메뉴 건너뛰기




Volumn 118, Issue 50, 2014, Pages 14566-14577

Computational investigation of glycosylase and β-lyase activity facilitated by proline: Applications to FPG and comparisons to hOgg1

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACIDS; POTENTIAL ENERGY; QUANTUM CHEMISTRY; QUANTUM THEORY; REPAIR;

EID: 84919372509     PISSN: 15206106     EISSN: 15205207     Source Type: Journal    
DOI: 10.1021/jp507783d     Document Type: Article
Times cited : (16)

References (79)
  • 2
    • 0037440169 scopus 로고    scopus 로고
    • Mutagenic Potentials of Damaged Nucleic Acids Produced by Reactive Oxygen/Nitrogen Species: Approaches Using Synthetic Oligonucleotides and Nucleotides
    • Kamiya, H. Mutagenic Potentials of Damaged Nucleic Acids Produced by Reactive Oxygen/Nitrogen Species: Approaches Using Synthetic Oligonucleotides and Nucleotides. Nucleic Acids Res. 2003, 31, 517-531.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 517-531
    • Kamiya, H.1
  • 5
    • 77952571717 scopus 로고    scopus 로고
    • Oxygen as a Friend and Enemy: How to Combat the Mutational Potential of 8-Oxoguanine
    • van Loon, B.; Markkanen, E.; Hübscher, U. Oxygen as a Friend and Enemy: How to Combat the Mutational Potential of 8-Oxoguanine. DNA Repair 2010, 9, 604-616.
    • (2010) DNA Repair , vol.9 , pp. 604-616
    • Van Loon, B.1    Markkanen, E.2    Hübscher, U.3
  • 6
    • 33745246370 scopus 로고    scopus 로고
    • Impact of Reactive Oxygen Species on Spontaneous Mutagenesis in Escherichia coli
    • Sakai, A.; Nakanishi, M.; Yoshiyama, K.; Maki, H. Impact of Reactive Oxygen Species on Spontaneous Mutagenesis in Escherichia coli. Genes to Cells 2006, 11, 767-778.
    • (2006) Genes to Cells , vol.11 , pp. 767-778
    • Sakai, A.1    Nakanishi, M.2    Yoshiyama, K.3    Maki, H.4
  • 7
    • 33845941124 scopus 로고    scopus 로고
    • Structural Analysis of Base Mispairing in DNA Containing Oxidative Guanine Lesion
    • Fujimoto, H.; Pinak, M.; Nemoto, T.; Bunta, J. K. Structural Analysis of Base Mispairing in DNA Containing Oxidative Guanine Lesion. Cent. Eur. J. Phys. 2007, 5, 49-61.
    • (2007) Cent. Eur. J. Phys. , vol.5 , pp. 49-61
    • Fujimoto, H.1    Pinak, M.2    Nemoto, T.3    Bunta, J.K.4
  • 8
    • 66249093490 scopus 로고    scopus 로고
    • The Efficiency and Fidelity of 8-Oxo-guanine Bypass by DNA Polymerases δ and η
    • McCulloch, S. D.; Kokoska, R. J.; Garg, P.; Burgers, P. M.; Kunkel, T. A. The Efficiency and Fidelity of 8-Oxo-guanine Bypass by DNA Polymerases δ and η. Nucleic Acids Res. 2009, 37, 2830-2840.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 2830-2840
    • McCulloch, S.D.1    Kokoska, R.J.2    Garg, P.3    Burgers, P.M.4    Kunkel, T.A.5
  • 10
    • 0036294464 scopus 로고    scopus 로고
    • Structural Insights into Lesion Recognition and Repair by the Bacterial 8-Oxoguanine DNA Glycosylase MutM
    • Fromme, J. C.; Verdine, G. L. Structural Insights into Lesion Recognition and Repair by the Bacterial 8-Oxoguanine DNA Glycosylase MutM. Nat. Struct. Biol. 2002, 9, 544-552.
    • (2002) Nat. Struct. Biol. , vol.9 , pp. 544-552
    • Fromme, J.C.1    Verdine, G.L.2
  • 11
    • 0346435086 scopus 로고    scopus 로고
    • DNA Lesion Recognition by the Bacterial Repair Enzyme MutM
    • Fromme, J. C.; Verdine, G. L. DNA Lesion Recognition by the Bacterial Repair Enzyme MutM. J. Biol. Chem. 2003, 278, 51543-51548.
    • (2003) J. Biol. Chem. , vol.278 , pp. 51543-51548
    • Fromme, J.C.1    Verdine, G.L.2
  • 13
    • 0032836651 scopus 로고    scopus 로고
    • Initiation of Base Excision Repair: Glycosylase Mechanisms and Structures
    • McCullough, A. K.; Dodson, M. L.; Lloyd, R. S. Initiation of Base Excision Repair: Glycosylase Mechanisms and Structures. Annu. Rev. Biochem. 1999, 68, 255-285.
    • (1999) Annu. Rev. Biochem. , vol.68 , pp. 255-285
    • McCullough, A.K.1    Dodson, M.L.2    Lloyd, R.S.3
  • 14
    • 0031239573 scopus 로고    scopus 로고
    • The Critical Active-Site Amine of the Human 8-Oxoguanine DNA Glycosylase, hOgg1: Direct Identification, Ablation and Chemical Reconstitution
    • Nash, H. M.; Lu, R. Z.; Lane, W. S.; Verdine, G. L. The Critical Active-Site Amine of the Human 8-Oxoguanine DNA Glycosylase, hOgg1: Direct Identification, Ablation and Chemical Reconstitution. Chem. Biol. 1997, 4, 693-702.
    • (1997) Chem. Biol. , vol.4 , pp. 693-702
    • Nash, H.M.1    Lu, R.Z.2    Lane, W.S.3    Verdine, G.L.4
  • 15
    • 0037452513 scopus 로고    scopus 로고
    • Structural and Biochemical Exploration of a Critical Amino Acid in Human 8-Oxoguanine Glycosylase
    • Norman, D. P. G.; Chung, S. J.; Verdine, G. L. Structural and Biochemical Exploration of a Critical Amino Acid in Human 8-Oxoguanine Glycosylase. Biochemistry 2003, 42, 1564-1572.
    • (2003) Biochemistry , vol.42 , pp. 1564-1572
    • Norman, D.P.G.1    Chung, S.J.2    Verdine, G.L.3
  • 17
    • 84875993659 scopus 로고    scopus 로고
    • Structural and Biochemical Analysis of DNA Helix Invasion by the Bacterial 8-Oxoguanine DNA Glycosylase MutM
    • Sung, R. J.; Zhang, M.; Qi, Y.; Verdine, G. L. Structural and Biochemical Analysis of DNA Helix Invasion by the Bacterial 8-Oxoguanine DNA Glycosylase MutM. J. Biol. Chem. 2013, 288, 10012-10023.
    • (2013) J. Biol. Chem. , vol.288 , pp. 10012-10023
    • Sung, R.J.1    Zhang, M.2    Qi, Y.3    Verdine, G.L.4
  • 18
    • 0034666313 scopus 로고    scopus 로고
    • Substrate Specificity and Reaction Mechanism of Murine 8-Oxoguanine-DNA Glycosylase
    • Zharkov, D. O.; Rosenquist, T. A.; Gerchman, S. E.; Grollman, A. P. Substrate Specificity and Reaction Mechanism of Murine 8-Oxoguanine-DNA Glycosylase. J. Biol. Chem. 2000, 275, 28607-28617.
    • (2000) J. Biol. Chem. , vol.275 , pp. 28607-28617
    • Zharkov, D.O.1    Rosenquist, T.A.2    Gerchman, S.E.3    Grollman, A.P.4
  • 19
    • 0035863739 scopus 로고    scopus 로고
    • Stimulation of Human 8-Oxoguanine-DNA Glycosylase by AP-Endonuclease: Potential Coordination of the Initial Steps in Base Excision Repair
    • Hill, J. W.; Hazra, T. K.; Izumi, T.; Mitra, S. Stimulation of Human 8-Oxoguanine-DNA Glycosylase by AP-Endonuclease: Potential Coordination of the Initial Steps in Base Excision Repair. Nucleic Acids Res. 2001, 29, 430-438.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 430-438
    • Hill, J.W.1    Hazra, T.K.2    Izumi, T.3    Mitra, S.4
  • 21
    • 12344307152 scopus 로고    scopus 로고
    • Bjøra˚s, M. Product Inhibition and Magnesium Modulate the Dual Reaction Mode of hOgg1
    • Morland, I.; Luna, L.; Gustad, E.; Seeberg, E.; Bjøra˚s, M. Product Inhibition and Magnesium Modulate the Dual Reaction Mode of hOgg1. DNA Repair 2005, 4, 381-387.
    • (2005) DNA Repair , vol.4 , pp. 381-387
    • Morland, I.1    Luna, L.2    Gustad, E.3    Seeberg, E.4
  • 22
    • 0035869114 scopus 로고    scopus 로고
    • Mechanism of Stimulation of the DNA Glycosylase Activity of hOGG1 by the Major Human AP Endonuclease: Bypass of the AP Lyase Activity Step
    • Vidal, A. E.; Hickson, I. D.; Boiteux, S.; Radicella, J. P. Mechanism of Stimulation of the DNA Glycosylase Activity of hOGG1 by the Major Human AP Endonuclease: Bypass of the AP Lyase Activity Step. Nucleic Acids Res. 2001, 29, 1285-1292.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 1285-1292
    • Vidal, A.E.1    Hickson, I.D.2    Boiteux, S.3    Radicella, J.P.4
  • 23
    • 69449104051 scopus 로고    scopus 로고
    • Substrate Specificity and Excision Kinetics of Natural Polymorphic Variants and Phosphomimetic Mutants of Human 8-Oxoguanine-DNA Glycosylase
    • Sidorenko, V. S.; Grollman, A. P.; Jaruga, P.; Dizdaroglu, M.; Zharkov, D. O. Substrate Specificity and Excision Kinetics of Natural Polymorphic Variants and Phosphomimetic Mutants of Human 8-Oxoguanine-DNA Glycosylase. FEBS J. 2009, 276, 5149-5162.
    • (2009) FEBS J. , vol.276 , pp. 5149-5162
    • Sidorenko, V.S.1    Grollman, A.P.2    Jaruga, P.3    Dizdaroglu, M.4    Zharkov, D.O.5
  • 24
    • 18244376096 scopus 로고    scopus 로고
    • Quantum Chemical Study on Base Excision Mechanism of 8-Oxoguanine DNA Glycosylase: Substrate-Assisted Catalysis of the N-Glycosidic Linkage Cleavage Reaction
    • Osakabe, T.; Fujii, Y.; Hata, M.; Tsuda, M.; Neya, S.; Hoshino, T. Quantum Chemical Study on Base Excision Mechanism of 8-Oxoguanine DNA Glycosylase: Substrate-Assisted Catalysis of the N-Glycosidic Linkage Cleavage Reaction. Chem-Bio Inf. J. 2004, 4, 73-92.
    • (2004) Chem-Bio Inf. J. , vol.4 , pp. 73-92
    • Osakabe, T.1    Fujii, Y.2    Hata, M.3    Tsuda, M.4    Neya, S.5    Hoshino, T.6
  • 25
    • 14844345843 scopus 로고    scopus 로고
    • Theoretical Study of the Human DNA Repair Protein hOGG1 Activity
    • Schyman, P.; Danielsson, J.; Pinak, M.; Laaksonen, A. Theoretical Study of the Human DNA Repair Protein hOGG1 Activity. J. Phys. Chem. A 2005, 109, 1713-1719.
    • (2005) J. Phys. Chem. A , vol.109 , pp. 1713-1719
    • Schyman, P.1    Danielsson, J.2    Pinak, M.3    Laaksonen, A.4
  • 26
    • 34347331176 scopus 로고    scopus 로고
    • Computational Clues for a New Mechanism in the Glycosylase Activity of the Human DNA Repair Protein hOGG1. A Generalized Paradigm for Purine-Repairing Systems?
    • Calvaresi, M.; Bottoni, A.; Garavelli, M. Computational Clues for a New Mechanism in the Glycosylase Activity of the Human DNA Repair Protein hOGG1. A Generalized Paradigm for Purine-Repairing Systems? J. Phys. Chem. B 2007, 111, 6557-6570.
    • (2007) J. Phys. Chem. B , vol.111 , pp. 6557-6570
    • Calvaresi, M.1    Bottoni, A.2    Garavelli, M.3
  • 27
    • 44649165675 scopus 로고    scopus 로고
    • The Effects of Oxidation and Protonation on the N-Glycosidic Bond Stability of 8-Oxo-2′-deoxyguanosine: DFT Study
    • Zheng, Y.; Xue, Y.; Yan, S. G. The Effects of Oxidation and Protonation on the N-Glycosidic Bond Stability of 8-Oxo-2′-deoxyguanosine: DFT Study. THEOCHEM 2008, 860, 52-57.
    • (2008) THEOCHEM , vol.860 , pp. 52-57
    • Zheng, Y.1    Xue, Y.2    Yan, S.G.3
  • 28
    • 77649096674 scopus 로고    scopus 로고
    • Effects of Nucleophile, Oxidative Damage, and Nucleobase Orientation on the Glycosidic Bond Cleavage in Deoxyguanosine
    • Shim, E. J.; Przybylski, J. L.; Wetmore, S. D. Effects of Nucleophile, Oxidative Damage, and Nucleobase Orientation on the Glycosidic Bond Cleavage in Deoxyguanosine. J. Phys. Chem. B 2010, 114, 2319-2326.
    • (2010) J. Phys. Chem. B , vol.114 , pp. 2319-2326
    • Shim, E.J.1    Przybylski, J.L.2    Wetmore, S.D.3
  • 29
    • 84865973920 scopus 로고    scopus 로고
    • Mechanistic and Conformational Flexibility of the Covalent Linkage Formed During β-Lyase Activity on an AP-Site: Application to hOgg1
    • Kellie, J. L.; Wetmore, S. D. Mechanistic and Conformational Flexibility of the Covalent Linkage Formed During β-Lyase Activity on an AP-Site: Application to hOgg1. J. Phys. Chem. B 2012, 116, 10786-10797.
    • (2012) J. Phys. Chem. B , vol.116 , pp. 10786-10797
    • Kellie, J.L.1    Wetmore, S.D.2
  • 32
    • 0142187125 scopus 로고    scopus 로고
    • Structural Characterization of the Fpg Family of DNA Glycosylases
    • Zharkov, D. O.; Shoham, G.; Grollman, A. P. Structural Characterization of the Fpg Family of DNA Glycosylases. DNA Repair 2003, 2, 839-862.
    • (2003) DNA Repair , vol.2 , pp. 839-862
    • Zharkov, D.O.1    Shoham, G.2    Grollman, A.P.3
  • 33
    • 0042527365 scopus 로고    scopus 로고
    • Repair of DNA Containing Fapy·dG and its Beta-C-nucteoside Analogue by Formamidopyrimidine DNA Glycosylase and MutY
    • Wiederholt, C. J.; Delaney, M. O.; Pope, M. A.; David, S. S.; Greenberg, M. M. Repair of DNA Containing Fapy·dG and its Beta-C-nucteoside Analogue by Formamidopyrimidine DNA Glycosylase and MutY. Biochemistry 2003, 42, 9755-9760.
    • (2003) Biochemistry , vol.42 , pp. 9755-9760
    • Wiederholt, C.J.1    Delaney, M.O.2    Pope, M.A.3    David, S.S.4    Greenberg, M.M.5
  • 34
    • 57649103546 scopus 로고    scopus 로고
    • Excision of the Oxidatively Formed 5-Hydroxyhydantoin and 5-Hydroxy-5-methyl-hydantoin Pyrimidine Lesions by Escherichia coli and Saccharomyces Cerevisiae DNA N-Glycosylases
    • Gasparutto, D.; Muller, E.; Boiteux, S.; Cadet, J. Excision of the Oxidatively Formed 5-Hydroxyhydantoin and 5-Hydroxy-5-methyl-hydantoin Pyrimidine Lesions by Escherichia coli and Saccharomyces Cerevisiae DNA N-Glycosylases. Biochim. Biophys. Acta, Gen. Subj. 2009, 1790, 16-24.
    • (2009) Biochim. Biophys. Acta, Gen. Subj. , vol.1790 , pp. 16-24
    • Gasparutto, D.1    Muller, E.2    Boiteux, S.3    Cadet, J.4
  • 35
    • 0028305721 scopus 로고
    • New Substrates for Old Enzymes. 5-Hydroxy-2′-deoxycytidine and 5-Hydroxy-2′-deoxyuridine are Substrates for Escherichia coli Endonuclease III and Formamidopyrimidine DNA N-glycosylase, while 5-Hydroxy-2′-deoxyuridine is a Substrate for Uracil DNA N-Glycosylase
    • Hatahet, Z.; Kow, Y. W.; Purmal, A. A.; Cunningham, R. P.; Wallace, S. S. New Substrates for Old Enzymes. 5-Hydroxy-2′-deoxycytidine and 5-Hydroxy-2′-deoxyuridine are Substrates for Escherichia coli Endonuclease III and Formamidopyrimidine DNA N-glycosylase, while 5-Hydroxy-2′-deoxyuridine is a Substrate for Uracil DNA N-Glycosylase. J. Biol. Chem. 1994, 269, 18814-18820.
    • (1994) J. Biol. Chem. , vol.269 , pp. 18814-18820
    • Hatahet, Z.1    Kow, Y.W.2    Purmal, A.A.3    Cunningham, R.P.4    Wallace, S.S.5
  • 37
    • 0030053998 scopus 로고    scopus 로고
    • 3′- and 5′-Strand Cleavage Reactions Catalyzed by the Fpg Protein from Escherichia coli Occur via Successive β- and δ-Elimination Mechanisms, Respectively
    • Bhagwat, M.; Gerlt, J. A. 3′- and 5′-Strand Cleavage Reactions Catalyzed by the Fpg Protein from Escherichia coli Occur via Successive β- and δ-Elimination Mechanisms, Respectively. Biochemistry 1996, 35, 659-665.
    • (1996) Biochemistry , vol.35 , pp. 659-665
    • Bhagwat, M.1    Gerlt, J.A.2
  • 38
    • 34548239714 scopus 로고    scopus 로고
    • Gene Prophylaxis by a DNA Repair Function
    • Frosina, G. Gene Prophylaxis by a DNA Repair Function. Mol. Aspects Med. 2007, 28, 323-344.
    • (2007) Mol. Aspects Med. , vol.28 , pp. 323-344
    • Frosina, G.1
  • 40
    • 6344223490 scopus 로고    scopus 로고
    • Structural Basis for the Recognition of the FapydG Lesion (2,6-Diamino-4-hydroxy-5-formamidopyrimidine) by Formamidopyrimidine-DNA Glycosylase
    • Coste, F.; Ober, M.; Carell, T.; Boiteux, S.; Zelwer, C.; Castaing, B. Structural Basis for the Recognition of the FapydG Lesion (2,6-Diamino-4-hydroxy-5-formamidopyrimidine) by Formamidopyrimidine-DNA Glycosylase. J. Biol. Chem. 2004, 279, 44074-44083.
    • (2004) J. Biol. Chem. , vol.279 , pp. 44074-44083
    • Coste, F.1    Ober, M.2    Carell, T.3    Boiteux, S.4    Zelwer, C.5    Castaing, B.6
  • 41
    • 27244433288 scopus 로고    scopus 로고
    • Structural Insights into Abasic Site for Fpg Specific Binding and Catalysis: Comparative High-Resolution Crystallographic Studies of Fpg Bound to Various Models of Abasic Site Analogies-Containing DNA
    • Pereira de Jesus, K.; S, L.; Zelwer, C.; Castaing, B. Structural Insights into Abasic Site for Fpg Specific Binding and Catalysis: Comparative High-Resolution Crystallographic Studies of Fpg Bound to Various Models of Abasic Site Analogies-Containing DNA. Nucleic Acids Res. 2005, 33, 5936-5944.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 5936-5944
    • Pereira De Jesus, K.1    L, S.2    Zelwer, C.3    Castaing, B.4
  • 42
    • 3342891076 scopus 로고    scopus 로고
    • Insights into the DNA Repair Process by the Formamidopyrimidine-DNA Glycosylase Investigated by Molecular Dynamics
    • Amara, P.; Serre, L.; Castaing, B.; Thomas, A. Insights into the DNA Repair Process by the Formamidopyrimidine-DNA Glycosylase Investigated by Molecular Dynamics. Protein Sci. 2004, 13, 2009-2021.
    • (2004) Protein Sci. , vol.13 , pp. 2009-2021
    • Amara, P.1    Serre, L.2    Castaing, B.3    Thomas, A.4
  • 43
    • 33748508626 scopus 로고    scopus 로고
    • Computational Analysis of the Mode of Binding of 8-Oxoguanine to Formamidopyrimidine-DNA Glycosylase
    • Song, K.; Hornak, V.; Santos, C. D.; Grollman, A. P.; Simmerling, C. Computational Analysis of the Mode of Binding of 8-Oxoguanine to Formamidopyrimidine-DNA Glycosylase. Biochemistry 2006, 45, 10886-10894.
    • (2006) Biochemistry , vol.45 , pp. 10886-10894
    • Song, K.1    Hornak, V.2    Santos, C.D.3    Grollman, A.P.4    Simmerling, C.5
  • 44
    • 11144256241 scopus 로고    scopus 로고
    • Substrate Discrimination by Formamidopyrimidine-DNA Glycosylase: Distinguishing Interactions within the Active Site
    • Perlow-Poehnelt, R. A.; Zharkov, D. O.; Grollman, A. P.; Broyde, S. Substrate Discrimination by Formamidopyrimidine-DNA Glycosylase: Distinguishing Interactions within the Active Site. Biochemistry 2004, 43, 16092-16105.
    • (2004) Biochemistry , vol.43 , pp. 16092-16105
    • Perlow-Poehnelt, R.A.1    Zharkov, D.O.2    Grollman, A.P.3    Broyde, S.4
  • 46
    • 79955432707 scopus 로고    scopus 로고
    • Theoretical Study on the Mechanism of the DNA Repair Protein Fpg
    • Zheng, J. H.; Tan, H. W.; Chen, G. J. Theoretical Study on the Mechanism of the DNA Repair Protein Fpg. Int. J. Quantum Chem. 2011, 111, 2454-2463.
    • (2011) Int. J. Quantum Chem. , vol.111 , pp. 2454-2463
    • Zheng, J.H.1    Tan, H.W.2    Chen, G.J.3
  • 47
    • 34547133245 scopus 로고    scopus 로고
    • Tumor Suppression by DNA Base Excision Repair
    • Frosina, G. Tumor Suppression by DNA Base Excision Repair. Mini Rev. Med. Chem. 2007, 7, 727-743.
    • (2007) Mini Rev. Med. Chem. , vol.7 , pp. 727-743
    • Frosina, G.1
  • 48
    • 0036716989 scopus 로고    scopus 로고
    • Base Excision Repair as a Therapeutic Target in Colon Cancer
    • Liu, L.; Nakatsuru, Y.; Gerson, S. L. Base Excision Repair as a Therapeutic Target in Colon Cancer. Clin. Cancer Res. 2002, 8, 2985-2991.
    • (2002) Clin. Cancer Res. , vol.8 , pp. 2985-2991
    • Liu, L.1    Nakatsuru, Y.2    Gerson, S.L.3
  • 49
    • 27944445390 scopus 로고    scopus 로고
    • The Emerging Role of DNA Repair Proteins as Predictive, Prognostic and Therapeutic Targets in Cancer
    • Madhusudan, S.; Middleton, M. R. The Emerging Role of DNA Repair Proteins as Predictive, Prognostic and Therapeutic Targets in Cancer. Cancer Treat. Rev. 2005, 31, 603-617.
    • (2005) Cancer Treat. Rev. , vol.31 , pp. 603-617
    • Madhusudan, S.1    Middleton, M.R.2
  • 50
    • 34547754492 scopus 로고    scopus 로고
    • Targeting DNA Repair as a Promising Approach in Cancer Therapy
    • Damia, G.; D'Incalci, M. Targeting DNA Repair as a Promising Approach in Cancer Therapy. Eur. J. Cancer 2007, 43, 1791-1801.
    • (2007) Eur. J. Cancer , vol.43 , pp. 1791-1801
    • Damia, G.1    D'Incalci, M.2
  • 51
    • 44449144607 scopus 로고    scopus 로고
    • DNA Repair Proteins as Molecular Targets for Cancer Therapeutics
    • Kelley, M. R.; Fishel, M. L. DNA Repair Proteins as Molecular Targets for Cancer Therapeutics. Anti-Cancer Agents Med. Chem. 2008, 8, 417-425.
    • (2008) Anti-Cancer Agents Med. Chem. , vol.8 , pp. 417-425
    • Kelley, M.R.1    Fishel, M.L.2
  • 52
    • 0023433565 scopus 로고
    • Formamidopyrimidine-DNA Glycosylase of Escherichia coli: Cloning and Sequencing of the Fpg Structural Gene and Overproduction of the Protein
    • Boiteux, S.; O'Connor, T. R.; Laval, J. Formamidopyrimidine-DNA Glycosylase of Escherichia coli: Cloning and Sequencing of the Fpg Structural Gene and Overproduction of the Protein. EMBO J. 1987, 6, 3177-3183.
    • (1987) EMBO J. , vol.6 , pp. 3177-3183
    • Boiteux, S.1    O'Connor, T.R.2    Laval, J.3
  • 53
    • 0030991774 scopus 로고    scopus 로고
    • Mechanism of Action of Base Release by Escherichia coli Fpg Protein: Role of Lysine 155 in Catalysis
    • Rabow, L. E.; Kow, Y. W. Mechanism of Action of Base Release by Escherichia coli Fpg Protein: Role of Lysine 155 in Catalysis. Biochemistry 1997, 36, 5084-5096.
    • (1997) Biochemistry , vol.36 , pp. 5084-5096
    • Rabow, L.E.1    Kow, Y.W.2
  • 54
    • 0032403120 scopus 로고    scopus 로고
    • Role of Lysine-57 in the Catalytic Activities of Escherichia coli Formamidopyrimidine-DNA Glycosylase (Fpg Protein)
    • Sidorkina, O. M.; Laval, J. Role of Lysine-57 in the Catalytic Activities of Escherichia coli Formamidopyrimidine-DNA Glycosylase (Fpg Protein). Nucleic Acids Res. 1998, 26, 5351-5357.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 5351-5357
    • Sidorkina, O.M.1    Laval, J.2
  • 55
    • 84871017094 scopus 로고    scopus 로고
    • Glycosidic Bond Cleavage in Deoxynucleotides: Effects of Solvent and the DNA Phosphate Backbone in the Computational Model
    • Lenz, Stefan A. P.; Kellie, J. L.; Wetmore, S. D. Glycosidic Bond Cleavage in Deoxynucleotides: Effects of Solvent and the DNA Phosphate Backbone in the Computational Model. J. Phys. Chem. B 2012, 116, 14275-14284.
    • (2012) J. Phys. Chem. B , vol.116 , pp. 14275-14284
    • Lenz Stefan, A.P.1    Kellie, J.L.2    Wetmore, S.D.3
  • 56
    • 77950250407 scopus 로고    scopus 로고
    • Conformational Flexibility of C8-Phenoxyl-2′-deoxyguanosine Nucleotide Adducts
    • Millen, A. L.; Manderville, R. A.; Wetmore, S. D. Conformational Flexibility of C8-Phenoxyl-2′-deoxyguanosine Nucleotide Adducts. J. Phys. Chem. B 2010, 114, 4373-4382.
    • (2010) J. Phys. Chem. B , vol.114 , pp. 4373-4382
    • Millen, A.L.1    Manderville, R.A.2    Wetmore, S.D.3
  • 57
    • 80053254400 scopus 로고    scopus 로고
    • Developing a Computational Model that Accurately Reproduces the Structural Features of a Dinucleoside Monophosphate Unit within B-DNA
    • Churchill, C. D. M.; Wetmore, S. D. Developing a Computational Model that Accurately Reproduces the Structural Features of a Dinucleoside Monophosphate Unit within B-DNA. Phys. Chem. Chem. Phys. 2011, 13, 16373-16383.
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , pp. 16373-16383
    • Churchill, C.D.M.1    Wetmore, S.D.2
  • 58
    • 0034708226 scopus 로고    scopus 로고
    • Structural Basis for Recognition and Repair of the Endogenous Mutagen 8-Oxoguanine in DNA
    • Bruner, S. D.; Norman, D. P. G.; Verdine, G. L. Structural Basis for Recognition and Repair of the Endogenous Mutagen 8-Oxoguanine in DNA. Nature (London, U. K.) 2000, 403, 859-866.
    • (2000) Nature (London, U. K.) , vol.403 , pp. 859-866
    • Bruner, S.D.1    Norman, D.P.G.2    Verdine, G.L.3
  • 60
    • 77951128973 scopus 로고    scopus 로고
    • Density Functional Calculations of E2 and S(N)2 Reactions: Effects of the Choice of Density Functional, Basis Set, and Self-Consistent Iterations
    • Zhao, Y.; Truhlar, D. G. Density Functional Calculations of E2 and S(N)2 Reactions: Effects of the Choice of Density Functional, Basis Set, and Self-Consistent Iterations. J. Chem. Theory Comput. 2010, 6, 1104-1108.
    • (2010) J. Chem. Theory Comput. , vol.6 , pp. 1104-1108
    • Zhao, Y.1    Truhlar, D.G.2
  • 61
    • 0022816745 scopus 로고
    • The Dielectric Constant of a Folded Protein
    • Gilson, M. K.; Honig, B. H. The Dielectric Constant of a Folded Protein. Biopolymers 1986, 25, 2097-2119.
    • (1986) Biopolymers , vol.25 , pp. 2097-2119
    • Gilson, M.K.1    Honig, B.H.2
  • 62
    • 0024086838 scopus 로고
    • A Theoretical Study of the Dielectric Constant of Protein
    • Nakamura, H.; Sakamoto, T.; Wada, A. A Theoretical Study of the Dielectric Constant of Protein. Protein Eng. 1988, 2, 177-183.
    • (1988) Protein Eng. , vol.2 , pp. 177-183
    • Nakamura, H.1    Sakamoto, T.2    Wada, A.3
  • 63
    • 0019438921 scopus 로고
    • The Internal Dynamics of Globular Proteins
    • Karplus, M.; McCammon, J. A. The Internal Dynamics of Globular Proteins. CRC Crit. Rev. Biochem. 1981, 9, 293-349.
    • (1981) CRC Crit. Rev. Biochem. , vol.9 , pp. 293-349
    • Karplus, M.1    McCammon, J.A.2
  • 64
    • 0025847876 scopus 로고
    • Intramolecular Dielectric Screening in Proteins
    • Simonson, T.; Perahia, D.; Bricogne, G. Intramolecular Dielectric Screening in Proteins. J. Mol. Biol. 1991, 218, 859-886.
    • (1991) J. Mol. Biol. , vol.218 , pp. 859-886
    • Simonson, T.1    Perahia, D.2    Bricogne, G.3
  • 65
    • 0026012015 scopus 로고
    • Microscopic Theory of the Dielectric Properties of Proteins
    • Simonson, T.; Perahia, D.; Brunger, A. T. Microscopic Theory of the Dielectric Properties of Proteins. Biophys. J. 1991, 59, 670-690.
    • (1991) Biophys. J. , vol.59 , pp. 670-690
    • Simonson, T.1    Perahia, D.2    Brunger, A.T.3
  • 66
    • 0028876827 scopus 로고
    • Internal and Interfacial Dielectric Properties of Cytochrome c from Molecular Dynamics in Aqueous Solution
    • Simonson, T.; Perahia, D. Internal and Interfacial Dielectric Properties of Cytochrome c from Molecular Dynamics in Aqueous Solution. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 1082-1086.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 1082-1086
    • Simonson, T.1    Perahia, D.2
  • 67
    • 84865099174 scopus 로고    scopus 로고
    • Structural and Biochemical Studies of a Plant Formamidopyrimidine-DNA Glycosylase Reveal why Eukaryotic Fpg Glycosylases Do Not Excise 8-Oxoguanine
    • Duclos, S.; Aller, P.; Jaruga, P.; Dizdaroglu, M.; Wallace, S. S.; Doublie, S. Structural and Biochemical Studies of a Plant Formamidopyrimidine-DNA Glycosylase Reveal why Eukaryotic Fpg Glycosylases Do Not Excise 8-Oxoguanine. DNA Repair 2012, 11, 714-725.
    • (2012) DNA Repair , vol.11 , pp. 714-725
    • Duclos, S.1    Aller, P.2    Jaruga, P.3    Dizdaroglu, M.4    Wallace, S.S.5    Doublie, S.6
  • 68
    • 33644635257 scopus 로고    scopus 로고
    • Toward a Detailed Understanding of Base Excision Repair Enzymes: Transition State and Mechanistic Analyses of N-Glycoside Hydrolysis and N-Glycoside Transfer
    • Berti, P. J.; McCann, J. A. B. Toward a Detailed Understanding of Base Excision Repair Enzymes: Transition State and Mechanistic Analyses of N-Glycoside Hydrolysis and N-Glycoside Transfer. Chem. Rev. (Washington, DC, U. S.) 2006, 106, 506-555.
    • (2006) Chem. Rev. (Washington, DC, U. S.) , vol.106 , pp. 506-555
    • Berti, P.J.1    McCann, J.A.B.2
  • 69
    • 0030703177 scopus 로고    scopus 로고
    • Opposite Base-dependent Reactions of a Human Base Excision Repair Enzyme on DNA Containing 7,8-Dihydro-8-oxoguanine and Abasic Sites
    • Bjøra˚s, M.; Luna, L.; Johnson, B.; Hoff, E.; Haug, T.; Rognes, T.; Seeberg, E. Opposite Base-dependent Reactions of a Human Base Excision Repair Enzyme on DNA Containing 7,8-Dihydro-8-oxoguanine and Abasic Sites. EMBO J. 1997, 16, 6314-6322.
    • (1997) EMBO J. , vol.16 , pp. 6314-6322
    • Bjøra˚s, M.1    Luna, L.2    Johnson, B.3    Hoff, E.4    Haug, T.5    Rognes, T.6    Seeberg, E.7
  • 70
    • 0033787170 scopus 로고    scopus 로고
    • Raman Spectroscopy of Uracil DNA Glycosylase-DNA Complexes: Insights into DNA Damage Recognition and Catalysis
    • Dong, J.; Drohat, A. C.; Stivers, J. T.; Pankiewicz, K. W.; Carey, P. R. Raman Spectroscopy of Uracil DNA Glycosylase-DNA Complexes: Insights into DNA Damage Recognition and Catalysis. Biochemistry 2000, 39, 13241-13250.
    • (2000) Biochemistry , vol.39 , pp. 13241-13250
    • Dong, J.1    Drohat, A.C.2    Stivers, J.T.3    Pankiewicz, K.W.4    Carey, P.R.5
  • 71
    • 84857560198 scopus 로고    scopus 로고
    • Catalytic Contributions of Key Residues in the Adenine Glycosylase MutY Revealed by pH-Dependent Kinetics and Cellular Repair Assays
    • Brinkmeyer, M. K.; Pope, M. A.; David, S. S. Catalytic Contributions of Key Residues in the Adenine Glycosylase MutY Revealed by pH-Dependent Kinetics and Cellular Repair Assays. Chem. Biol. 2012, 19, 276-286.
    • (2012) Chem. Biol. , vol.19 , pp. 276-286
    • Brinkmeyer, M.K.1    Pope, M.A.2    David, S.S.3
  • 72
    • 0035900960 scopus 로고    scopus 로고
    • Coupling of Substrate Recognition and Catalysis by a Human Base-Excision DNA Repair Protein
    • Norman, D. P. G.; Bruner, S. D.; Verdine, G. L. Coupling of Substrate Recognition and Catalysis by a Human Base-Excision DNA Repair Protein. J. Am. Chem. Soc. 2001, 123, 359-360.
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 359-360
    • Norman, D.P.G.1    Bruner, S.D.2    Verdine, G.L.3
  • 73
    • 0036290411 scopus 로고    scopus 로고
    • Reciprocal "Flipping" Underlies Substrate Recognition and Catalytic Activation by the Human 8-Oxo-guanine DNA Glycosylase
    • Bjøra˚s, M.; Seeberg, E.; Luna, L.; Pearl, L. H.; Barrett, T. E. Reciprocal "Flipping" Underlies Substrate Recognition and Catalytic Activation by the Human 8-Oxo-guanine DNA Glycosylase. J. Mol. Biol. 2002, 317, 171-177.
    • (2002) J. Mol. Biol. , vol.317 , pp. 171-177
    • Bjøra˚s, M.1    Seeberg, E.2    Luna, L.3    Pearl, L.H.4    Barrett, T.E.5
  • 74
    • 15844379169 scopus 로고    scopus 로고
    • Structure of a Repair Enzyme Interrogating Undamaged DNA Elucidates Recognition of Damaged DNA
    • Banerjee, A.; Yang, W.; Karplus, M.; Verdine, G. L. Structure of a Repair Enzyme Interrogating Undamaged DNA Elucidates Recognition of Damaged DNA. Nature (London, U. K.) 2005, 434, 612-618.
    • (2005) Nature (London, U. K.) , vol.434 , pp. 612-618
    • Banerjee, A.1    Yang, W.2    Karplus, M.3    Verdine, G.L.4
  • 75
    • 34247862129 scopus 로고    scopus 로고
    • Structural Characterization of Human 8-Oxoguanine DNA Glycosylase Variants Bearing Active Site Mutations
    • Radom, C. T.; Banerjee, A.; Verdine, G. L. Structural Characterization of Human 8-Oxoguanine DNA Glycosylase Variants Bearing Active Site Mutations. J. Biol. Chem. 2007, 282, 9182-9194.
    • (2007) J. Biol. Chem. , vol.282 , pp. 9182-9194
    • Radom, C.T.1    Banerjee, A.2    Verdine, G.L.3
  • 76
    • 84962383061 scopus 로고    scopus 로고
    • Environmental Effects on the Enhancement in Natural and Damaged DNA Nucleobase Acidity Because of Discrete Hydrogen-Bonding Interactions
    • Hunter, K. C.; Wetmore, S. D. Environmental Effects on the Enhancement in Natural and Damaged DNA Nucleobase Acidity Because of Discrete Hydrogen-Bonding Interactions. J. Phys. Chem. A 2007, 111, 1933-1942.
    • (2007) J. Phys. Chem. A , vol.111 , pp. 1933-1942
    • Hunter, K.C.1    Wetmore, S.D.2
  • 77
    • 23144459575 scopus 로고    scopus 로고
    • Effects of Hydrogen Bonding on the Acidity of Adenine, Guanine, and Their 8-Oxo Derivatives
    • McConnell, T. L.; Wheaton, C. A.; Hunter, K. C.; Wetmore, S. D. Effects of Hydrogen Bonding on the Acidity of Adenine, Guanine, and Their 8-Oxo Derivatives. J. Phys. Chem. A 2005, 109, 6351-6362.
    • (2005) J. Phys. Chem. A , vol.109 , pp. 6351-6362
    • McConnell, T.L.1    Wheaton, C.A.2    Hunter, K.C.3    Wetmore, S.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.