • 13
    • 24944461145 scopus 로고    scopus 로고
    • A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair
    • Matsushita, N. et al. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 9, 841-847 (2005).
    • (2005) Mol. Cell , vol.9 , pp. 841-847
    • Matsushita, N.1
  • 14
    • 25144449181 scopus 로고    scopus 로고
    • A human ortholog of archael DNA repair protein HEF is defective in Fanconi anemia complementation group M
    • Meetei, A. R. et al. A human ortholog of archael DNA repair protein HEF is defective in Fanconi anemia complementation group M. Nature Genet. 37, 958-963 (2005).
    • (2005) Nature Genet. , vol.37 , pp. 958-963
    • Meetei, A.R.1
  • 15
    • 29144488440 scopus 로고    scopus 로고
    • The vertebrate Hef orthologue is a component of the Fanconi anemia tumour suppressor pathway
    • Mosedale, G. et al. The vertebrate Hef orthologue is a component of the Fanconi anemia tumour suppressor pathway. Nature Struct. Mol. Biol. 12, 963-971 (2005).
    • (2005) Nature Struct. Mol. Biol. , vol.12 , pp. 963-971
    • Mosedale, G.1
  • 16
    • 4043133287 scopus 로고    scopus 로고
    • ATR couples FANCD2 monoubiquitination to the DNA-damage response
    • Andreassen, P. R., D'Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 18, 1958-1963 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 1958-1963
    • Andreassen, P.R.1    D'Andrea, A.D.2    Taniguchi, T.3
  • 17
    • 3042858785 scopus 로고    scopus 로고
    • Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways
    • Hussain, S. et al. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum. Mol. Genet. 13, 1241-1248 (2004).
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 1241-1248
    • Hussain, S.1
  • 18
    • 0347991859 scopus 로고    scopus 로고
    • Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein
    • Lomonosov, M., Anand, S., Sangrithi, M., Davies, R. & Venkitaraman, A. R. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev. 17, 3017-3022 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 3017-3022
    • Lomonosov, M.1    Anand, S.2    Sangrithi, M.3    Davies, R.4    Venkitaraman, A.R.5
  • 19
    • 12844263398 scopus 로고    scopus 로고
    • Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin
    • Montes de Oca, R. et al. Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood 105, 1003-1009 (2005).
    • (2005) Blood , vol.105 , pp. 1003-1009
    • Montes De Oca, R.1
  • 20
    • 0036785375 scopus 로고    scopus 로고
    • S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51
    • Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414-2420 (2002).
    • (2002) Blood , vol.100 , pp. 2414-2420
    • Taniguchi, T.1
  • 21
    • 13244291457 scopus 로고    scopus 로고
    • The deubiquitinating enzyme USP1 regulates the Fanconi Anemia pathway
    • Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi Anemia pathway. Mol. Cell 17, 331-339 (2005). Reports the results of a DUB-gene family RNAi library screen to identify negative regulators of the FA pathway.
    • (2005) Mol. Cell , vol.17 , pp. 331-339
    • Nijman, S.M.1
  • 22
    • 0042671242 scopus 로고    scopus 로고
    • BRCA1-independent ubiquitination of FANCD2
    • Vandenberg, C. J. et al. BRCA1-independent ubiquitination of FANCD2. Mol. Cell 12, 247-254 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 247-254
    • Vandenberg, C.J.1
  • 23
    • 0037122004 scopus 로고    scopus 로고
    • Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains
    • Mallery, D. L., Vandenberg, C. J. & Hiom, K. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J. 21, 6755-6762 (2002).
    • (2002) EMBO J. , vol.21 , pp. 6755-6762
    • Mallery, D.L.1    Vandenberg, C.J.2    Hiom, K.3
  • 24
    • 0036682183 scopus 로고    scopus 로고
    • The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme
    • Chiba, N. & Parvin, J. D. The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme. Cancer Res. 62, 4222-4228 (2002).
    • (2002) Cancer Res. , vol.62 , pp. 4222-4228
    • Chiba, N.1    Parvin, J.D.2
  • 25
    • 0032570562 scopus 로고    scopus 로고
    • Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair
    • Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273, 5184-5189 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 5184-5189
    • Ratner, J.N.1    Balasubramanian, B.2    Corden, J.3    Warren, S.L.4    Bregman, D.B.5
  • 26
    • 0035805582 scopus 로고    scopus 로고
    • The ring heterodimer brca1-bard1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation
    • Hashizume, R. et al. The ring heterodimer brca1-bard1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537-14540 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 14537-14540
    • Hashizume, R.1
  • 27
    • 0345276495 scopus 로고    scopus 로고
    • Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair
    • Dong, Y. et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell 12, 1087-1099 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 1087-1099
    • Dong, Y.1
  • 28
    • 15144342687 scopus 로고    scopus 로고
    • BAP1: A novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression
    • Jensen, D. E. et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16, 1097-1112 (1998).
    • (1998) Oncogene , vol.16 , pp. 1097-1112
    • Jensen, D.E.1
  • 29
    • 0037131242 scopus 로고    scopus 로고
    • Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1
    • Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608-611 (2002). Discovery of a novel metalloprotease domain in CSN complex that is responsible for deubiquitylation and/or deneddylation activities.
    • (2002) Science , vol.298 , pp. 608-611
    • Cope, G.A.1
  • 30
    • 0037068455 scopus 로고    scopus 로고
    • RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
    • Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141 (2002). Shows that PCNA in yeast can be modified by SUMO, monoubiquitin or polyubiquitin to promote RAD6-dependent error-prone or error-free post-replication repair.
    • (2002) Nature , vol.419 , pp. 135-141
    • Hoege, C.1    Pfander, B.2    Moldovan, G.L.3    Pyrowolakis, G.4    Jentsch, S.5
  • 31
    • 0034600851 scopus 로고    scopus 로고
    • Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair
    • Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388-3397 (2000).
    • (2000) EMBO J. , vol.19 , pp. 3388-3397
    • Ulrich, H.D.1    Jentsch, S.2
  • 32
    • 0141831006 scopus 로고    scopus 로고
    • Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
    • Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191 (2003).
    • (2003) Nature , vol.425 , pp. 188-191
    • Stelter, P.1    Ulrich, H.D.2
  • 33
    • 2942529467 scopus 로고    scopus 로고
    • Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae
    • Haracska, L., Torres-Ramos, C. A., Johnson, R. E., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4267-4274 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4267-4274
    • Haracska, L.1    Torres-Ramos, C.A.2    Johnson, R.E.3    Prakash, S.4    Prakash, L.5
  • 34
    • 0028847989 scopus 로고
    • A ubiquitin mutant with specific defects in DNA repair and multiubiquitination
    • Spence, J., Sadis, S., Haas, A. L. & Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15, 1265-1273 (1995).
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1265-1273
    • Spence, J.1    Sadis, S.2    Haas, A.L.3    Finley, D.4
  • 35
    • 0033525582 scopus 로고    scopus 로고
    • Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair
    • Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645-653 (1999).
    • (1999) Cell , vol.96 , pp. 645-653
    • Hofmann, R.M.1    Pickart, C.M.2
  • 36
    • 22944474665 scopus 로고    scopus 로고
    • SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
    • Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433 (2005).
    • (2005) Nature , vol.436 , pp. 428-433
    • Pfander, B.1    Moldovan, G.L.2    Sacher, M.3    Hoege, C.4    Jentsch, S.5
  • 37
    • 21244449061 scopus 로고    scopus 로고
    • Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p
    • Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123-133 (2005).
    • (2005) Mol. Cell , vol.19 , pp. 123-133
    • Papouli, E.1
  • 38
    • 2442417331 scopus 로고    scopus 로고
    • Interaction of human DNA polymerase ε with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage
    • Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase ε with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491-500 (2004). First to show that mammalian PCNA is monoubiquitylated in order to functionally interact with a Y-family TLS polymerase.
    • (2004) Mol. Cell , vol.14 , pp. 491-500
    • Kannouche, P.L.1    Wing, J.2    Lehmann, A.R.3
  • 39
    • 6344288785 scopus 로고    scopus 로고
    • Rad18 guides polε to replication stalling sites through physical interaction and PCNA monoubiquitination
    • Watanabe, K. et al. Rad18 guides polε to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886-3896 (2004).
    • (2004) EMBO J. , vol.23 , pp. 3886-3896
    • Watanabe, K.1
  • 40
    • 0033578040 scopus 로고    scopus 로고
    • The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase ε
    • Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase ε. Nature 399, 700-704 (1999).
    • (1999) Nature , vol.399 , pp. 700-704
    • Masutani, C.1
  • 41
    • 0035862988 scopus 로고    scopus 로고
    • Domain structure, localization, and function of DNA polymerase ε, defective in xeroderma pigmentosum variant cells
    • Kannouche, P. et al. Domain structure, localization, and function of DNA polymerase ε, defective in xeroderma pigmentosum variant cells. Genes Dev. 15, 158-172 (2001).
    • (2001) Genes Dev. , vol.15 , pp. 158-172
    • Kannouche, P.1
  • 42
    • 0037205001 scopus 로고    scopus 로고
    • Specialized DNA polymerases, cellular survival, and the genesis of mutations
    • Friedberg, E. C., Wagner, R. & Radman, M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296, 1627-1630 (2002).
    • (2002) Science , vol.296 , pp. 1627-1630
    • Friedberg, E.C.1    Wagner, R.2    Radman, M.3
  • 43
    • 0035929659 scopus 로고    scopus 로고
    • Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7
    • Murakumo, Y. et al. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem. 276, 35644-35651 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 35644-35651
    • Murakumo, Y.1
  • 44
    • 3042812439 scopus 로고    scopus 로고
    • Interaction of hREV1 with three human Y-family DNA polymerases
    • Ohashi, E. et al. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9, 523-531 (2004).
    • (2004) Genes Cells , vol.9 , pp. 523-531
    • Ohashi, E.1
  • 45
    • 0345732688 scopus 로고    scopus 로고
    • Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis
    • Guo, C. et al. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J. 22, 6621-6630 (2003).
    • (2003) EMBO J. , vol.22 , pp. 6621-6630
    • Guo, C.1
  • 46
    • 4544251295 scopus 로고    scopus 로고
    • Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol ε and REVI protein
    • Tissier, A. et al. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol ε and REVI protein. DNA Repair (Amst.) 3, 1503-1514 (2004).
    • (2004) DNA Repair (Amst.) , vol.3 , pp. 1503-1514
    • Tissier, A.1
  • 47
    • 29444454665 scopus 로고    scopus 로고
    • Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases ε and REV1
    • Garg, P. & Burgers, P. M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases ε and REV1. Proc. Natl Acad. Sci. USA 102, 18361-18366 (2005).
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 18361-18366
    • Garg, P.1    Burgers, P.M.2
  • 48
    • 29144499065 scopus 로고    scopus 로고
    • Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis
    • Bienko, M. et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821-1824 (2005). Describes two novel ubiquitin binding domains, UBM and UBZ, that allow Y-family TLS polymerases to interact with monoubiquitylated PCNA.
    • (2005) Science , vol.310 , pp. 1821-1824
    • Bienko, M.1
  • 49
    • 13944256948 scopus 로고    scopus 로고
    • Ubiquitination of PCNA and the polymerase switch in human cells
    • Kannouche, P. L. & Lehmann, A. R. Ubiquitination of PCNA and the polymerase switch in human cells. Cell Cycle 3, 1011-1013 (2004).
    • (2004) Cell Cycle , vol.3 , pp. 1011-1013
    • Kannouche, P.L.1    Lehmann, A.R.2
  • 50
    • 12844278716 scopus 로고    scopus 로고
    • Differential regulation of Rad18 through Rad6-dependent mono- and polyubiquitination
    • Miyase, S. et al. Differential regulation of Rad18 through Rad6-dependent mono- and polyubiquitination. J. Biol. Chem. 280, 515-524 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 515-524
    • Miyase, S.1
  • 51
    • 1542287220 scopus 로고    scopus 로고
    • Preferential cis-syn thymine dimer bypass by DNA polymerase ε occurs with biased fidelity
    • McCulloch, S. D. et al. Preferential cis-syn thymine dimer bypass by DNA polymerase ε occurs with biased fidelity. Nature 428, 97-100 (2004).
    • (2004) Nature , vol.428 , pp. 97-100
    • McCulloch, S.D.1
  • 52
    • 0037007015 scopus 로고    scopus 로고
    • Identification of a protein essential for a major pathway used by human cells to avoid UV- induced DNA damage
    • Li, Z., Xiao, W., McCormick, J. J. & Maher, V. M. Identification of a protein essential for a major pathway used by human cells to avoid UV- induced DNA damage. Proc. Natl Acad. Sci. USA 99, 4459-4464 (2002).
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 4459-4464
    • Li, Z.1    Xiao, W.2    McCormick, J.J.3    Maher, V.M.4
  • 53
    • 29144501653 scopus 로고    scopus 로고
    • Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts
    • Leach, C. A. & Michael, W. M. Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J. Cell Biol. 171, 947-954 (2005).
    • (2005) J. Cell Biol. , vol.171 , pp. 947-954
    • Leach, C.A.1    Michael, W.M.2
  • 54
    • 0034437982 scopus 로고    scopus 로고
    • DNA damage recognition and nucleotide excision repair in mammalian cells
    • Wood, R. D. et al. DNA damage recognition and nucleotide excision repair in mammalian cells. Cold Spring Harb. Symp. Quant. Biol. 65, 173-182 (2000).
    • (2000) Cold Spring Harb. Symp. Quant. Biol. , vol.65 , pp. 173-182
    • Wood, R.D.1
  • 55
    • 0035495386 scopus 로고    scopus 로고
    • How nucleotide excision repair protects against cancer
    • Friedberg, E. C. How nucleotide excision repair protects against cancer. Nature Rev. Cancer 1, 22-33 (2001).
    • (2001) Nature Rev. Cancer , vol.1 , pp. 22-33
    • Friedberg, E.C.1
  • 56
    • 0036363646 scopus 로고    scopus 로고
    • Mechanisms of transcription-coupled DNA repair
    • Svejstrup, J. Q. Mechanisms of transcription-coupled DNA repair. Nature Rev. Mol. Cell Biol. 3, 21-29 (2002).
    • (2002) Nature Rev. Mol. Cell Biol. , vol.3 , pp. 21-29
    • Svejstrup, J.Q.1
  • 57
    • 0345306615 scopus 로고    scopus 로고
    • In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product
    • Fitch, M. E., Nakajima, S., Yasui, A. & Ford, J. M. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J. Biol. Chem. 278, 46906-46910 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 46906-46910
    • Fitch, M.E.1    Nakajima, S.2    Yasui, A.3    Ford, J.M.4
  • 58
    • 16244423719 scopus 로고    scopus 로고
    • The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions
    • Moser, J. et al. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair (Amst.) 4, 571-582 (2005).
    • (2005) DNA Repair (Amst.) , vol.4 , pp. 571-582
    • Moser, J.1
  • 59
    • 21744452376 scopus 로고    scopus 로고
    • Cancer in xeroderma pigmentosum and related disorders of DNA repair
    • Cleaver, J. E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Rev. Cancer 5, 564-573 (2005).
    • (2005) Nature Rev. Cancer , vol.5 , pp. 564-573
    • Cleaver, J.E.1
  • 60
    • 0037509859 scopus 로고    scopus 로고
    • The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage
    • Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357-367 (2003). Provides evidence for ubiquitin ligase activity that is linked to two NER protein complexes and that is negatively regulated by the CSN.
    • (2003) Cell , vol.113 , pp. 357-367
    • Groisman, R.1
  • 61
    • 0141426637 scopus 로고    scopus 로고
    • COP9 signalosome: A multifunctional regulator of SCF and other cullin-based ubiquitin ligases
    • Cope, G. A. & Deshaies, R. J. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663-671 (2003).
    • (2003) Cell , vol.114 , pp. 663-671
    • Cope, G.A.1    Deshaies, R.J.2
  • 62
    • 21044442126 scopus 로고    scopus 로고
    • UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex
    • Sugasawa, K. et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121, 387-400 (2005). Shows that XPC is polyubiquitylated in response to UV damage.
    • (2005) Cell , vol.121 , pp. 387-400
    • Sugasawa, K.1
  • 63
    • 0028269240 scopus 로고
    • Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23
    • Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13, 1831-1843 (1994).
    • (1994) EMBO J. , vol.13 , pp. 1831-1843
    • Masutani, C.1
  • 64
    • 0027964775 scopus 로고
    • DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells
    • Shivji, M. K., Eker, A. P. & Wood, R. D. DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. J. Biol. Chem. 269, 22749-22757 (1994).
    • (1994) J. Biol. Chem. , vol.269 , pp. 22749-22757
    • Shivji, M.K.1    Eker, A.P.2    Wood, R.D.3
  • 65
    • 0036012799 scopus 로고    scopus 로고
    • A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex
    • Sugasawa, K., Shimizu, Y., Iwai, S. & Hanaoka, F. A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex. DNA Repair (Amst.) 1, 95-107 (2002).
    • (2002) DNA Repair (Amst.) , vol.1 , pp. 95-107
    • Sugasawa, K.1    Shimizu, Y.2    Iwai, S.3    Hanaoka, F.4
  • 66
    • 0037127293 scopus 로고    scopus 로고
    • DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair
    • Wakasugi, M. et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem. 277, 1637-1640 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 1637-1640
    • Wakasugi, M.1
  • 67
    • 0038339144 scopus 로고    scopus 로고
    • A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein
    • Ng, J. M. et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 17, 1630-1645 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 1630-1645
    • Ng, J.M.1
  • 68
    • 4444371794 scopus 로고    scopus 로고
    • Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex
    • Okuda, Y. et al. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair (Amst.) 3, 1285-1295 (2004).
    • (2004) DNA Repair (Amst.) , vol.3 , pp. 1285-1295
    • Okuda, Y.1
  • 69
    • 0010586475 scopus 로고    scopus 로고
    • The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair
    • Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687-695 (1999).
    • (1999) Mol. Cell , vol.3 , pp. 687-695
    • Russell, S.J.1    Reed, S.H.2    Huang, W.3    Friedberg, E.C.4    Johnston, S.A.5
  • 70
    • 13544261750 scopus 로고    scopus 로고
    • Rad23 stabilizes Rad4 from degradation by the Ub-proteasome pathway
    • Ortolan, T. G., Chen, L., Tongaonkar, P. & Madura, K. Rad23 stabilizes Rad4 from degradation by the Ub-proteasome pathway. Nucleic Acids Res. 32, 6490-6500 (2004).
    • (2004) Nucleic Acids Res. , vol.32 , pp. 6490-6500
    • Ortolan, T.G.1    Chen, L.2    Tongaonkar, P.3    Madura, K.4
  • 71
    • 17044368771 scopus 로고    scopus 로고
    • The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation
    • Heessen, S., Masucci, M. G. & Dantuma, N. P. The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol. Cell 18, 225-235 (2005).
    • (2005) Mol. Cell , vol.18 , pp. 225-235
    • Heessen, S.1    Masucci, M.G.2    Dantuma, N.P.3
  • 72
    • 0029859295 scopus 로고    scopus 로고
    • UV-induced ubiquitination of RNA polymerase II: A novel modification deficient in Cockayne syndrome cells
    • Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl Acad. Sci. USA 93, 11586-11590 (1996).
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 11586-11590
    • Bregman, D.B.1
  • 73
    • 18844407814 scopus 로고    scopus 로고
    • BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II
    • Kleiman, F. E. et al. BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes Dev. 19, 1227-1237 (2005).
    • (2005) Genes Dev. , vol.19 , pp. 1227-1237
    • Kleiman, F.E.1
  • 74
    • 0037148786 scopus 로고    scopus 로고
    • A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage
    • Woudstra, E. C. et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature 415, 929-933 (2002).
    • (2002) Nature , vol.415 , pp. 929-933
    • Woudstra, E.C.1
  • 75
    • 0037326318 scopus 로고    scopus 로고
    • Rescue of arrested RNA polymerase II complexes
    • Svejstrup, J. Q. Rescue of arrested RNA polymerase II complexes. J. Cell Sci. 116, 447-451 (2003).
    • (2003) J. Cell Sci. , vol.116 , pp. 447-451
    • Svejstrup, J.Q.1
  • 77
    • 0035111895 scopus 로고    scopus 로고
    • Recent progress in the biology, chemistry and structural biology of DNA glycosylases
    • Scharer, O. D. & Jiricny, J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23, 270-281 (2001).
    • (2001) Bioessays , vol.23 , pp. 270-281
    • Scharer, O.D.1    Jiricny, J.2
  • 78
    • 0037086643 scopus 로고    scopus 로고
    • Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover
    • Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456-1464 (2002). Provides evidence that TDG is modified by SUMO, which is important in facilitating BER.
    • (2002) EMBO J. , vol.21 , pp. 1456-1464
    • Hardeland, U.1    Steinacher, R.2    Jiricny, J.3    Schar, P.4
  • 79
    • 17144410054 scopus 로고    scopus 로고
    • Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation
    • Steinacher, R. & Schar, P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol. 15, 616-623 (2005).
    • (2005) Curr. Biol. , vol.15 , pp. 616-623
    • Steinacher, R.1    Schar, P.2
  • 80
    • 0344305376 scopus 로고    scopus 로고
    • Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress
    • Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565-576 (2003).
    • (2003) Cell , vol.115 , pp. 565-576
    • Huang, T.T.1    Wuerzberger-Davis, S.M.2    Wu, Z.H.3    Miyamoto, S.4
  • 81
    • 14244249406 scopus 로고    scopus 로고
    • Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates
    • Gocke, C. B., Yu, H. & Kang, J. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem. 280, 5004-5012 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 5004-5012
    • Gocke, C.B.1    Yu, H.2    Kang, J.3
  • 82
    • 0034915764 scopus 로고    scopus 로고
    • Mechanisms underlying ubiquitination
    • Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533 (2001).
    • (2001) Annu. Rev. Biochem. , vol.70 , pp. 503-533
    • Pickart, C.M.1
  • 83
    • 0034327504 scopus 로고    scopus 로고
    • Ubiquitin in chains
    • Pickart, C. M. Ubiquitin in chains. Trends Biochem. Sci. 25, 544-548 (2000).
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 544-548
    • Pickart, C.M.1
  • 84
    • 0036902408 scopus 로고    scopus 로고
    • Ubiquitin branches out
    • Johnson, E. S. Ubiquitin branches out. Nature Cell Biol. 4, E295-E298 (2002).
    • (2002) Nature Cell Biol. , vol.4
    • Johnson, E.S.1
  • 86
    • 2342477917 scopus 로고    scopus 로고
    • The novel functions of ubiquitination in signaling
    • Sun, L. & Chen, Z. J. The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16, 119-126 (2004).
    • (2004) Curr. Opin. Cell Biol. , vol.16 , pp. 119-126
    • Sun, L.1    Chen, Z.J.2
  • 87
    • 23144449789 scopus 로고    scopus 로고
    • Ubiquitin signalling in the NF-κB pathway
    • Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758-765 (2005).
    • (2005) Nature Cell Biol. , vol.7 , pp. 758-765
    • Chen, Z.J.1
  • 88
    • 9644268864 scopus 로고    scopus 로고
    • Mechanism and function of deubiquitinating enzymes
    • Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189-207 (2004).
    • (2004) Biochim. Biophys. Acta , vol.1695 , pp. 189-207
    • Amerik, A.Y.1    Hochstrasser, M.2
  • 89
    • 0030660073 scopus 로고    scopus 로고
    • Regulation of ubiquitin-dependent processes by deubiquitinating enzymes
    • Wilkinson, K. D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11, 1245-1256 (1997).
    • (1997) FASEB J. , vol.11 , pp. 1245-1256
    • Wilkinson, K.D.1
  • 90
    • 0038362292 scopus 로고    scopus 로고
    • When ubiquitin meets ubiquitin receptors: A signalling connection
    • Di Fiore, P. P., Polo, S. & Hofmann, K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nature Rev. Mol. Cell Biol. 4, 491-497 (2003).
    • (2003) Nature Rev. Mol. Cell Biol. , vol.4 , pp. 491-497
    • Di Fiore, P.P.1    Polo, S.2    Hofmann, K.3
  • 91
    • 23144449208 scopus 로고    scopus 로고
    • Ubiquitin and ubiquitin-like proteins as multifunctional signals
    • Welchman, R. L., Gordon, C. & Mayer, R. J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Rev. Mol. Cell Biol. 6, 599-609 (2005).
    • (2005) Nature Rev. Mol. Cell Biol. , vol.6 , pp. 599-609
    • Welchman, R.L.1    Gordon, C.2    Mayer, R.J.3
  • 92
    • 4444301185 scopus 로고    scopus 로고
    • SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms?
    • Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18, 2046-2059 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 2046-2059
    • Gill, G.1
  • 93
    • 0033537828 scopus 로고    scopus 로고
    • Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1
    • Desterro, J. M., Rodriguez, M. S., Kemp, G. D. & Hay, R. T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274, 10618-10624 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 10618-10624
    • Desterro, J.M.1    Rodriguez, M.S.2    Kemp, G.D.3    Hay, R.T.4
  • 94
    • 0035336677 scopus 로고    scopus 로고
    • Protein modification by SUMO
    • Hay, R. T. Protein modification by SUMO. Trends Biochem. Sci. 26, 332-333 (2001).
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 332-333
    • Hay, R.T.1
  • 95
    • 3943099375 scopus 로고    scopus 로고
    • Protein modification by SUMO
    • Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355-382 (2004).
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 355-382
    • Johnson, E.S.1
  • 96
    • 0033581899 scopus 로고    scopus 로고
    • Covalent modification of all members of human cullin family proteins by NEDD8
    • Hori, T. et al. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18, 6829-6834 (1999).
    • (1999) Oncogene , vol.18 , pp. 6829-6834
    • Hori, T.1
  • 97
    • 0036929129 scopus 로고    scopus 로고
    • NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases
    • Liu, J., Furukawa, M., Matsumoto, T. & Xiong, Y. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell 10, 1511-1518 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 1511-1518
    • Liu, J.1    Furukawa, M.2    Matsumoto, T.3    Xiong, Y.4
  • 98
    • 0344629427 scopus 로고    scopus 로고
    • Ubiquitin depletion as a key mediator of toxicity by translational inhibitors
    • Hanna, J., Leggett, D. S. & Finley, D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol. 23, 9251-9261 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 9251-9261
    • Hanna, J.1    Leggett, D.S.2    Finley, D.3
  • 99
    • 21244451611 scopus 로고    scopus 로고
    • Direct DNA binding activity of the fanconi anemia d2 protein
    • Park, W. H. et al. Direct DNA binding activity of the fanconi anemia d2 protein. J. Biol. Chem. 280, 23593-23598 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 23593-23598
    • Park, W.H.1
  • 100
    • 2442551473 scopus 로고    scopus 로고
    • Deubiquitinating enzymes are IN(trinsic to proteasome function)
    • Guterman, A. & Glickman, M. H. Deubiquitinating enzymes are IN(trinsic to proteasome function). Curr. Protein Pept. Sci. 5, 201-211 (2004).
    • (2004) Curr. Protein Pept. Sci. , vol.5 , pp. 201-211
    • Guterman, A.1    Glickman, M.H.2
  • 101
    • 0342871691 scopus 로고    scopus 로고
    • Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: Effects on replication, transcription, translation, and the cellular stress response
    • Mimnaugh, E. G., Chen, H. Y., Davie, J. R., Celis, J. E. & Neckers, L. Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and the cellular stress response. Biochemistry 36, 14418-14429 (1997).
    • (1997) Biochemistry , vol.36 , pp. 14418-14429
    • Mimnaugh, E.G.1    Chen, H.Y.2    Davie, J.R.3    Celis, J.E.4    Neckers, L.5
  • 102
    • 33144469102 scopus 로고    scopus 로고
    • The proteasome and proteasome inhibitors in cancer therapy
    • Voorhees, P. M. & Orlowski, R. Z. The proteasome and proteasome inhibitors in cancer therapy. Annu. Rev. Pharmacol. Toxicol. 46, 189-213 (2006).
    • (2006) Annu. Rev. Pharmacol. Toxicol. , vol.46 , pp. 189-213
    • Voorhees, P.M.1    Orlowski, R.Z.2
  • 103
    • 0034333366 scopus 로고    scopus 로고
    • Prevention of cisplatin-DNA adduct repair and potentiation of cisplatin-induced apoptosis in ovarian carcinoma cells by proteasome inhibitors
    • Mimnaugh, E. G. et al. Prevention of cisplatin-DNA adduct repair and potentiation of cisplatin-induced apoptosis in ovarian carcinoma cells by proteasome inhibitors. Biochem. Pharmacol. 60, 1343-1354 (2000).
    • (2000) Biochem. Pharmacol. , vol.60 , pp. 1343-1354
    • Mimnaugh, E.G.1
  • 104
    • 33645708319 scopus 로고    scopus 로고
    • Regulation of monoubiquitinated PCNA by DUB autocleavage
    • Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 339-347 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 339-347
    • Huang, T.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.