메뉴 건너뛰기




Volumn 27, Issue 4, 2015, Pages 237-248

Molecular and epigenetic basis of macrophage polarized activation

Author keywords

Activation; Epigenetic; Gene expression; Macrophage; Metabolism; Plasticity

Indexed keywords

ACID PHOSPHATASE TARTRATE RESISTANT ISOENZYME; HISTONE DEACETYLASE 3; INTERFERON REGULATORY FACTOR 5; INTERLEUKIN 10; INTERLEUKIN 13; INTERLEUKIN 1BETA; INTERLEUKIN 4; KRUPPEL LIKE FACTOR; KRUPPEL LIKE FACTOR 4; MICRORNA 124; MICRORNA 155; MICRORNA 223; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR DELTA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; PROSTAGLANDIN E2; STAT1 PROTEIN; STAT3 PROTEIN; STAT6 PROTEIN; SUPPRESSOR OF CYTOKINE SIGNALING;

EID: 84950284907     PISSN: 10445323     EISSN: 10963618     Source Type: Journal    
DOI: 10.1016/j.smim.2015.10.003     Document Type: Review
Times cited : (228)

References (207)
  • 1
    • 84876800337 scopus 로고    scopus 로고
    • Macrophage biology in development, homeostasis and disease
    • Wynn T.A., Chawla A., Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496(7446):445-455.
    • (2013) Nature , vol.496 , Issue.7446 , pp. 445-455
    • Wynn, T.A.1    Chawla, A.2    Pollard, J.W.3
  • 2
    • 80355131976 scopus 로고    scopus 로고
    • Protective and pathogenic functions of macrophage subsets
    • Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11(11):723-737.
    • (2011) Nat. Rev. Immunol. , vol.11 , Issue.11 , pp. 723-737
    • Murray, P.J.1    Wynn, T.A.2
  • 3
    • 84911092143 scopus 로고    scopus 로고
    • Macrophage heterogeneity in tissues: phenotypic diversity and functions
    • Gordon S., Pluddemann A., Martinez Estrada F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev. 2014, 262(1):36-55.
    • (2014) Immunol. Rev. , vol.262 , Issue.1 , pp. 36-55
    • Gordon, S.1    Pluddemann, A.2    Martinez Estrada, F.3
  • 4
    • 84886654275 scopus 로고    scopus 로고
    • Tissue-resident macrophages
    • Davies L.C., et al. Tissue-resident macrophages. Nat. Immunol. 2013, 14(10):986-995.
    • (2013) Nat. Immunol. , vol.14 , Issue.10 , pp. 986-995
    • Davies, L.C.1
  • 5
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • Ginhoux F., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330(6005):841-845.
    • (2010) Science , vol.330 , Issue.6005 , pp. 841-845
    • Ginhoux, F.1
  • 6
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • Schulz C., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336(6077):86-90.
    • (2012) Science , vol.336 , Issue.6077 , pp. 86-90
    • Schulz, C.1
  • 7
    • 84872765982 scopus 로고    scopus 로고
    • Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
    • Yona S., et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38(1):79-91.
    • (2013) Immunity , vol.38 , Issue.1 , pp. 79-91
    • Yona, S.1
  • 8
    • 84876775203 scopus 로고    scopus 로고
    • Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
    • Hashimoto D., et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38(4):792-804.
    • (2013) Immunity , vol.38 , Issue.4 , pp. 792-804
    • Hashimoto, D.1
  • 9
    • 84892450644 scopus 로고    scopus 로고
    • Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
    • Epelman S., et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014, 40(1):91-104.
    • (2014) Immunity , vol.40 , Issue.1 , pp. 91-104
    • Epelman, S.1
  • 10
    • 84925465211 scopus 로고    scopus 로고
    • Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
    • Gomez Perdiguero E., et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015, 518(7540):547-551.
    • (2015) Nature , vol.518 , Issue.7540 , pp. 547-551
    • Gomez Perdiguero, E.1
  • 11
    • 84904401883 scopus 로고    scopus 로고
    • Origin and functions of tissue macrophages
    • Epelman S., Lavine K.J., Randolph G.J. Origin and functions of tissue macrophages. Immunity 2014, 41(1):21-35.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 21-35
    • Epelman, S.1    Lavine, K.J.2    Randolph, G.J.3
  • 12
    • 84940984138 scopus 로고    scopus 로고
    • Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells
    • Sheng J., Ruedl C., Karjalainen K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 2015, 43(2):382-393.
    • (2015) Immunity , vol.43 , Issue.2 , pp. 382-393
    • Sheng, J.1    Ruedl, C.2    Karjalainen, K.3
  • 13
    • 84928189502 scopus 로고    scopus 로고
    • C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages
    • Hoeffel G., et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 2015, 42(4):665-678.
    • (2015) Immunity , vol.42 , Issue.4 , pp. 665-678
    • Hoeffel, G.1
  • 14
    • 84870900504 scopus 로고    scopus 로고
    • Ly6 C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells
    • Zigmond E., et al. Ly6 C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 2012, 37(6):1076-1090.
    • (2012) Immunity , vol.37 , Issue.6 , pp. 1076-1090
    • Zigmond, E.1
  • 15
    • 84876349699 scopus 로고    scopus 로고
    • Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors
    • Bain C.C., et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013, 6(3):498-510.
    • (2013) Mucosal Immunol. , vol.6 , Issue.3 , pp. 498-510
    • Bain, C.C.1
  • 16
    • 84887616366 scopus 로고    scopus 로고
    • Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin
    • Tamoutounour S., et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 2013, 39(5):925-938.
    • (2013) Immunity , vol.39 , Issue.5 , pp. 925-938
    • Tamoutounour, S.1
  • 17
    • 78751680917 scopus 로고    scopus 로고
    • Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft
    • Kanitakis J., et al. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp. Dermatol. 2011, 20(2):145-146.
    • (2011) Exp. Dermatol. , vol.20 , Issue.2 , pp. 145-146
    • Kanitakis, J.1
  • 18
    • 79961046334 scopus 로고    scopus 로고
    • Dendritic cell, monocyte, B and NK lymphoid deficiency defines the lost lineages of a new GATA-2 dependent myelodysplastic syndrome
    • Bigley V., Collin M. Dendritic cell, monocyte, B and NK lymphoid deficiency defines the lost lineages of a new GATA-2 dependent myelodysplastic syndrome. Haematologica 2011, 96(8):1081-1083.
    • (2011) Haematologica , vol.96 , Issue.8 , pp. 1081-1083
    • Bigley, V.1    Collin, M.2
  • 19
    • 31344469849 scopus 로고    scopus 로고
    • The fate of human Langerhans cells in hematopoietic stem cell transplantation
    • Collin M.P., et al. The fate of human Langerhans cells in hematopoietic stem cell transplantation. J. Exp. Med. 2006, 203(1):27-33.
    • (2006) J. Exp. Med. , vol.203 , Issue.1 , pp. 27-33
    • Collin, M.P.1
  • 20
    • 63049112195 scopus 로고    scopus 로고
    • Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation
    • Haniffa M., et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 2009, 206(2):371-385.
    • (2009) J. Exp. Med. , vol.206 , Issue.2 , pp. 371-385
    • Haniffa, M.1
  • 21
    • 79951693243 scopus 로고    scopus 로고
    • The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency
    • Bigley V., et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 2011, 208(2):227-234.
    • (2011) J. Exp. Med. , vol.208 , Issue.2 , pp. 227-234
    • Bigley, V.1
  • 22
    • 84867740805 scopus 로고    scopus 로고
    • Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
    • Gautier E.L., et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012, 13(11):1118-1128.
    • (2012) Nat. Immunol. , vol.13 , Issue.11 , pp. 1118-1128
    • Gautier, E.L.1
  • 23
    • 84920724791 scopus 로고    scopus 로고
    • Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
    • Lavin Y., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014, 159(6):1312-1326.
    • (2014) Cell , vol.159 , Issue.6 , pp. 1312-1326
    • Lavin, Y.1
  • 24
    • 84920724792 scopus 로고    scopus 로고
    • Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
    • Gosselin D., et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014, 159(6):1327-1340.
    • (2014) Cell , vol.159 , Issue.6 , pp. 1327-1340
    • Gosselin, D.1
  • 25
    • 84942543688 scopus 로고    scopus 로고
    • Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages
    • Gibbings S.L., et al. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 2015, 126(11):1357-1366.
    • (2015) Blood , vol.126 , Issue.11 , pp. 1357-1366
    • Gibbings, S.L.1
  • 26
    • 77956976681 scopus 로고    scopus 로고
    • Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm
    • Biswas S.K., Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 2010, 11(10):889-896.
    • (2010) Nat. Immunol. , vol.11 , Issue.10 , pp. 889-896
    • Biswas, S.K.1    Mantovani, A.2
  • 27
    • 84857883847 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization: in vivo veritas
    • Sica A., Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 2012, 122(3):787-795.
    • (2012) J. Clin. Invest. , vol.122 , Issue.3 , pp. 787-795
    • Sica, A.1    Mantovani, A.2
  • 28
    • 56749174940 scopus 로고    scopus 로고
    • Exploring the full spectrum of macrophage activation
    • Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8(12):958-969.
    • (2008) Nat. Rev. Immunol. , vol.8 , Issue.12 , pp. 958-969
    • Mosser, D.M.1    Edwards, J.P.2
  • 29
    • 84922392547 scopus 로고    scopus 로고
    • Caring for the postoperative patient with complications presenting to the emergency department
    • Gadler T., Gardiner A., Martinez N. Caring for the postoperative patient with complications presenting to the emergency department. Adv. Emerg. Nurs. J. 2014, 36(2):134-144.
    • (2014) Adv. Emerg. Nurs. J. , vol.36 , Issue.2 , pp. 134-144
    • Gadler, T.1    Gardiner, A.2    Martinez, N.3
  • 30
    • 4344706372 scopus 로고    scopus 로고
    • Functional plasticity of macrophages: reversible adaptation to changing microenvironments
    • Stout R.D., Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J. Leukoc. Biol. 2004, 76(3):509-513.
    • (2004) J. Leukoc. Biol. , vol.76 , Issue.3 , pp. 509-513
    • Stout, R.D.1    Suttles, J.2
  • 31
    • 84872522528 scopus 로고    scopus 로고
    • Latent enhancers activated by stimulation in differentiated cells
    • Ostuni R., et al. Latent enhancers activated by stimulation in differentiated cells. Cell 2013, 152(1-2):157-171.
    • (2013) Cell , vol.152 , Issue.1-2 , pp. 157-171
    • Ostuni, R.1
  • 32
    • 84881526410 scopus 로고    scopus 로고
    • Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription
    • Kaikkonen M.U., et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 2013, 51(3):310-325.
    • (2013) Mol. Cell , vol.51 , Issue.3 , pp. 310-325
    • Kaikkonen, M.U.1
  • 33
    • 80054121374 scopus 로고    scopus 로고
    • Macrophages in cancer and infectious diseases: the 'good' and the 'bad'
    • Porta C., et al. Macrophages in cancer and infectious diseases: the 'good' and the 'bad'. Immunotherapy 2011, 3(10):1185-1202.
    • (2011) Immunotherapy , vol.3 , Issue.10 , pp. 1185-1202
    • Porta, C.1
  • 34
    • 84928226005 scopus 로고    scopus 로고
    • The interaction of anticancer therapies with tumor-associated macrophages
    • Mantovani A., Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J. Exp. Med. 2015, 212(4):435-445.
    • (2015) J. Exp. Med. , vol.212 , Issue.4 , pp. 435-445
    • Mantovani, A.1    Allavena, P.2
  • 35
    • 84899791667 scopus 로고    scopus 로고
    • Macrophage polarization in inflammatory diseases
    • Liu Y.C., et al. Macrophage polarization in inflammatory diseases. Int. J. Biol. Sci. 2014, 10(5):520-529.
    • (2014) Int. J. Biol. Sci. , vol.10 , Issue.5 , pp. 520-529
    • Liu, Y.C.1
  • 36
    • 84866736117 scopus 로고    scopus 로고
    • Macrophage polarization and plasticity in health and disease
    • Biswas S.K., et al. Macrophage polarization and plasticity in health and disease. Immunol. Res. 2012, 53(1-3):11-24.
    • (2012) Immunol. Res. , vol.53 , Issue.1-3 , pp. 11-24
    • Biswas, S.K.1
  • 37
    • 84928226005 scopus 로고    scopus 로고
    • The interaction of anticancer therapies with tumor-associated macrophages
    • Mantovani A., Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J. Exp. Med. 2015, 212(4):435-445.
    • (2015) J. Exp. Med. , vol.212 , Issue.4 , pp. 435-445
    • Mantovani, A.1    Allavena, P.2
  • 38
    • 63149088164 scopus 로고    scopus 로고
    • Trophic macrophages in development and disease
    • Pollard J.W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 2009, 9(4):259-270.
    • (2009) Nat. Rev. Immunol. , vol.9 , Issue.4 , pp. 259-270
    • Pollard, J.W.1
  • 39
    • 0037673945 scopus 로고    scopus 로고
    • Osteoclast differentiation and activation
    • Boyle W.J., Simonet W.S., Lacey D.L. Osteoclast differentiation and activation. Nature 2003, 423(6937):337-342.
    • (2003) Nature , vol.423 , Issue.6937 , pp. 337-342
    • Boyle, W.J.1    Simonet, W.S.2    Lacey, D.L.3
  • 40
    • 35748949862 scopus 로고    scopus 로고
    • Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors
    • Nagata S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol. Rev. 2007, 220:237-250.
    • (2007) Immunol. Rev. , vol.220 , pp. 237-250
    • Nagata, S.1
  • 41
    • 84878444005 scopus 로고    scopus 로고
    • CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress
    • Chow A., et al. CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 2013, 19(4):429-436.
    • (2013) Nat. Med. , vol.19 , Issue.4 , pp. 429-436
    • Chow, A.1
  • 42
    • 84866033654 scopus 로고    scopus 로고
    • Innate immune functions of macrophage subpopulations in the spleen
    • den Haan J.M., Kraal G. Innate immune functions of macrophage subpopulations in the spleen. J. Innate Immun. 2012, 4(5-6):437-445.
    • (2012) J. Innate Immun. , vol.4 , Issue.5-6 , pp. 437-445
    • den Haan, J.M.1    Kraal, G.2
  • 43
    • 84875086462 scopus 로고    scopus 로고
    • The KIT Exon 11 stop codon mutation in gastrointestinal stromal tumors: what is the clinical meaning?
    • Michelucci A., et al. The KIT Exon 11 stop codon mutation in gastrointestinal stromal tumors: what is the clinical meaning?. Gut Liver 2013, 7(1):35-40.
    • (2013) Gut Liver , vol.7 , Issue.1 , pp. 35-40
    • Michelucci, A.1
  • 44
    • 84897549691 scopus 로고    scopus 로고
    • In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans
    • Cai Y., et al. In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J. Immunol. 2014, 192(6):2821-2829.
    • (2014) J. Immunol. , vol.192 , Issue.6 , pp. 2821-2829
    • Cai, Y.1
  • 45
    • 79151473459 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity and Toll-like receptors in the lung
    • Schneberger D., Aharonson-Raz K., Singh B. Monocyte and macrophage heterogeneity and Toll-like receptors in the lung. Cell Tissue Res. 2011, 343(1):97-106.
    • (2011) Cell Tissue Res. , vol.343 , Issue.1 , pp. 97-106
    • Schneberger, D.1    Aharonson-Raz, K.2    Singh, B.3
  • 46
    • 84863616475 scopus 로고    scopus 로고
    • Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease
    • Duan M., et al. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. J. Immunol. 2012, 189(2):946-955.
    • (2012) J. Immunol. , vol.189 , Issue.2 , pp. 946-955
    • Duan, M.1
  • 47
    • 84885454468 scopus 로고    scopus 로고
    • Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF
    • Guilliams M., et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 2013, 210(10):1977-1992.
    • (2013) J. Exp. Med. , vol.210 , Issue.10 , pp. 1977-1992
    • Guilliams, M.1
  • 48
    • 84908148912 scopus 로고    scopus 로고
    • Induction of the nuclear receptor PPAR-gamma by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages
    • Schneider C., et al. Induction of the nuclear receptor PPAR-gamma by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 2014, 15(11):1026-1037.
    • (2014) Nat. Immunol. , vol.15 , Issue.11 , pp. 1026-1037
    • Schneider, C.1
  • 49
    • 84864298329 scopus 로고    scopus 로고
    • Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
    • Hoeffel G., et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 2012, 209(6):1167-1181.
    • (2012) J. Exp. Med. , vol.209 , Issue.6 , pp. 1167-1181
    • Hoeffel, G.1
  • 50
    • 84881238056 scopus 로고    scopus 로고
    • Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung
    • Misharin A.V., et al. Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am. J. Respir. Cell Mol. Biol. 2013, 49(4):503-510.
    • (2013) Am. J. Respir. Cell Mol. Biol. , vol.49 , Issue.4 , pp. 503-510
    • Misharin, A.V.1
  • 51
    • 77950630228 scopus 로고    scopus 로고
    • The molecular basis of pulmonary alveolar proteinosis
    • Carey B., Trapnell B.C. The molecular basis of pulmonary alveolar proteinosis. Clin. Immunol. 2010, 135(2):223-235.
    • (2010) Clin. Immunol. , vol.135 , Issue.2 , pp. 223-235
    • Carey, B.1    Trapnell, B.C.2
  • 52
    • 0036084395 scopus 로고    scopus 로고
    • Role of resident alveolar macrophages in leukocyte traffic into the alveolar air space of intact mice
    • Maus U.A., et al. Role of resident alveolar macrophages in leukocyte traffic into the alveolar air space of intact mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 282(6):L1245-L1252.
    • (2002) Am. J. Physiol. Lung Cell Mol. Physiol. , vol.282 , Issue.6 , pp. L1245-L1252
    • Maus, U.A.1
  • 53
    • 84919973536 scopus 로고    scopus 로고
    • Macrophage immunoregulatory pathways in tuberculosis
    • Rajaram M.V., et al. Macrophage immunoregulatory pathways in tuberculosis. Semin. Immunol. 2014, 26(6):471-485.
    • (2014) Semin. Immunol. , vol.26 , Issue.6 , pp. 471-485
    • Rajaram, M.V.1
  • 54
    • 84896715280 scopus 로고    scopus 로고
    • Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity
    • Westphalen K., et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 2014, 506(7489):503-506.
    • (2014) Nature , vol.506 , Issue.7489 , pp. 503-506
    • Westphalen, K.1
  • 55
    • 84940600988 scopus 로고    scopus 로고
    • Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling
    • Bourdonnay E., et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling. J. Exp. Med. 2015, 212(5):729-742.
    • (2015) J. Exp. Med. , vol.212 , Issue.5 , pp. 729-742
    • Bourdonnay, E.1
  • 56
    • 72849113090 scopus 로고    scopus 로고
    • Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice
    • Bedoret D., et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 2009, 119(12):3723-3738.
    • (2009) J. Clin. Invest. , vol.119 , Issue.12 , pp. 3723-3738
    • Bedoret, D.1
  • 58
    • 84923108244 scopus 로고    scopus 로고
    • The skin-resident immune network
    • Tay S.S., et al. The skin-resident immune network. Curr. Dermatol. Rep. 2014, 3:13-22.
    • (2014) Curr. Dermatol. Rep. , vol.3 , pp. 13-22
    • Tay, S.S.1
  • 59
    • 84901368457 scopus 로고    scopus 로고
    • The origins and functions of dendritic cells and macrophages in the skin
    • Malissen B., Tamoutounour S., Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 2014, 14(6):417-428.
    • (2014) Nat. Rev. Immunol. , vol.14 , Issue.6 , pp. 417-428
    • Malissen, B.1    Tamoutounour, S.2    Henri, S.3
  • 60
    • 84875829724 scopus 로고    scopus 로고
    • Antigen sampling in the small intestine
    • Schulz O., Pabst O. Antigen sampling in the small intestine. Trends Immunol. 2013, 34(4):155-161.
    • (2013) Trends Immunol. , vol.34 , Issue.4 , pp. 155-161
    • Schulz, O.1    Pabst, O.2
  • 61
    • 77957020717 scopus 로고    scopus 로고
    • Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors
    • Cros J., et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010, 33(3):375-386.
    • (2010) Immunity , vol.33 , Issue.3 , pp. 375-386
    • Cros, J.1
  • 62
    • 84876207357 scopus 로고    scopus 로고
    • Nr4a1-dependent Ly6C (low) monocytes monitor endothelial cells and orchestrate their disposal
    • Carlin L.M., et al. Nr4a1-dependent Ly6C (low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 2013, 153(2):362-375.
    • (2013) Cell , vol.153 , Issue.2 , pp. 362-375
    • Carlin, L.M.1
  • 63
    • 77449102329 scopus 로고    scopus 로고
    • Comparison of gene expression profiles between human and mouse monocyte subsets
    • Ingersoll M.A., et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010, 115(3):pe10-pe19.
    • (2010) Blood , vol.115 , Issue.3 , pp. pe10-pe19
    • Ingersoll, M.A.1
  • 64
    • 80051959957 scopus 로고    scopus 로고
    • The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes
    • Hanna R.N., et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat. Immunol. 2011, 12(8):778-785.
    • (2011) Nat. Immunol. , vol.12 , Issue.8 , pp. 778-785
    • Hanna, R.N.1
  • 65
    • 84884352076 scopus 로고    scopus 로고
    • Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
    • Jakubzick C., et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 2013, 39(3):599-610.
    • (2013) Immunity , vol.39 , Issue.3 , pp. 599-610
    • Jakubzick, C.1
  • 66
    • 85015352880 scopus 로고    scopus 로고
    • Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages
    • Dey A., Allen J., Hankey-Giblin P.A. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front Immunol. 2014, 5:683.
    • (2014) Front Immunol. , vol.5 , pp. 683
    • Dey, A.1    Allen, J.2    Hankey-Giblin, P.A.3
  • 67
    • 84920973617 scopus 로고    scopus 로고
    • The role of microglia and myeloid immune cells in acute cerebral ischemia
    • Benakis C., et al. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front. Cell Neurosci. 2014, 8:461.
    • (2014) Front. Cell Neurosci. , vol.8 , pp. 461
    • Benakis, C.1
  • 68
    • 84937583336 scopus 로고    scopus 로고
    • Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes
    • Goritzka M., et al. Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. J. Exp. Med. 2015, 212(5):699-714.
    • (2015) J. Exp. Med. , vol.212 , Issue.5 , pp. 699-714
    • Goritzka, M.1
  • 69
    • 84939976213 scopus 로고    scopus 로고
    • Regulation of myelopoiesis by the transcription factor IRF8
    • Tamura T., Kurotaki D., Koizumi S. Regulation of myelopoiesis by the transcription factor IRF8. Int. J. Hematol. 2015, 101(4):342-351.
    • (2015) Int. J. Hematol. , vol.101 , Issue.4 , pp. 342-351
    • Tamura, T.1    Kurotaki, D.2    Koizumi, S.3
  • 70
    • 84900386841 scopus 로고    scopus 로고
    • The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal
    • Rosas M., et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 2014, 344(6184):645-648.
    • (2014) Science , vol.344 , Issue.6184 , pp. 645-648
    • Rosas, M.1
  • 71
    • 84900413094 scopus 로고    scopus 로고
    • Tissue-specific signals control reversible program of localization and functional polarization of macrophages
    • Okabe Y., Medzhitov R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 2014, 157(4):832-844.
    • (2014) Cell , vol.157 , Issue.4 , pp. 832-844
    • Okabe, Y.1    Medzhitov, R.2
  • 72
    • 0025903876 scopus 로고
    • Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells
    • Kodama H., et al. Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J. Exp. Med. 1991, 173(5):1291-1294.
    • (1991) J. Exp. Med. , vol.173 , Issue.5 , pp. 1291-1294
    • Kodama, H.1
  • 73
    • 84945529565 scopus 로고    scopus 로고
    • NF-kappaB-mediated regulation of osteoclastogenesis
    • Boyce B.F., et al. NF-kappaB-mediated regulation of osteoclastogenesis. Endocrinol. Metab. (Seoul) 2015, 30(1):35-44.
    • (2015) Endocrinol. Metab. (Seoul) , vol.30 , Issue.1 , pp. 35-44
    • Boyce, B.F.1
  • 74
    • 58249104981 scopus 로고    scopus 로고
    • Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis
    • Kohyama M., et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 2009, 457(7227):318-321.
    • (2009) Nature , vol.457 , Issue.7227 , pp. 318-321
    • Kohyama, M.1
  • 75
    • 84896366680 scopus 로고    scopus 로고
    • Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages
    • Haldar M., et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 2014, 156(6):1223-1234.
    • (2014) Cell , vol.156 , Issue.6 , pp. 1223-1234
    • Haldar, M.1
  • 76
    • 0026762988 scopus 로고
    • Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation
    • Stein M., et al. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 1992, 176(1):287-292.
    • (1992) J. Exp. Med. , vol.176 , Issue.1 , pp. 287-292
    • Stein, M.1
  • 77
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: nomenclature and experimental guidelines
    • Murray P.J., et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014, 41(1):14-20.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 14-20
    • Murray, P.J.1
  • 78
    • 7644231561 scopus 로고    scopus 로고
    • The chemokine system in diverse forms of macrophage activation and polarization
    • Mantovani A., et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25(12):677-686.
    • (2004) Trends Immunol. , vol.25 , Issue.12 , pp. 677-686
    • Mantovani, A.1
  • 79
    • 84859464555 scopus 로고    scopus 로고
    • Orchestration of metabolism by macrophages
    • Biswas S.K., Mantovani A. Orchestration of metabolism by macrophages. Cell Metab. 2012, 15(4):432-437.
    • (2012) Cell Metab. , vol.15 , Issue.4 , pp. 432-437
    • Biswas, S.K.1    Mantovani, A.2
  • 80
    • 84896905991 scopus 로고    scopus 로고
    • Metabolic regulation of immune responses
    • Ganeshan K., Chawla A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 2014, 32:609-634.
    • (2014) Annu. Rev. Immunol. , vol.32 , pp. 609-634
    • Ganeshan, K.1    Chawla, A.2
  • 81
    • 84919452312 scopus 로고    scopus 로고
    • Metabolic reprograming in macrophage polarization
    • Galvan-Pena S., O'Neill L.A. Metabolic reprograming in macrophage polarization. Front. Immunol. 2014, 5:p420.
    • (2014) Front. Immunol. , vol.5 , pp. p420
    • Galvan-Pena, S.1    O'Neill, L.A.2
  • 82
    • 84874284249 scopus 로고    scopus 로고
    • Systemic and cellular consequences of macrophage control of iron metabolism
    • Recalcati S., Locati M., Cairo G. Systemic and cellular consequences of macrophage control of iron metabolism. Semin. Immunol. 2012, 24(6):393-398.
    • (2012) Semin. Immunol. , vol.24 , Issue.6 , pp. 393-398
    • Recalcati, S.1    Locati, M.2    Cairo, G.3
  • 83
    • 84918843257 scopus 로고    scopus 로고
    • Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages
    • Rath M., et al. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front. Immunol. 2014, 5:p532.
    • (2014) Front. Immunol. , vol.5 , pp. p532
    • Rath, M.1
  • 84
    • 84925612070 scopus 로고    scopus 로고
    • Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization
    • Lu G., et al. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat. Commun. 2015, 6:p6676.
    • (2015) Nat. Commun. , vol.6 , pp. p6676
    • Lu, G.1
  • 85
    • 77956213727 scopus 로고    scopus 로고
    • Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation
    • Rodriguez-Prados J.C., et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 2010, 185(1):605-614.
    • (2010) J. Immunol. , vol.185 , Issue.1 , pp. 605-614
    • Rodriguez-Prados, J.C.1
  • 86
    • 84862016400 scopus 로고    scopus 로고
    • The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism
    • Haschemi A., et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 2012, 15(6):813-826.
    • (2012) Cell Metab. , vol.15 , Issue.6 , pp. 813-826
    • Haschemi, A.1
  • 87
    • 79955532516 scopus 로고    scopus 로고
    • TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
    • West A.P., et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011, 472(7344):476-480.
    • (2011) Nature , vol.472 , Issue.7344 , pp. 476-480
    • West, A.P.1
  • 88
    • 84924935721 scopus 로고    scopus 로고
    • Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
    • Jha A.K., et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 2015, 42(3):419-430.
    • (2015) Immunity , vol.42 , Issue.3 , pp. 419-430
    • Jha, A.K.1
  • 89
    • 80052170775 scopus 로고    scopus 로고
    • The mitochondrial citrate carrier: a new player in inflammation
    • Infantino V., et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J. 2011, 438(3):433-436.
    • (2011) Biochem. J. , vol.438 , Issue.3 , pp. 433-436
    • Infantino, V.1
  • 90
    • 84877343356 scopus 로고    scopus 로고
    • Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
    • Michelucci A., et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. U.S.A. 2013, 110(19):7820-7825.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , Issue.19 , pp. 7820-7825
    • Michelucci, A.1
  • 91
    • 84876285741 scopus 로고    scopus 로고
    • Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha
    • Tannahill G.M., et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 2013, 496(7444):238-242.
    • (2013) Nature , vol.496 , Issue.7444 , pp. 238-242
    • Tannahill, G.M.1
  • 92
    • 33745428666 scopus 로고    scopus 로고
    • Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
    • Vats D., et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006, 4(1):13-24.
    • (2006) Cell Metab. , vol.4 , Issue.1 , pp. 13-24
    • Vats, D.1
  • 93
    • 33750813483 scopus 로고    scopus 로고
    • Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression
    • Martinez F.O., et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 2006, 177(10):7303-7311.
    • (2006) J. Immunol. , vol.177 , Issue.10 , pp. 7303-7311
    • Martinez, F.O.1
  • 94
    • 0036392090 scopus 로고    scopus 로고
    • Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages
    • Langer C., et al. Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages. Biochem. Biophys. Res. Commun. 2002, 296(5):1051-1057.
    • (2002) Biochem. Biophys. Res. Commun. , vol.296 , Issue.5 , pp. 1051-1057
    • Langer, C.1
  • 95
    • 0037265240 scopus 로고    scopus 로고
    • Alternative activation of macrophages
    • Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003, 3(1):23-35.
    • (2003) Nat. Rev. Immunol. , vol.3 , Issue.1 , pp. 23-35
    • Gordon, S.1
  • 96
    • 77955370625 scopus 로고    scopus 로고
    • A double agent in cancer: stopping macrophages wounds tumors
    • Qualls J.E., Murray P.J. A double agent in cancer: stopping macrophages wounds tumors. Nat. Med. 2010, 16(8):863-864.
    • (2010) Nat. Med. , vol.16 , Issue.8 , pp. 863-864
    • Qualls, J.E.1    Murray, P.J.2
  • 98
    • 0035008978 scopus 로고    scopus 로고
    • SOCS-1/SSI-1-deficient NKT cells participate in severe hepatitis through dysregulated cross-talk inhibition of IFN-gamma and IL-4 signaling in vivo
    • Naka T., et al. SOCS-1/SSI-1-deficient NKT cells participate in severe hepatitis through dysregulated cross-talk inhibition of IFN-gamma and IL-4 signaling in vivo. Immunity 2001, 14(5):535-545.
    • (2001) Immunity , vol.14 , Issue.5 , pp. 535-545
    • Naka, T.1
  • 99
    • 80055096913 scopus 로고    scopus 로고
    • Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function
    • Whyte C.S., et al. Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J. Leukoc. Biol. 2011, 90(5):845-854.
    • (2011) J. Leukoc. Biol. , vol.90 , Issue.5 , pp. 845-854
    • Whyte, C.S.1
  • 100
    • 44449140105 scopus 로고    scopus 로고
    • Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo
    • Liu Y., et al. Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. J. Immunol. 2008, 180(9):6270-6278.
    • (2008) J. Immunol. , vol.180 , Issue.9 , pp. 6270-6278
    • Liu, Y.1
  • 101
    • 84866528687 scopus 로고    scopus 로고
    • SOCS3 deficiency promotes M1 macrophage polarization and inflammation
    • Qin H., et al. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J. Immunol. 2012, 189(7):3439-3448.
    • (2012) J. Immunol. , vol.189 , Issue.7 , pp. 3439-3448
    • Qin, H.1
  • 102
    • 84859473951 scopus 로고    scopus 로고
    • Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation
    • Qin H., et al. Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc. Natl. Acad. Sci. U.S.A. 2012, 109(13):5004-5009.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , Issue.13 , pp. 5004-5009
    • Qin, H.1
  • 103
    • 69449085100 scopus 로고    scopus 로고
    • GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling
    • Fleetwood A.J., et al. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J. Leukoc. Biol. 2009, 86(2):411-421.
    • (2009) J. Leukoc. Biol. , vol.86 , Issue.2 , pp. 411-421
    • Fleetwood, A.J.1
  • 104
    • 79951671510 scopus 로고    scopus 로고
    • IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses
    • Krausgruber T., et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 2011, 12(3):231-238.
    • (2011) Nat. Immunol. , vol.12 , Issue.3 , pp. 231-238
    • Krausgruber, T.1
  • 105
    • 77956954197 scopus 로고    scopus 로고
    • The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection
    • Satoh T., et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 2010, 11(10):936-944.
    • (2010) Nat. Immunol. , vol.11 , Issue.10 , pp. 936-944
    • Satoh, T.1
  • 106
    • 2342464085 scopus 로고    scopus 로고
    • The two NF-kappaB activation pathways and their role in innate and adaptive immunity
    • Bonizzi G., Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004, 25(6):280-288.
    • (2004) Trends Immunol. , vol.25 , Issue.6 , pp. 280-288
    • Bonizzi, G.1    Karin, M.2
  • 107
    • 77649183653 scopus 로고    scopus 로고
    • The resolution of inflammation: anti-inflammatory roles for NF-kappaB
    • Lawrence T., Fong C. The resolution of inflammation: anti-inflammatory roles for NF-kappaB. Int. J. Biochem. Cell Biol. 2010, 42(4):519-523.
    • (2010) Int. J. Biochem. Cell Biol. , vol.42 , Issue.4 , pp. 519-523
    • Lawrence, T.1    Fong, C.2
  • 108
    • 33845752914 scopus 로고    scopus 로고
    • P50 Nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance
    • Saccani A., et al. p50 Nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 2006, 66(23):11432-11440.
    • (2006) Cancer Res. , vol.66 , Issue.23 , pp. 11432-11440
    • Saccani, A.1
  • 109
    • 0032588289 scopus 로고    scopus 로고
    • NF-kappaB1 (p50) is upregulated in lipopolysaccharide tolerance and can block tumor necrosis factor gene expression
    • Kastenbauer S., Ziegler-Heitbrock H.W. NF-kappaB1 (p50) is upregulated in lipopolysaccharide tolerance and can block tumor necrosis factor gene expression. Infect. Immun. 1999, 67(4):1553-1559.
    • (1999) Infect. Immun. , vol.67 , Issue.4 , pp. 1553-1559
    • Kastenbauer, S.1    Ziegler-Heitbrock, H.W.2
  • 110
    • 70349275277 scopus 로고    scopus 로고
    • Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB
    • Porta C., et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc. Natl. Acad. Sci. U.S.A. 2009, 106(35):14978-14983.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , Issue.35 , pp. 14978-14983
    • Porta, C.1
  • 111
    • 84873879390 scopus 로고    scopus 로고
    • Hypoxia-mediated regulation of macrophage functions in pathophysiology
    • Riboldi E., et al. Hypoxia-mediated regulation of macrophage functions in pathophysiology. Int. Immunol. 2013, 25(2):67-75.
    • (2013) Int. Immunol. , vol.25 , Issue.2 , pp. 67-75
    • Riboldi, E.1
  • 112
    • 77649177217 scopus 로고    scopus 로고
    • Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis
    • Takeda N., et al. Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev. 2010, 24(5):491-501.
    • (2010) Genes Dev. , vol.24 , Issue.5 , pp. 491-501
    • Takeda, N.1
  • 113
    • 22144492953 scopus 로고    scopus 로고
    • HIF-1alpha expression regulates the bactericidal capacity of phagocytes
    • Peyssonnaux C., et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest. 2005, 115(7):1806-1815.
    • (2005) J. Clin. Invest. , vol.115 , Issue.7 , pp. 1806-1815
    • Peyssonnaux, C.1
  • 114
    • 34250158361 scopus 로고    scopus 로고
    • Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis
    • Peyssonnaux C., et al. Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J. Immunol. 2007, 178(12):7516-7519.
    • (2007) J. Immunol. , vol.178 , Issue.12 , pp. 7516-7519
    • Peyssonnaux, C.1
  • 115
    • 0037423948 scopus 로고    scopus 로고
    • HIF-1alpha is essential for myeloid cell-mediated inflammation
    • Cramer T., et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003, 112(5):645-657.
    • (2003) Cell , vol.112 , Issue.5 , pp. 645-657
    • Cramer, T.1
  • 116
    • 44849100198 scopus 로고    scopus 로고
    • NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha
    • Rius J., et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 2008, 453(7196):807-811.
    • (2008) Nature , vol.453 , Issue.7196 , pp. 807-811
    • Rius, J.1
  • 117
    • 84933039838 scopus 로고    scopus 로고
    • HIF-1alpha and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages
    • Tawakol A., et al. HIF-1alpha and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler. Thromb. Vasc. Biol. 2015, 35(6):1463-1471.
    • (2015) Arterioscler. Thromb. Vasc. Biol. , vol.35 , Issue.6 , pp. 1463-1471
    • Tawakol, A.1
  • 118
    • 0036493984 scopus 로고    scopus 로고
    • Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer
    • Leek R.D., et al. Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res. 2002, 62(5):1326-1329.
    • (2002) Cancer Res. , vol.62 , Issue.5 , pp. 1326-1329
    • Leek, R.D.1
  • 119
    • 0036839143 scopus 로고    scopus 로고
    • Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
    • Mantovani A., et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23(11):549-555.
    • (2002) Trends Immunol. , vol.23 , Issue.11 , pp. 549-555
    • Mantovani, A.1
  • 120
    • 84907223092 scopus 로고    scopus 로고
    • Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
    • Colegio O.R., et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014, 513(7519):559-563.
    • (2014) Nature , vol.513 , Issue.7519 , pp. 559-563
    • Colegio, O.R.1
  • 121
    • 84906280651 scopus 로고    scopus 로고
    • Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin
    • Tripathi C., et al. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 2014, 5(14):5350-5368.
    • (2014) Oncotarget , vol.5 , Issue.14 , pp. 5350-5368
    • Tripathi, C.1
  • 122
    • 84904267310 scopus 로고    scopus 로고
    • Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension
    • El Kasmi K.C., et al. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J. Immunol. 2014, 193(2):597-609.
    • (2014) J. Immunol. , vol.193 , Issue.2 , pp. 597-609
    • El Kasmi, K.C.1
  • 123
    • 77955295091 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation
    • Imtiyaz H.Z., et al. Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Invest. 2010, 120(8):2699-2714.
    • (2010) J. Clin. Invest. , vol.120 , Issue.8 , pp. 2699-2714
    • Imtiyaz, H.Z.1
  • 124
    • 44349161098 scopus 로고    scopus 로고
    • Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance
    • Odegaard J.I., et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 2008, 7(6):496-507.
    • (2008) Cell Metab. , vol.7 , Issue.6 , pp. 496-507
    • Odegaard, J.I.1
  • 125
    • 44349112305 scopus 로고    scopus 로고
    • Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity
    • Kang K., et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008, 7(6):485-495.
    • (2008) Cell Metab. , vol.7 , Issue.6 , pp. 485-495
    • Kang, K.1
  • 126
    • 84906319549 scopus 로고    scopus 로고
    • Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
    • Huang S.C., et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 2014, 15(9):846-855.
    • (2014) Nat. Immunol. , vol.15 , Issue.9 , pp. 846-855
    • Huang, S.C.1
  • 127
    • 84921315334 scopus 로고    scopus 로고
    • Cellular metabolism and macrophage functional polarization
    • Zhu L., et al. Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 2015, 34(1):82-100.
    • (2015) Int Rev Immunol. , vol.34 , Issue.1 , pp. 82-100
    • Zhu, L.1
  • 128
    • 84931386872 scopus 로고    scopus 로고
    • Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism
    • Tan Z., et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 2015, 194(12):6082-6089.
    • (2015) J. Immunol. , vol.194 , Issue.12 , pp. 6082-6089
    • Tan, Z.1
  • 129
    • 84055190798 scopus 로고    scopus 로고
    • Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity
    • Galic S., et al. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Invest. 2011, 121(12):4903-4915.
    • (2011) J. Clin. Invest. , vol.121 , Issue.12 , pp. 4903-4915
    • Galic, S.1
  • 130
    • 84936817998 scopus 로고    scopus 로고
    • Palmitoleate reverses high fat-induced proinflammatory macrophage polarization via AMP-activated protein kinase (AMPK)
    • Chan K.L., et al. Palmitoleate reverses high fat-induced proinflammatory macrophage polarization via AMP-activated protein kinase (AMPK). J. Biol. Chem. 2015, 290(27):16979-16988.
    • (2015) J. Biol. Chem. , vol.290 , Issue.27 , pp. 16979-16988
    • Chan, K.L.1
  • 131
    • 58849115949 scopus 로고    scopus 로고
    • Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype
    • Sag D., et al. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 2008, 181(12):8633-8641.
    • (2008) J. Immunol. , vol.181 , Issue.12 , pp. 8633-8641
    • Sag, D.1
  • 132
    • 84920466745 scopus 로고    scopus 로고
    • Adenosine 5'-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages
    • Zhu Y.P., et al. Adenosine 5'-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J. Immunol. 2015, 194(2):584-594.
    • (2015) J. Immunol. , vol.194 , Issue.2 , pp. 584-594
    • Zhu, Y.P.1
  • 133
    • 84881356321 scopus 로고    scopus 로고
    • AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration
    • Mounier R., et al. AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 2013, 18(2):251-264.
    • (2013) Cell Metab. , vol.18 , Issue.2 , pp. 251-264
    • Mounier, R.1
  • 134
    • 78649455728 scopus 로고    scopus 로고
    • Role of Kruppel-like factors in leukocyte development, function, and disease
    • Cao Z., et al. Role of Kruppel-like factors in leukocyte development, function, and disease. Blood 2010, 116(22):4404-4414.
    • (2010) Blood , vol.116 , Issue.22 , pp. 4404-4414
    • Cao, Z.1
  • 135
    • 79960021457 scopus 로고    scopus 로고
    • Kruppel-like factor 4 regulates macrophage polarization
    • Liao X., et al. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 2011, 121(7):2736-2749.
    • (2011) J. Clin. Invest. , vol.121 , Issue.7 , pp. 2736-2749
    • Liao, X.1
  • 136
    • 79956305398 scopus 로고    scopus 로고
    • The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock
    • Mahabeleshwar G.H., et al. The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity 2011, 34(5):715-728.
    • (2011) Immunity , vol.34 , Issue.5 , pp. 715-728
    • Mahabeleshwar, G.H.1
  • 137
    • 84898627011 scopus 로고    scopus 로고
    • Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization
    • Date D., et al. Kruppel-like transcription factor 6 regulates inflammatory macrophage polarization. J. Biol. Chem. 2014, 289(15):10318-10329.
    • (2014) J. Biol. Chem. , vol.289 , Issue.15 , pp. 10318-10329
    • Date, D.1
  • 138
    • 84855846598 scopus 로고    scopus 로고
    • Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology
    • Pello O.M., et al. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 2012, 119(2):411-421.
    • (2012) Blood , vol.119 , Issue.2 , pp. 411-421
    • Pello, O.M.1
  • 139
    • 84862187485 scopus 로고    scopus 로고
    • Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization
    • Arranz A., et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl. Acad. Sci. U.S.A. 2012, 109(24):9517-9522.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , Issue.24 , pp. 9517-9522
    • Arranz, A.1
  • 140
    • 84901246405 scopus 로고    scopus 로고
    • Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation
    • Yue S., et al. Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation. J. Immunol. 2014, 192(11):5343-5353.
    • (2014) J. Immunol. , vol.192 , Issue.11 , pp. 5343-5353
    • Yue, S.1
  • 141
    • 84889249320 scopus 로고    scopus 로고
    • The TSC-mTOR pathway regulates macrophage polarization
    • Byles V., et al. The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 2013, 4:p2834.
    • (2013) Nat. Commun. , vol.4 , pp. p2834
    • Byles, V.1
  • 142
    • 70350445698 scopus 로고    scopus 로고
    • A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair
    • Ruffell D., et al. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. U.S.A. 2009, 106(41):17475-17480.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , Issue.41 , pp. 17475-17480
    • Ruffell, D.1
  • 143
    • 84914095427 scopus 로고    scopus 로고
    • Macrophage polarization: the epigenetic point of view
    • Van den Bossche J., et al. Macrophage polarization: the epigenetic point of view. Curr. Opin. Lipidol. 2014, 25(5):367-373.
    • (2014) Curr. Opin. Lipidol. , vol.25 , Issue.5 , pp. 367-373
    • Van den Bossche, J.1
  • 144
    • 84877119701 scopus 로고    scopus 로고
    • Epigenetic regulation of macrophage polarization and function
    • Ivashkiv L.B. Epigenetic regulation of macrophage polarization and function. Trends Immunol. 2013, 34(5):216-223.
    • (2013) Trends Immunol. , vol.34 , Issue.5 , pp. 216-223
    • Ivashkiv, L.B.1
  • 145
    • 84867652835 scopus 로고    scopus 로고
    • Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages
    • Chen X., et al. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc. Natl. Acad. Sci. U.S.A. 2012, 109(42):E2865-E2874.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , Issue.42 , pp. E2865-E2874
    • Chen, X.1
  • 146
    • 82955247088 scopus 로고    scopus 로고
    • Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation
    • Mullican S.E., et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 2011, 25(23):2480-2488.
    • (2011) Genes Dev. , vol.25 , Issue.23 , pp. 2480-2488
    • Mullican, S.E.1
  • 147
    • 79959804516 scopus 로고    scopus 로고
    • Histone deacetylases as regulators of inflammation and immunity
    • Shakespear M.R., et al. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011, 32(7):335-343.
    • (2011) Trends Immunol. , vol.32 , Issue.7 , pp. 335-343
    • Shakespear, M.R.1
  • 148
    • 78650806593 scopus 로고    scopus 로고
    • Suppression of inflammation by a synthetic histone mimic
    • Nicodeme E., et al. Suppression of inflammation by a synthetic histone mimic. Nature 2010, 468(7327):1119-1123.
    • (2010) Nature , vol.468 , Issue.7327 , pp. 1119-1123
    • Nicodeme, E.1
  • 149
    • 84873256270 scopus 로고    scopus 로고
    • BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses
    • Belkina A.C., Nikolajczyk B.S., Denis G.V. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J. Immunol. 2013, 190(7):3670-3678.
    • (2013) J. Immunol. , vol.190 , Issue.7 , pp. 3670-3678
    • Belkina, A.C.1    Nikolajczyk, B.S.2    Denis, G.V.3
  • 150
    • 84886897279 scopus 로고    scopus 로고
    • Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes
    • Kittan N.A., et al. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS ONE 2013, 8(10):pe78045.
    • (2013) PLoS ONE , vol.8 , Issue.10 , pp. pe78045
    • Kittan, N.A.1
  • 151
    • 70350435962 scopus 로고    scopus 로고
    • Epigenetic regulation of the alternatively activated macrophage phenotype
    • Ishii M., et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 2009, 114(15):3244-3254.
    • (2009) Blood , vol.114 , Issue.15 , pp. 3244-3254
    • Ishii, M.1
  • 152
    • 70350754328 scopus 로고    scopus 로고
    • Jmjd3 contributes to the control of gene expression in LPS-activated macrophages
    • De Santa F., et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 2009, 28(21):3341-3352.
    • (2009) EMBO J. , vol.28 , Issue.21 , pp. 3341-3352
    • De Santa, F.1
  • 153
    • 84901775237 scopus 로고    scopus 로고
    • Jmjd3-mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages
    • Yan Q., et al. Jmjd3-mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages. Cell Signal. 2014, 26(9):1783-1791.
    • (2014) Cell Signal. , vol.26 , Issue.9 , pp. 1783-1791
    • Yan, Q.1
  • 154
    • 84865120905 scopus 로고    scopus 로고
    • A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response
    • Kruidenier L., et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 2012, 488(7411):404-408.
    • (2012) Nature , vol.488 , Issue.7411 , pp. 404-408
    • Kruidenier, L.1
  • 155
    • 80055018787 scopus 로고    scopus 로고
    • Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1
    • Yasui T., et al. Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J. Bone Miner. Res. 2011, 26(11):2665-2671.
    • (2011) J. Bone Miner. Res. , vol.26 , Issue.11 , pp. 2665-2671
    • Yasui, T.1
  • 156
    • 84872975552 scopus 로고    scopus 로고
    • MicroRNAs in immune response and macrophage polarization
    • Liu G., Abraham E. MicroRNAs in immune response and macrophage polarization. Arterioscler. Thromb. Vasc. Biol. 2013, 33(2):170-177.
    • (2013) Arterioscler. Thromb. Vasc. Biol. , vol.33 , Issue.2 , pp. 170-177
    • Liu, G.1    Abraham, E.2
  • 157
    • 84862697885 scopus 로고    scopus 로고
    • Identifying functional microRNAs in macrophages with polarized phenotypes
    • Graff J.W., et al. Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem. 2012, 287(26):21816-21825.
    • (2012) J. Biol. Chem. , vol.287 , Issue.26 , pp. 21816-21825
    • Graff, J.W.1
  • 158
    • 84893402227 scopus 로고    scopus 로고
    • Next-generation sequencing of microRNAs uncovers expression signatures in polarized macrophages
    • Cobos Jimenez V., et al. Next-generation sequencing of microRNAs uncovers expression signatures in polarized macrophages. Physiol. Genomics 2014, 46(3):91-103.
    • (2014) Physiol. Genomics , vol.46 , Issue.3 , pp. 91-103
    • Cobos Jimenez, V.1
  • 159
    • 79952186298 scopus 로고    scopus 로고
    • MicroRNAs: the fine-tuners of Toll-like receptor signalling
    • O'Neill L.A., Sheedy F.J., McCoy C.E. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol. 2011, 11(3):163-175.
    • (2011) Nat. Rev. Immunol. , vol.11 , Issue.3 , pp. 163-175
    • O'Neill, L.A.1    Sheedy, F.J.2    McCoy, C.E.3
  • 160
    • 33747608638 scopus 로고    scopus 로고
    • NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses
    • Taganov K.D., et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. U.S.A. 2006, 103(33):12481-12486.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , Issue.33 , pp. 12481-12486
    • Taganov, K.D.1
  • 161
    • 65249131826 scopus 로고    scopus 로고
    • Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals
    • Bazzoni F., et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. U.S.A. 2009, 106(13):5282-5287.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , Issue.13 , pp. 5282-5287
    • Bazzoni, F.1
  • 162
    • 75649113377 scopus 로고    scopus 로고
    • Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21
    • Sheedy F.J., et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol. 2010, 11(2):141-147.
    • (2010) Nat. Immunol. , vol.11 , Issue.2 , pp. 141-147
    • Sheedy, F.J.1
  • 163
    • 68649091506 scopus 로고    scopus 로고
    • The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs
    • Androulidaki A., et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 2009, 31(2):220-231.
    • (2009) Immunity , vol.31 , Issue.2 , pp. 220-231
    • Androulidaki, A.1
  • 164
    • 66349137358 scopus 로고    scopus 로고
    • Inositol phosphatase SHIP1 is a primary target of miR-155
    • O'Connell R.M., et al. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. U.S.A. 2009, 106(17):7113-7118.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , Issue.17 , pp. 7113-7118
    • O'Connell, R.M.1
  • 165
    • 78651399501 scopus 로고    scopus 로고
    • Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease
    • Bala S., et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor {alpha} (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J. Biol. Chem. 2011, 286(2):1436-1444.
    • (2011) J. Biol. Chem. , vol.286 , Issue.2 , pp. 1436-1444
    • Bala, S.1
  • 166
    • 77954223697 scopus 로고    scopus 로고
    • IL-10 inhibits miR-155 induction by toll-like receptors
    • McCoy C.E., et al. IL-10 inhibits miR-155 induction by toll-like receptors. J. Biol. Chem. 2010, 285(27):20492-20498.
    • (2010) J. Biol. Chem. , vol.285 , Issue.27 , pp. 20492-20498
    • McCoy, C.E.1
  • 167
    • 84897456173 scopus 로고    scopus 로고
    • MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice
    • Du F., et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2014, 34(4):759-767.
    • (2014) Arterioscler. Thromb. Vasc. Biol. , vol.34 , Issue.4 , pp. 759-767
    • Du, F.1
  • 168
    • 84868629301 scopus 로고    scopus 로고
    • MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages
    • Nazari-Jahantigh M., et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J. Clin. Invest. 2012, 122(11):4190-4202.
    • (2012) J. Clin. Invest. , vol.122 , Issue.11 , pp. 4190-4202
    • Nazari-Jahantigh, M.1
  • 169
    • 78751483763 scopus 로고    scopus 로고
    • The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1)
    • Martinez-Nunez R.T., Louafi F., Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J. Biol. Chem. 2011, 286(3):1786-1794.
    • (2011) J. Biol. Chem. , vol.286 , Issue.3 , pp. 1786-1794
    • Martinez-Nunez, R.T.1    Louafi, F.2    Sanchez-Elsner, T.3
  • 170
    • 78650653944 scopus 로고    scopus 로고
    • MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}
    • Louafi F., Martinez-Nunez R.T., Sanchez-Elsner T. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J. Biol. Chem. 2010, 285(53):41328-41336.
    • (2010) J. Biol. Chem. , vol.285 , Issue.53 , pp. 41328-41336
    • Louafi, F.1    Martinez-Nunez, R.T.2    Sanchez-Elsner, T.3
  • 171
    • 84867420120 scopus 로고    scopus 로고
    • Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155
    • Cai X., et al. Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J. Mol. Cell Biol. 2012, 4(5):341-343.
    • (2012) J. Mol. Cell Biol. , vol.4 , Issue.5 , pp. 341-343
    • Cai, X.1
  • 172
    • 84892959681 scopus 로고    scopus 로고
    • IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation
    • Veremeyko T., et al. IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation. PLoS ONE 2013, 8(12):pe81774.
    • (2013) PLoS ONE , vol.8 , Issue.12 , pp. pe81774
    • Veremeyko, T.1
  • 173
    • 78651247933 scopus 로고    scopus 로고
    • MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway
    • Ponomarev E.D., et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat. Med. 2011, 17(1):64-70.
    • (2011) Nat. Med. , vol.17 , Issue.1 , pp. 64-70
    • Ponomarev, E.D.1
  • 174
    • 84900533241 scopus 로고    scopus 로고
    • C/EBPalpha regulates macrophage activation and systemic metabolism
    • Lee B., et al. C/EBPalpha regulates macrophage activation and systemic metabolism. Am. J. Physiol. Endocrinol. Metab. 2014, 306(10):E1144-E1154.
    • (2014) Am. J. Physiol. Endocrinol. Metab. , vol.306 , Issue.10 , pp. E1144-E1154
    • Lee, B.1
  • 175
    • 84929470999 scopus 로고    scopus 로고
    • CCAAT/enhancer binding protein alpha (C/EBPalpha)(+) M2 macrophages contribute to fibrosis in IgG4-related disease?
    • Yamamoto M., et al. CCAAT/enhancer binding protein alpha (C/EBPalpha)(+) M2 macrophages contribute to fibrosis in IgG4-related disease?. Mod. Rheumatol. 2015, 25(3):484-486.
    • (2015) Mod. Rheumatol. , vol.25 , Issue.3 , pp. 484-486
    • Yamamoto, M.1
  • 176
    • 84862150859 scopus 로고    scopus 로고
    • A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation
    • Zhuang G., et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 2012, 125(23):2892-2903.
    • (2012) Circulation , vol.125 , Issue.23 , pp. 2892-2903
    • Zhuang, G.1
  • 177
    • 81455141958 scopus 로고    scopus 로고
    • MicroRNA-125b potentiates macrophage activation
    • Chaudhuri A.A., et al. MicroRNA-125b potentiates macrophage activation. J. Immunol. 2011, 187(10):5062-5068.
    • (2011) J. Immunol. , vol.187 , Issue.10 , pp. 5062-5068
    • Chaudhuri, A.A.1
  • 178
    • 84890283575 scopus 로고    scopus 로고
    • MiR-125a-5p regulates differential activation of macrophages and inflammation
    • Banerjee S., et al. miR-125a-5p regulates differential activation of macrophages and inflammation. J. Biol. Chem. 2013, 288(49):35428-35436.
    • (2013) J. Biol. Chem. , vol.288 , Issue.49 , pp. 35428-35436
    • Banerjee, S.1
  • 179
    • 84879118942 scopus 로고    scopus 로고
    • MicroRNA let-7c regulates macrophage polarization
    • Banerjee S., et al. MicroRNA let-7c regulates macrophage polarization. J. Immunol. 2013, 190(12):6542-6549.
    • (2013) J. Immunol. , vol.190 , Issue.12 , pp. 6542-6549
    • Banerjee, S.1
  • 180
    • 85047693348 scopus 로고    scopus 로고
    • Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta
    • Garofalo R.S., et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J. Clin. Invest. 2003, 112(2):197-208.
    • (2003) J. Clin. Invest. , vol.112 , Issue.2 , pp. 197-208
    • Garofalo, R.S.1
  • 181
    • 77957260181 scopus 로고    scopus 로고
    • Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2
    • Kadl A., et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res. 2010, 107(6):737-746.
    • (2010) Circ. Res. , vol.107 , Issue.6 , pp. 737-746
    • Kadl, A.1
  • 182
    • 84907083339 scopus 로고    scopus 로고
    • Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori
    • Gobert A.P., et al. Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. J. Immunol. 2014, 193(6):3013-3022.
    • (2014) J. Immunol. , vol.193 , Issue.6 , pp. 3013-3022
    • Gobert, A.P.1
  • 183
    • 34250869345 scopus 로고    scopus 로고
    • Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis
    • Cavaillon J.M., Adib-Conquy M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit. Care 2006, 10(5):p233.
    • (2006) Crit. Care , vol.10 , Issue.5 , pp. p233
    • Cavaillon, J.M.1    Adib-Conquy, M.2
  • 185
    • 66749164669 scopus 로고    scopus 로고
    • The sepsis seesaw: tilting toward immunosuppression
    • Hotchkiss R.S., et al. The sepsis seesaw: tilting toward immunosuppression. Nat. Med. 2009, 15(5):496-497.
    • (2009) Nat. Med. , vol.15 , Issue.5 , pp. 496-497
    • Hotchkiss, R.S.1
  • 186
    • 84255194001 scopus 로고    scopus 로고
    • Immunosuppression in patients who die of sepsis and multiple organ failure
    • Boomer J.S., et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011, 306(23):2594-2605.
    • (2011) JAMA , vol.306 , Issue.23 , pp. 2594-2605
    • Boomer, J.S.1
  • 187
    • 70349559403 scopus 로고    scopus 로고
    • Endotoxin tolerance: new mechanisms, molecules and clinical significance
    • Biswas S.K., Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009, 30(10):475-487.
    • (2009) Trends Immunol. , vol.30 , Issue.10 , pp. 475-487
    • Biswas, S.K.1    Lopez-Collazo, E.2
  • 188
    • 84924952897 scopus 로고    scopus 로고
    • Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1alpha
    • Shalova I.N., et al. Human monocytes undergo functional re-programming during sepsis mediated by hypoxia-inducible factor-1alpha. Immunity 2015, 42(3):484-498.
    • (2015) Immunity , vol.42 , Issue.3 , pp. 484-498
    • Shalova, I.N.1
  • 189
    • 34250823515 scopus 로고    scopus 로고
    • Gene-specific control of inflammation by TLR-induced chromatin modifications
    • Foster S.L., Hargreaves D.C., Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 2007, 447(7147):972-978.
    • (2007) Nature , vol.447 , Issue.7147 , pp. 972-978
    • Foster, S.L.1    Hargreaves, D.C.2    Medzhitov, R.3
  • 190
    • 84900541832 scopus 로고    scopus 로고
    • TIPE2 negatively regulates inflammation by switching arginine metabolism from nitric oxide synthase to arginase
    • Lou Y., et al. TIPE2 negatively regulates inflammation by switching arginine metabolism from nitric oxide synthase to arginase. PLoS ONE 2014, 9(5):e96508.
    • (2014) PLoS ONE , vol.9 , Issue.5 , pp. e96508
    • Lou, Y.1
  • 191
    • 70350463559 scopus 로고    scopus 로고
    • The NF-kappaB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance
    • Chen X., et al. The NF-kappaB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance. J. Biol. Chem. 2009, 284(41):27857-27865.
    • (2009) J. Biol. Chem. , vol.284 , Issue.41 , pp. 27857-27865
    • Chen, X.1
  • 192
    • 84865547244 scopus 로고    scopus 로고
    • Nuclear factor-kappaB binding motifs specify Toll-like receptor-induced gene repression through an inducible repressosome
    • Yan Q., et al. Nuclear factor-kappaB binding motifs specify Toll-like receptor-induced gene repression through an inducible repressosome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109(35):14140-14145.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , Issue.35 , pp. 14140-14145
    • Yan, Q.1
  • 193
    • 79953230829 scopus 로고    scopus 로고
    • NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance
    • Liu T.F., et al. NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J. Biol. Chem. 2011, 286(11):9856-9864.
    • (2011) J. Biol. Chem. , vol.286 , Issue.11 , pp. 9856-9864
    • Liu, T.F.1
  • 194
    • 78650614116 scopus 로고    scopus 로고
    • IFN-gamma abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling
    • Chen J., Ivashkiv L.B. IFN-gamma abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling. Proc. Natl. Acad. Sci. U.S.A. 2010, 107(45):19438-19443.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , Issue.45 , pp. 19438-19443
    • Chen, J.1    Ivashkiv, L.B.2
  • 195
    • 84858703294 scopus 로고    scopus 로고
    • NF-kappaB-mediated degradation of the coactivator RIP140 regulates inflammatory responses and contributes to endotoxin tolerance
    • Ho P.C., et al. NF-kappaB-mediated degradation of the coactivator RIP140 regulates inflammatory responses and contributes to endotoxin tolerance. Nat. Immunol. 2012, 13(4):379-386.
    • (2012) Nat. Immunol. , vol.13 , Issue.4 , pp. 379-386
    • Ho, P.C.1
  • 196
    • 84907483941 scopus 로고    scopus 로고
    • Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity
    • Saeed S., et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014, 345(6204):p1251086.
    • (2014) Science , vol.345 , Issue.6204 , pp. p1251086
    • Saeed, S.1
  • 197
    • 84909578049 scopus 로고    scopus 로고
    • MTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity
    • Cheng S.C., et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 2014, 345(6204):p1250684.
    • (2014) Science , vol.345 , Issue.6204 , pp. p1250684
    • Cheng, S.C.1
  • 198
    • 84920940940 scopus 로고    scopus 로고
    • Pulmonary macrophage transplantation therapy
    • Suzuki T., et al. Pulmonary macrophage transplantation therapy. Nature 2014, 514(7523):450-454.
    • (2014) Nature , vol.514 , Issue.7523 , pp. 450-454
    • Suzuki, T.1
  • 199
    • 84907381619 scopus 로고    scopus 로고
    • Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis
    • 250ra113
    • Happle C., et al. Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci. Transl. Med. 2014, 6(250). 250ra113.
    • (2014) Sci. Transl. Med. , vol.6 , Issue.250
    • Happle, C.1
  • 200
    • 0025201335 scopus 로고
    • Intraperitoneal recombinant gamma-interferon in patients with recurrent ascitic ovarian carcinoma: modulation of cytotoxicity and cytokine production in tumor-associated effectors and of major histocompatibility antigen expression on tumor cells
    • Allavena P., et al. Intraperitoneal recombinant gamma-interferon in patients with recurrent ascitic ovarian carcinoma: modulation of cytotoxicity and cytokine production in tumor-associated effectors and of major histocompatibility antigen expression on tumor cells. Cancer Res. 1990, 50(22):7318-7323.
    • (1990) Cancer Res. , vol.50 , Issue.22 , pp. 7318-7323
    • Allavena, P.1
  • 201
    • 0026562566 scopus 로고
    • Anti-tumor and immunomodulatory activity of intraperitoneal IFN-gamma in ovarian carcinoma patients with minimal residual tumor after chemotherapy
    • Colombo N., et al. Anti-tumor and immunomodulatory activity of intraperitoneal IFN-gamma in ovarian carcinoma patients with minimal residual tumor after chemotherapy. Int. J. Cancer 1992, 51(1):42-46.
    • (1992) Int. J. Cancer , vol.51 , Issue.1 , pp. 42-46
    • Colombo, N.1
  • 202
    • 84888086049 scopus 로고    scopus 로고
    • A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma
    • Beatty G.L., et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2013, 19(22):6286-6295.
    • (2013) Clin. Cancer Res. , vol.19 , Issue.22 , pp. 6286-6295
    • Beatty, G.L.1
  • 203
    • 84942833116 scopus 로고    scopus 로고
    • TNF counterbalances the emergence of M2 tumor macrophages
    • Kratochvill F., et al. TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep. 2015, 12(11):1902-1914.
    • (2015) Cell Rep. , vol.12 , Issue.11 , pp. 1902-1914
    • Kratochvill, F.1
  • 204
    • 84868026167 scopus 로고    scopus 로고
    • Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages
    • Orr J.S., et al. Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages. Diabetes 2012, 61(11):2718-2727.
    • (2012) Diabetes , vol.61 , Issue.11 , pp. 2718-2727
    • Orr, J.S.1
  • 205
    • 80052086428 scopus 로고    scopus 로고
    • Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway
    • Potian J.A., et al. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway. J. Exp. Med. 2011, 208(9):1863-1874.
    • (2011) J. Exp. Med. , vol.208 , Issue.9 , pp. 1863-1874
    • Potian, J.A.1
  • 206
    • 84904722105 scopus 로고    scopus 로고
    • CD14 influences host immune responses and alternative activation of macrophages during Schistosoma mansoni infection
    • Tundup S., et al. CD14 influences host immune responses and alternative activation of macrophages during Schistosoma mansoni infection. Infect. Immun. 2014, 82(8):3240-3251.
    • (2014) Infect. Immun. , vol.82 , Issue.8 , pp. 3240-3251
    • Tundup, S.1
  • 207
    • 84888151312 scopus 로고    scopus 로고
    • Functional genomics of the inflammatory response: where are we now?
    • Simonatto M., Natoli G. Functional genomics of the inflammatory response: where are we now?. Brief. Funct. Genomics 2013, 12(6):483-488.
    • (2013) Brief. Funct. Genomics , vol.12 , Issue.6 , pp. 483-488
    • Simonatto, M.1    Natoli, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.