-
1
-
-
0025507283
-
Neuromorphic electronic systems
-
Oct.
-
C. Mead, "Neuromorphic electronic systems," Proc. IEEE, vol. 78, no. 10, pp. 1629-1636, Oct. 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.10
, pp. 1629-1636
-
-
Mead, C.1
-
2
-
-
0028924332
-
Neuromorphic analogue VLSI
-
R. Douglas, M. Mahowald, and C. Mead, "Neuromorphic analogue VLSI," Annu. Rev. Neurosci., vol. 18, pp. 255-281, 1995.
-
(1995)
Annu. Rev. Neurosci.
, vol.18
, pp. 255-281
-
-
Douglas, R.1
Mahowald, M.2
Mead, C.3
-
3
-
-
84862221428
-
Frontiers in neuromorphic engineering
-
G. Indiveri and T. Horiuchi, "Frontiers in neuromorphic engineering," Front. Neurosci., vol. 5, no. 118, 2011, DOI: 10.3389/fnins.2011.00118.
-
(2011)
Front. Neurosci.
, vol.5
, Issue.118
-
-
Indiveri, G.1
Horiuchi, T.2
-
4
-
-
84906780089
-
Neuromorphic electronic circuits for building autonomous cognitive systems
-
Sep.
-
E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri, "Neuromorphic electronic circuits for building autonomous cognitive systems," Proc. IEEE, vol. 102, no. 9, pp. 1367-1388, Sep. 2014.
-
(2014)
Proc. IEEE
, vol.102
, Issue.9
, pp. 1367-1388
-
-
Chicca, E.1
Stefanini, F.2
Bartolozzi, C.3
Indiveri, G.4
-
5
-
-
85018236616
-
-
New York, NY, USA: Wiley
-
S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Event-Based Neuromorphic Systems. New York, NY, USA: Wiley, 2014.
-
(2014)
Event-Based Neuromorphic Systems.
-
-
Liu, S.-C.1
Delbruck, T.2
Indiveri, G.3
Whatley, A.4
Douglas, R.5
-
6
-
-
0018005935
-
Can programming be liberated from the von Neumann style?: A functional style and its algebra of programs
-
J. Backus, "Can programming be liberated from the von Neumann style?: A functional style and its algebra of programs," Commun. ACM, vol. 21, no. 8, pp. 613-641, 1978.
-
(1978)
Commun. ACM
, vol.21
, Issue.8
, pp. 613-641
-
-
Backus, J.1
-
7
-
-
84888268117
-
Stochastic computations in cortical microcircuit models
-
S. Habenschuss, Z. Jonke, and W. Maass, "Stochastic computations in cortical microcircuit models," PLoS Comput. Biol., vol. 9, no. 11, 2013, Art. ID. e1003311.
-
(2013)
PLoS Comput. Biol.
, vol.9
, Issue.11
-
-
Habenschuss, S.1
Jonke, Z.2
Maass, W.3
-
8
-
-
84900490680
-
Noise as a resource for computation and learning in networks of spiking neurons
-
May
-
W. Maass, "Noise as a resource for computation and learning in networks of spiking neurons," Proc. IEEE, vol. 102, no. 5, pp. 860-880, May 2014.
-
(2014)
Proc. IEEE
, vol.102
, Issue.5
, pp. 860-880
-
-
Maass, W.1
-
10
-
-
0031142714
-
Design of an analogue VLSI model of an active cochlea
-
May
-
E. Fragnière, A. van Schaik, and E. Vittoz, "Design of an analogue VLSI model of an active cochlea," J. Analog Integr. Circuits Signal Process., vol. 13, no. 1/2, pp. 19-35, May 1997.
-
(1997)
J. Analog Integr. Circuits Signal Process.
, vol.13
, Issue.1-2
, pp. 19-35
-
-
Fragnière, E.1
Van Schaik, A.2
Vittoz, E.3
-
11
-
-
0032602778
-
Analog VLSI-based modeling of the primate oculomotor system
-
Jan.
-
T. Horiuchi and C. Koch, "Analog VLSI-based modeling of the primate oculomotor system," Neural Comput., vol. 11, no. 1, pp. 243-265, Jan. 1999.
-
(1999)
Neural Comput.
, vol.11
, Issue.1
, pp. 243-265
-
-
Horiuchi, T.1
Koch, C.2
-
12
-
-
0038114082
-
-
Cambridge, MA, USA: MIT Press
-
S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas, Analog VLSI: Circuits and Principles. Cambridge, MA, USA: MIT Press, 2002.
-
(2002)
Analog VLSI: Circuits and Principles.
-
-
Liu, S.-C.1
Kramer, J.2
Indiveri, G.3
Delbruck, T.4
Douglas, R.5
-
13
-
-
18444373575
-
Neuromorphic microchips
-
K. Boahen, "Neuromorphic microchips," Sci. Amer., vol. 292, no. 5, pp. 56-63, 2005.
-
(2005)
Sci. Amer.
, vol.292
, Issue.5
, pp. 56-63
-
-
Boahen, K.1
-
14
-
-
33646493338
-
Brain power - Borrowing from biology makes for low power computing - Bionic ear
-
May
-
R. Sarpeshkar, "Brain power - Borrowing from biology makes for low power computing - Bionic ear," IEEE Spectrum, vol. 43, no. 5, pp. 24-29, May 2006.
-
(2006)
IEEE Spectrum
, vol.43
, Issue.5
, pp. 24-29
-
-
Sarpeshkar, R.1
-
15
-
-
77951026760
-
Nanoscale memristor device as synapse in neuromorphic systems
-
S. H. Jo et al., "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett., vol. 10, no. 4, pp. 1297-1301, 2010.
-
(2010)
Nano Lett.
, vol.10
, Issue.4
, pp. 1297-1301
-
-
Jo, S.H.1
-
16
-
-
84855772398
-
A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications
-
K. Kim et al., "A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications," Nano Lett., vol. 12, no. 1, pp. 389-395, 2011.
-
(2011)
Nano Lett.
, vol.12
, Issue.1
, pp. 389-395
-
-
Kim, K.1
-
17
-
-
84875158827
-
A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation
-
S. Yu et al., "A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation," Adv. Mater., vol. 25, no. 12, pp. 1774-1779, 2013.
-
(2013)
Adv. Mater.
, vol.25
, Issue.12
, pp. 1774-1779
-
-
Yu, S.1
-
18
-
-
84879978368
-
Bio-inspired stochastic computing using binary CBRAM synapses
-
Jul.
-
M. Suri et al., "Bio-inspired stochastic computing using binary CBRAM synapses," IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2402-2409, Jul. 2013.
-
(2013)
IEEE Trans. Electron Devices
, vol.60
, Issue.7
, pp. 2402-2409
-
-
Suri, M.1
-
19
-
-
84924589823
-
Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity
-
S. Kim et al., "Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity," Nano Lett., vol. 15, no. 3, pp. 2203-2211, 2015.
-
(2015)
Nano Lett.
, vol.15
, Issue.3
, pp. 2203-2211
-
-
Kim, S.1
-
20
-
-
84928040161
-
Plasticity in memristive devices
-
S. Saighi et al., "Plasticity in memristive devices," Front. Neurosci., vol. 9, no. 51, 2015, DOI: 10.3389/fnins.2015.00051.
-
(2015)
Front. Neurosci.
, vol.9
, Issue.51
-
-
Saighi, S.1
-
21
-
-
84905915006
-
A million spiking-neuron integrated circuit with a scalable communication network and interface
-
Aug.
-
P. A. Merolla et al., "A million spiking-neuron integrated circuit with a scalable communication network and interface," Science, vol. 345, no. 6197, pp. 668-673, Aug. 2014.
-
(2014)
Science
, vol.345
, Issue.6197
, pp. 668-673
-
-
Merolla, P.A.1
-
22
-
-
84900504664
-
The SpiNNaker project
-
May
-
S. Furber, F. Galluppi, S. Temple, and L. Plana, "The SpiNNaker project," Proc. IEEE, vol. 102, no. 5, pp. 652-665, May 2014.
-
(2014)
Proc. IEEE
, vol.102
, Issue.5
, pp. 652-665
-
-
Furber, S.1
Galluppi, F.2
Temple, S.3
Plana, L.4
-
23
-
-
84878827374
-
Six networks on a universal neuromorphic computing substrate
-
T. Pfeil et al., "Six networks on a universal neuromorphic computing substrate," Front. Neurosci., vol. 7, 2013, DOI: 10.3389/fnins.2013.00011.
-
(2013)
Front. Neurosci.
, vol.7
-
-
Pfeil, T.1
-
24
-
-
84871773015
-
Specifications of nanoscale devices and circuits for neuromorphic computational systems
-
Jan.
-
B. Rajendran et al., "Specifications of nanoscale devices and circuits for neuromorphic computational systems," IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 246-253, Jan. 2013.
-
(2013)
IEEE Trans. Electron Devices
, vol.60
, Issue.1
, pp. 246-253
-
-
Rajendran, B.1
-
25
-
-
84900521434
-
Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations
-
May
-
B. V. Benjamin et al., "Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations," Proc. IEEE, vol. 102, no. 5, pp. 699-716, May 2014.
-
(2014)
Proc. IEEE
, vol.102
, Issue.5
, pp. 699-716
-
-
Benjamin, B.V.1
-
26
-
-
35649001607
-
A quantitative description of membrane current and its application to conduction and excitation in nerve
-
A. Hodgkin and A. Huxley, "A quantitative description of membrane current and its application to conduction and excitation in nerve," J. Physiol., vol. 117, pp. 500-544, 1952.
-
(1952)
J. Physiol.
, vol.117
, pp. 500-544
-
-
Hodgkin, A.1
Huxley, A.2
-
27
-
-
84888811418
-
Real-time classification and sensor fusion with a spiking deep belief network
-
P. O'Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, "Real-time classification and sensor fusion with a spiking deep belief network," Front. Neurosci., vol. 7, no. 178, 2013, DOI: 10.3389/fnins.2013.00178.
-
(2013)
Front. Neurosci.
, vol.7
, Issue.178
-
-
O'Connor, P.1
Neil, D.2
Liu, S.-C.3
Delbruck, T.4
Pfeiffer, M.5
-
28
-
-
77954760819
-
Neuromorphic sensory systems
-
S.-C. Liu and T. Delbruck, "Neuromorphic sensory systems," Current Opinion Neurobiol., vol. 20, no. 3, pp. 288-295, 2010.
-
(2010)
Current Opinion Neurobiol.
, vol.20
, Issue.3
, pp. 288-295
-
-
Liu, S.-C.1
Delbruck, T.2
-
29
-
-
84959483840
-
A neuromorphic event-based neural recording system for smart brain-machine-interfaces
-
to be published
-
F. Corradi and G. Indiveri, "A neuromorphic event-based neural recording system for smart brain-machine-interfaces," IEEE Trans. Biomed. Circuits Syst., 2015, to be published.
-
(2015)
IEEE Trans. Biomed. Circuits Syst.
-
-
Corradi, F.1
Indiveri, G.2
-
31
-
-
77955993002
-
A wafer-scale neuromorphic hardware system for large-scale neural modeling
-
J. Schemmel et al., "A wafer-scale neuromorphic hardware system for large-scale neural modeling," in Proc. IEEE Int. Symp. Circuits Syst., 2010, pp. 1947-1950.
-
Proc. IEEE Int. Symp. Circuits Syst., 2010
, pp. 1947-1950
-
-
Schemmel, J.1
-
32
-
-
44649118675
-
Emerging research architectures
-
May
-
R. Cavin, J. Hutchby, V. Zhirnov, J. Brewer, and G. Bourianoff, "Emerging research architectures," Computer, vol. 41, no. 5, pp. 33-37, May 2008.
-
(2008)
Computer
, vol.41
, Issue.5
, pp. 33-37
-
-
Cavin, R.1
Hutchby, J.2
Zhirnov, V.3
Brewer, J.4
Bourianoff, G.5
-
34
-
-
85060036181
-
Validity of the single processor approach to achieving large scale computing capabilities
-
G. Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," in Proc. AFIPS Spring Joint Comput. Conf., 1967, pp. 483-485.
-
Proc. AFIPS Spring Joint Comput. Conf., 1967
, pp. 483-485
-
-
Amdahl, G.1
-
35
-
-
48249118853
-
Amdahl's law in the multicore era
-
Jul.
-
M. Hill and M. Marty, "Amdahl's law in the multicore era," IEEE Computer, vol. 41, no. 7, pp. 33-38, Jul. 2008.
-
(2008)
IEEE Computer
, vol.41
, Issue.7
, pp. 33-38
-
-
Hill, M.1
Marty, M.2
-
36
-
-
84863484965
-
Beyond Amdahl's law: An objective function that links multiprocessor performance gains to delay and energy
-
Aug.
-
A. Cassidy and A. Andreou, "Beyond Amdahl's law: An objective function that links multiprocessor performance gains to delay and energy," IEEE Trans. Comput., vol. 61, no. 8, pp. 1110-1126, Aug. 2012.
-
(2012)
IEEE Trans. Comput.
, vol.61
, Issue.8
, pp. 1110-1126
-
-
Cassidy, A.1
Andreou, A.2
-
37
-
-
84870686500
-
Simulating spiking neural networks on GPU
-
R. Brette and D. Goodman, "Simulating spiking neural networks on GPU," Network, Comput. Neural Syst., vol. 23, no. 4, pp. 167-182, 2012.
-
(2012)
Network, Comput. Neural Syst.
, vol.23
, Issue.4
, pp. 167-182
-
-
Brette, R.1
Goodman, D.2
-
38
-
-
78649669320
-
Deep, big, simple neural nets for handwritten digit recognition
-
D. Cirean, U. Meier, L. Gambardella, and J. Schmidhuber, "Deep, big, simple neural nets for handwritten digit recognition," Neural Comput., vol. 22, no. 12, pp. 3207-3220, 2010.
-
(2010)
Neural Comput.
, vol.22
, Issue.12
, pp. 3207-3220
-
-
Cirean, D.1
Meier, U.2
Gambardella, L.3
Schmidhuber, J.4
-
39
-
-
68149182671
-
A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors
-
J. Nageswaran, N. Dutt, J. Krichmar, A. Nicolau, and A. Veidenbaum, "A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors," Neural Netw., vol. 22, no. 5/6, pp. 791-800, 2009.
-
(2009)
Neural Netw.
, vol.22
, Issue.5-6
, pp. 791-800
-
-
Nageswaran, J.1
Dutt, N.2
Krichmar, J.3
Nicolau, A.4
Veidenbaum, A.5
-
40
-
-
84945946618
-
A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters
-
F. Conti and L. Benini, "A ultra-low-energy convolution engine for fast brain-inspired vision in multicore clusters," in Proc. Design Autom. Test Eur. Conf. Exhibit., 2015, pp. 683-688.
-
Proc. Design Autom. Test Eur. Conf. Exhibit., 2015
, pp. 683-688
-
-
Conti, F.1
Benini, L.2
-
41
-
-
84856545137
-
An event-driven multi-kernel convolution processor module for event-driven vision sensors
-
Feb.
-
L. Camunas-Mesa et al., "An event-driven multi-kernel convolution processor module for event-driven vision sensors," IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 504-517, Feb. 2012.
-
(2012)
IEEE J. Solid-State Circuits
, vol.47
, Issue.2
, pp. 504-517
-
-
Camunas-Mesa, L.1
-
43
-
-
84913549485
-
Minitaur, an event-driven FPGAbased spiking network accelerator
-
Dec.
-
D. Neil and S.-C. Liu, "Minitaur, an event-driven FPGAbased spiking network accelerator," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 12, pp. 2621-2628, Dec. 2014.
-
(2014)
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
, vol.22
, Issue.12
, pp. 2621-2628
-
-
Neil, D.1
Liu, S.-C.2
-
44
-
-
84908529622
-
A 240 g-ops/s mobile coprocessor for deep neural networks
-
V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, "A 240 g-ops/s mobile coprocessor for deep neural networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 696-701.
-
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014
, pp. 696-701
-
-
Gokhale, V.1
Jin, J.2
Dundar, A.3
Martini, B.4
Culurciello, E.5
-
45
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Jan.
-
J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw., vol. 61, pp. 85-117, Jan. 2015.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
46
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Aug.
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun, "Learning hierarchical features for scene labeling," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1915-1929, Aug. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
47
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
-
D. Hubel and T. Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex," J. Physiol., vol. 160, pp. 106-154, 1962.
-
(1962)
J. Physiol.
, vol.160
, pp. 106-154
-
-
Hubel, D.1
Wiesel, T.2
-
48
-
-
84870443413
-
Artificial vision by multi-layered neural networks: Neocognitron and its advances
-
K. Fukushima, "Artificial vision by multi-layered neural networks: Neocognitron and its advances," Neural Netw., vol. 37, pp. 103-119, 2013.
-
(2013)
Neural Netw.
, vol.37
, pp. 103-119
-
-
Fukushima, K.1
-
50
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
51
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
M. Riesenhuber and T. Poggio, "Hierarchical models of object recognition in cortex," Nature Neurosci., vol. 2, no. 11, pp. 1019-1025, 1999.
-
(1999)
Nature Neurosci.
, vol.2
, Issue.11
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
52
-
-
85027947125
-
A 240 x 180 130 dB 3μs latency global shutter spatiotemporal vision sensor
-
Oct.
-
C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, "A 240 x 180 130 dB 3μs latency global shutter spatiotemporal vision sensor," IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2333-2341, Oct. 2014.
-
(2014)
IEEE J. Solid-State Circuits
, vol.49
, Issue.10
, pp. 2333-2341
-
-
Brandli, C.1
Berner, R.2
Yang, M.3
Liu, S.-C.4
Delbruck, T.5
-
53
-
-
38849206826
-
A 128 x 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor
-
Feb.
-
P. Lichtsteiner, C. Posch, and T. Delbruck, "A 128 x 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor," IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 566-576, Feb. 2008.
-
(2008)
IEEE J. Solid-State Circuits
, vol.43
, Issue.2
, pp. 566-576
-
-
Lichtsteiner, P.1
Posch, C.2
Delbruck, T.3
-
54
-
-
84874666021
-
A 128 x 128 1.5% contrast sensitivity 0.9% FPN 3 μs latency 4 mW asynchronous frame-free dynamic vision sensor using transimpedance preamplifiers
-
Mar.
-
T. Serrano-Gotarredona and B. Linares-Barranco, "A 128 x 128 1.5% contrast sensitivity 0.9% FPN 3 μs latency 4 mW asynchronous frame-free dynamic vision sensor using transimpedance preamplifiers," IEEE J. Solid-State Circuits, vol. 48, no. 3, pp. 827-838, Mar. 2013.
-
(2013)
IEEE J. Solid-State Circuits
, vol.48
, Issue.3
, pp. 827-838
-
-
Serrano-Gotarredona, T.1
Linares-Barranco, B.2
-
55
-
-
78650862863
-
A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS
-
Jan.
-
C. Posch, D. Matolin, and R. Wohlgenannt, "A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS," IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 259-275, Jan. 2011.
-
(2011)
IEEE J. Solid-State Circuits
, vol.46
, Issue.1
, pp. 259-275
-
-
Posch, C.1
Matolin, D.2
Wohlgenannt, R.3
-
57
-
-
84946685263
-
Memory access optimized scheduling scheme for DCNNs on a mobile processor
-
A. Dundar, J. Jin, V. Gokhale, B. Martini, and E. Culurciello, "Memory access optimized scheduling scheme for DCNNs on a mobile processor," in Proc. IEEE High Performance Extreme Comput. Conf., 2014, DOI: 10.1109/HPEC.2014.7040963.
-
Proc. IEEE High Performance Extreme Comput. Conf., 2014
-
-
Dundar, A.1
Jin, J.2
Gokhale, V.3
Martini, B.4
Culurciello, E.5
-
58
-
-
0033316706
-
AER image filtering architecture for vision processing systems
-
Sep.
-
T. Serrano-Gotarredona, A. Andreou, and B. Linares-Barranco, "AER image filtering architecture for vision processing systems," IEEE Trans. Circuits Syst. I, Fund. Theory Appl., vol. 46, no. 9, pp. 1064-1071, Sep. 1999.
-
(1999)
IEEE Trans. Circuits Syst. I, Fund. Theory Appl.
, vol.46
, Issue.9
, pp. 1064-1071
-
-
Serrano-Gotarredona, T.1
Andreou, A.2
Linares-Barranco, B.3
-
59
-
-
79953273390
-
A 32x 32 pixel convolution processor chip for address event vision sensors with 155 ns event latency and 20 Meps throughput
-
Apr.
-
L. Camunas-Mesa, A. Acosta-Jimenez, T. Serrano-Gotarredona, and B. Linares-Barranco, "A 32x 32 pixel convolution processor chip for address event vision sensors with 155 ns event latency and 20 Meps throughput," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 4, pp. 777-790, Apr. 2011.
-
(2011)
IEEE Trans. Circuits Syst. I, Reg. Papers
, vol.58
, Issue.4
, pp. 777-790
-
-
Camunas-Mesa, L.1
Acosta-Jimenez, A.2
Serrano-Gotarredona, T.3
Linares-Barranco, B.4
-
60
-
-
84875051127
-
Multicasting mesh AER: A scalable assembly approach for reconfigurable neuromorphic structured AER systems. Application to ConvNets
-
Feb.
-
C. Zamarreño-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona, and B. Linares-Barranco, "Multicasting mesh AER: A scalable assembly approach for reconfigurable neuromorphic structured AER systems. Application to ConvNets," IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 1, pp. 82-102, Feb. 2013.
-
(2013)
IEEE Trans. Biomed. Circuits Syst.
, vol.7
, Issue.1
, pp. 82-102
-
-
Zamarreño-Ramos, C.1
Linares-Barranco, A.2
Serrano-Gotarredona, T.3
Linares-Barranco, B.4
-
61
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.3
-
63
-
-
84859452113
-
A massively parallel, energy efficient programmable accelerator for learning and classification
-
Mar.
-
A. Majumdar, S. Cadambi, M. Becchi, S. Chakradhar, and H. Graf, "A massively parallel, energy efficient programmable accelerator for learning and classification," ACM Trans. Architect. Code Optim., vol. 9, no. 1, pp. 6:1-6:30, Mar. 2012.
-
(2012)
ACM Trans. Architect. Code Optim.
, vol.9
, Issue.1
, pp. 6:1-6:30
-
-
Majumdar, A.1
Cadambi, S.2
Becchi, M.3
Chakradhar, S.4
Graf, H.5
-
64
-
-
84880823556
-
Design of silicon brains in the nano-CMOS era: Spiking neurons, learning synapses and neural architecture optimization
-
A. Cassidy, J. Georgiou, and A. Andreou, "Design of silicon brains in the nano-CMOS era: Spiking neurons, learning synapses and neural architecture optimization," Neural Netw., vol. 45, pp. 4-26, 2013.
-
(2013)
Neural Netw.
, vol.45
, pp. 4-26
-
-
Cassidy, A.1
Georgiou, J.2
Andreou, A.3
-
65
-
-
84878868253
-
An FPGA implementation of a polychronous spiking neural network with delay adaptation
-
R. Wang et al., "An FPGA implementation of a polychronous spiking neural network with delay adaptation," Front. Neurosci., vol. 7, 2013, DOI: 10.3389/fnins.2013.00014.
-
(2013)
Front. Neurosci.
, vol.7
-
-
Wang, R.1
-
66
-
-
35649003747
-
Challenges for large-scale implementations of spiking neural networks on FPGAs
-
L. Maguire et al., "Challenges for large-scale implementations of spiking neural networks on FPGAs," Neurocomputing, vol. 71, no. 1, pp. 13-29, 2007.
-
(2007)
Neurocomputing
, vol.71
, Issue.1
, pp. 13-29
-
-
Maguire, L.1
-
69
-
-
0003005916
-
A Pulse-coded communications infrastructure for neuromorphic systems
-
W. Maass and C. Bishop, Eds. Cambridge, MA, USA: MIT Press
-
S. Deiss, R. Douglas, and A. Whatley, "A pulse-coded communications infrastructure for neuromorphic systems," in Pulsed Neural Networks, W. Maass and C. Bishop, Eds. Cambridge, MA, USA: MIT Press, 1998, pp. 157-178.
-
(1998)
Pulsed Neural Networks
, pp. 157-178
-
-
Deiss, S.1
Douglas, R.2
Whatley, A.3
-
70
-
-
0033740171
-
Point-to-point connectivity between neuromorphic chips using address-events
-
May
-
K. Boahen, "Point-to-point connectivity between neuromorphic chips using address-events," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 5, pp. 416-434, May 2000.
-
(2000)
IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.
, vol.47
, Issue.5
, pp. 416-434
-
-
Boahen, K.1
-
71
-
-
84867681939
-
Silicon neurons that compute
-
A. Villa, W. Duch, P. Érdi, F. Masulli, and G. Palm, Eds. Berlin, Germany: Springer-Verlag
-
S. Choudhary et al., "Silicon neurons that compute," in Artificial Neural Networks and Machine Learning - ICANN 2012, vol. 7552, A. Villa, W. Duch, P. Érdi, F. Masulli, and G. Palm, Eds. Berlin, Germany: Springer-Verlag, 2012, pp. 121-128.
-
(2012)
Artificial Neural Networks and Machine Learning - ICANN 2012
, vol.7552
, pp. 121-128
-
-
Choudhary, S.1
-
72
-
-
0001073983
-
A contrast sensitive silicon retina with reciprocal synapses
-
J. Moody, S. Hanson, and R. Lippman, Eds. Cambridge, MA, USA: MIT Press
-
K. Boahen and A. Andreou, "A contrast sensitive silicon retina with reciprocal synapses," in Advances in Neural Information Processing Systems (NIPS), vol. 4, J. Moody, S. Hanson, and R. Lippman, Eds. Cambridge, MA, USA: MIT Press, 1992, pp. 764-772.
-
(1992)
Advances in Neural Information Processing Systems (NIPS)
, vol.4
, pp. 764-772
-
-
Boahen, K.1
Andreou, A.2
-
73
-
-
4744358521
-
A quantitative map of the circuit of cat primary visual cortex
-
T. Binzegger, R. Douglas, and K. Martin, "A quantitative map of the circuit of cat primary visual cortex," J. Neurosci., vol. 24, no. 39, pp. 8441-8453, 2004.
-
(2004)
J. Neurosci.
, vol.24
, Issue.39
, pp. 8441-8453
-
-
Binzegger, T.1
Douglas, R.2
Martin, K.3
-
74
-
-
85162429189
-
A brain-machine interface operating with a real-time spiking neural network control algorithm
-
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds. Cambridge, MA, USA: MIT Press
-
J. Dethier et al., "A brain-machine interface operating with a real-time spiking neural network control algorithm," in Advances in Neural Information Processing Systems (NIPS), vol. 24, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds. Cambridge, MA, USA: MIT Press, 2011, pp. 2213-2221.
-
(2011)
Advances in Neural Information Processing Systems (NIPS)
, vol.24
, pp. 2213-2221
-
-
Dethier, J.1
-
77
-
-
34548858191
-
Modeling synaptic plasticity within networks of highly accelerated I&F neurons
-
J. Schemmel, D. Brüderle, K. Meier, and B. Ostendorf, "Modeling synaptic plasticity within networks of highly accelerated I&F neurons," in Proc. IEEE Int. Symp. Circuits Syst., 2007, pp. 3367-3370.
-
Proc. IEEE Int. Symp. Circuits Syst., 2007
, pp. 3367-3370
-
-
Schemmel, J.1
Brüderle, D.2
Meier, K.3
Ostendorf, B.4
-
78
-
-
67651030409
-
Synaptic mechanisms for plasticity in neocortex
-
D. Feldman, "Synaptic mechanisms for plasticity in neocortex," Annu. Rev. Neurosci., vol. 32, pp. 33-55, 2009.
-
(2009)
Annu. Rev. Neurosci.
, vol.32
, pp. 33-55
-
-
Feldman, D.1
-
79
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proc. Nat. Acad. Sci., vol. 79, no. 8, pp. 2554-2558, 1982.
-
(1982)
Proc. Nat. Acad. Sci.
, vol.79
, Issue.8
, pp. 2554-2558
-
-
Hopfield, J.1
-
81
-
-
0037566546
-
Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks
-
May
-
A. Renart, P. Song, and X.-J. Wang, "Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks," Neuron, vol. 38, pp. 473-485, May 2003.
-
(2003)
Neuron
, vol.38
, pp. 473-485
-
-
Renart, A.1
Song, P.2
Wang, X.-J.3
-
82
-
-
77956430587
-
Attractor networks
-
E. Rolls, "Attractor networks," Wiley Interdisciplinary Rev., Cogn. Sci., vol. 1, no. 1, pp. 119-134, 2010.
-
(2010)
Wiley Interdisciplinary Rev., Cogn. Sci.
, vol.1
, Issue.1
, pp. 119-134
-
-
Rolls, E.1
-
83
-
-
0347915731
-
Structural plasticity and memory
-
R. Lamprecht and J. LeDoux, "Structural plasticity and memory," Nature Rev. Neurosci., vol. 5, no. 1, pp. 45-54, 2004.
-
(2004)
Nature Rev. Neurosci.
, vol.5
, Issue.1
, pp. 45-54
-
-
Lamprecht, R.1
LeDoux, J.2
-
84
-
-
0034636105
-
Navigation-related structural change in the hippocampi of taxi drivers
-
Apr.
-
E. Maguire et al., "Navigation-related structural change in the hippocampi of taxi drivers," Proc. Nat. Acad. Sci. USA, vol. 97, no. 8, pp. 4389-4403, Apr. 2000.
-
(2000)
Proc. Nat. Acad. Sci. USA
, vol.97
, Issue.8
, pp. 4389-4403
-
-
Maguire, E.1
-
85
-
-
0742323527
-
Homeostatic plasticity in the developing nervous system
-
Feb.
-
G. Turrigiano and S. Nelson, "Homeostatic plasticity in the developing nervous system," Nature Rev. Neurosci., vol. 5, pp. 97-107, Feb. 2004.
-
(2004)
Nature Rev. Neurosci.
, vol.5
, pp. 97-107
-
-
Turrigiano, G.1
Nelson, S.2
-
86
-
-
0036201201
-
Short-term synaptic plasticity
-
R. Zucker and W. Regehr, "Short-term synaptic plasticity," Annu. Rev. Physiol., vol. 64, pp. 355-405, 2002.
-
(2002)
Annu. Rev. Physiol.
, vol.64
, pp. 355-405
-
-
Zucker, R.1
Regehr, W.2
-
87
-
-
0034143330
-
Decoding temporal information: A model based on short-term synaptic plasticity
-
D. Buonomano, "Decoding temporal information: A model based on short-term synaptic plasticity," J. Neurosci., vol. 20, pp. 1129-1141, 2000.
-
(2000)
J. Neurosci.
, vol.20
, pp. 1129-1141
-
-
Buonomano, D.1
-
88
-
-
0031024005
-
Synaptic depression and cortical gain control
-
L. Abbott, K. Sen, J. Varela, and S. Nelson, "Synaptic depression and cortical gain control," Science, vol. 275, no. 5297, pp. 220-223, 1997.
-
(1997)
Science
, vol.275
, Issue.5297
, pp. 220-223
-
-
Abbott, L.1
Sen, K.2
Varela, J.3
Nelson, S.4
-
90
-
-
84864756338
-
Spike-timing-dependent plasticity: A comprehensive overview
-
H. Markram, W. Gerstner, and P. Sjöström, "Spike-timing-dependent plasticity: A comprehensive overview," Front. Synaptic Neurosci., vol. 4, no. 2, 2012, DOI: 10.3389/fnsyn.2012.00002.
-
(2012)
Front. Synaptic Neurosci.
, vol.4
, Issue.2
-
-
Markram, H.1
Gerstner, W.2
Sjöström, P.3
-
91
-
-
84900482869
-
Spike-based synaptic plasticity in silicon: Design, implementation, application, challenges
-
May 0018-9219
-
M. R. Azghadi, N. Iannella, S. Al-Sarawi, G. Indiveri, and D. Abbott, "Spike-based synaptic plasticity in silicon: Design, implementation, application, challenges," Proc. IEEE, vol. 102, no. 5, pp. 717-737, May 2014, 0018-9219.
-
(2014)
Proc. IEEE
, vol.102
, Issue.5
, pp. 717-737
-
-
Azghadi, M.R.1
Iannella, N.2
Al-Sarawi, S.3
Indiveri, G.4
Abbott, D.5
-
92
-
-
84878952572
-
STDP and STDP variations with memristors for spiking neuromorphic learning systems
-
T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-Barranco, "STDP and STDP variations with memristors for spiking neuromorphic learning systems," Front. Neurosci., vol. 7, no. 2, 2013, DOI: 10.3389/fnins.2013.00002.
-
(2013)
Front. Neurosci.
, vol.7
, Issue.2
-
-
Serrano-Gotarredona, T.1
Masquelier, T.2
Prodromakis, T.3
Indiveri, G.4
Linares-Barranco, B.5
-
93
-
-
0031012615
-
Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs
-
H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, "Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs," Science, vol. 275, pp. 213-215, 1997.
-
(1997)
Science
, vol.275
, pp. 213-215
-
-
Markram, H.1
Lübke, J.2
Frotscher, M.3
Sakmann, B.4
-
94
-
-
0033667165
-
Synaptic plasticity: Taming the beast
-
Nov.
-
L. Abbott and S. Nelson, "Synaptic plasticity: Taming the beast," Nature Neurosci., vol. 3, pp. 1178-1183, Nov. 2000.
-
(2000)
Nature Neurosci.
, vol.3
, pp. 1178-1183
-
-
Abbott, L.1
Nelson, S.2
-
95
-
-
82755167950
-
A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations
-
J. Gjorgjieva, C. Clopath, J. Audet, and J.-P. Pfister, "A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations," Proc. Nat. Acad. Sci., vol. 108, no. 48, pp. 19 383-19 388, 2011.
-
(2011)
Proc. Nat. Acad. Sci.
, vol.108
, Issue.48
, pp. 19383-19388
-
-
Gjorgjieva, J.1
Clopath, C.2
Audet, J.3
Pfister, J.-P.4
-
96
-
-
0040669525
-
Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates
-
S. Fusi, "Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates," Biol. Cybern., vol. 87, pp. 459-470, 2002.
-
(2002)
Biol. Cybern.
, vol.87
, pp. 459-470
-
-
Fusi, S.1
-
97
-
-
84857926538
-
Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, dendritic location
-
M. Graupner and N. Brunel, "Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, dendritic location," Proc. Nat. Acad. Sci., vol. 109, pp. 3991-3996, 2012.
-
(2012)
Proc. Nat. Acad. Sci.
, vol.109
, pp. 3991-3996
-
-
Graupner, M.1
Brunel, N.2
-
98
-
-
0035924588
-
Rate, timing, cooperativity jointly determine cortical synaptic plasticity
-
Dec.
-
P. Sjöström, G. Turrigiano, and S. Nelson, "Rate, timing, cooperativity jointly determine cortical synaptic plasticity," Neuron, vol. 32, no. 6, pp. 1149-1164, Dec. 2001.
-
(2001)
Neuron
, vol.32
, Issue.6
, pp. 1149-1164
-
-
Sjöström, P.1
Turrigiano, G.2
Nelson, S.3
-
99
-
-
84876928403
-
Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
-
B. Nessler, M. Pfeiffer, and W. Maass, "Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity," PLoS Comput. Biol., vol. 9, no. 4, 2013, Art. ID. e1003037.
-
(2013)
PLoS Comput. Biol.
, vol.9
, Issue.4
-
-
Nessler, B.1
Pfeiffer, M.2
Maass, W.3
-
100
-
-
13844266723
-
Cascade models of synaptically stored memories
-
S. Fusi, P. Drew, and L. Abbott, "Cascade models of synaptically stored memories," Neuron, vol. 45, pp. 599-611, 2005.
-
(2005)
Neuron
, vol.45
, pp. 599-611
-
-
Fusi, S.1
Drew, P.2
Abbott, L.3
-
101
-
-
77957775251
-
Artificial cognitive systems: From VLSI networks of spiking neurons to neuromorphic cognition
-
G. Indiveri, E. Chicca, and R. Douglas, "Artificial cognitive systems: From VLSI networks of spiking neurons to neuromorphic cognition," Cogn. Comput., vol. 1, pp. 119-127, 2009.
-
(2009)
Cogn. Comput.
, vol.1
, pp. 119-127
-
-
Indiveri, G.1
Chicca, E.2
Douglas, R.3
-
102
-
-
0242427959
-
-
Cambridge, MA, USA: MIT Press
-
A. Yuille and G. Geiger, Winner-Take-All Networks. Cambridge, MA, USA: MIT Press, 2003, pp. 1228-1231.
-
(2003)
Winner-Take-All Networks.
, pp. 1228-1231
-
-
Yuille, A.1
Geiger, G.2
-
103
-
-
0029093324
-
Recurrent excitation in neocortical circuits
-
R. Douglas, C. Koch, M. Mahowald, K. Martin, and H. Suarez, "Recurrent excitation in neocortical circuits," Science, vol. 269, pp. 981-985, 1995.
-
(1995)
Science
, vol.269
, pp. 981-985
-
-
Douglas, R.1
Koch, C.2
Mahowald, M.3
Martin, K.4
Suarez, H.5
-
104
-
-
34250836009
-
Recurrent neuronal circuits in the neocortex
-
R. Douglas and K. Martin, "Recurrent neuronal circuits in the neocortex," Current Biol., vol. 17, no. 13, pp. R496-R500, 2007.
-
(2007)
Current Biol.
, vol.17
, Issue.13
, pp. R496-R500
-
-
Douglas, R.1
Martin, K.2
-
105
-
-
0034321873
-
On the computational power of winner-take-all
-
W. Maass, "On the computational power of winner-take-all," Neural Comput., vol. 12, no. 11, pp. 2519-2535, 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.11
, pp. 2519-2535
-
-
Maass, W.1
-
106
-
-
3943088427
-
Neural circuits of the neocortex
-
R. Douglas and K. Martin, "Neural circuits of the neocortex," Annu. Rev. Neurosci., vol. 27, pp. 419-451, 2004.
-
(2004)
Annu. Rev. Neurosci.
, vol.27
, pp. 419-451
-
-
Douglas, R.1
Martin, K.2
-
107
-
-
84898039030
-
Dynamic neural fields as a step toward cognitive neuromorphic architectures
-
Y. Sandamirskaya, "Dynamic neural fields as a step toward cognitive neuromorphic architectures," Front. Neurosci., vol. 7, 2013, DOI: 10.3389/fnins.2013.00276.
-
(2013)
Front. Neurosci.
, vol.7
-
-
Sandamirskaya, Y.1
-
108
-
-
72249106445
-
Dynamical systems approaches to cognition
-
R. Sun, Ed. Cambridge, U.K.: Cambridge Univ. Press
-
G. Schöner, "Dynamical systems approaches to cognition," in Cambridge Handbook of Computational Cognitive Modeling, R. Sun, Ed. Cambridge, U.K.: Cambridge Univ. Press, 2007, pp. 101-126.
-
(2007)
Cambridge Handbook of Computational Cognitive Modeling
, pp. 101-126
-
-
Schöner, G.1
-
109
-
-
0038453383
-
A competitive network of spiking VLSI neurons
-
F. Rattay, Ed. Vienna, Austria: ARGESIM/ASIM-Verlag
-
G. Indiveri, T. Horiuchi, E. Niebur, and R. Douglas, "A competitive network of spiking VLSI neurons," in World Congress on Neuroinformatics, F. Rattay, Ed. Vienna, Austria: ARGESIM/ASIM-Verlag, 2001, pp. 443-455.
-
(2001)
World Congress on Neuroinformatics
, pp. 443-455
-
-
Indiveri, G.1
Horiuchi, T.2
Niebur, E.3
Douglas, R.4
-
110
-
-
34248669218
-
-
Ph.D. dissertation, Dept. Phys., ETH Zürich, Zürich, Switzerland, Apr.
-
E. Chicca, "A Neuromorphic VLSI System for modeling spike-based cooperative competitive neural networks," Ph.D. dissertation, Dept. Phys., ETH Zürich, Zürich, Switzerland, Apr. 2006.
-
(2006)
A Neuromorphic VLSI System for Modeling Spike-Based Cooperative Competitive Neural Networks
-
-
Chicca, E.1
-
111
-
-
70349237556
-
Computation with spikes in a winner-take-all network
-
M. Oster, R. Douglas, and S.-C. Liu, "Computation with spikes in a winner-take-all network," Neural Comput., vol. 21, pp. 2437-2465, 2009.
-
(2009)
Neural Comput.
, vol.21
, pp. 2437-2465
-
-
Oster, M.1
Douglas, R.2
Liu, S.-C.3
-
112
-
-
0242611588
-
A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long term memory
-
Sep.
-
E. Chicca et al., "A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long term memory," IEEE Trans. Neural Netw., vol. 14, no. 5, pp. 1297-1307, Sep. 2003.
-
(2003)
IEEE Trans. Neural Netw.
, vol.14
, Issue.5
, pp. 1297-1307
-
-
Chicca, E.1
-
113
-
-
84862187288
-
Robust working memory in an asynchronously spiking neural network realized in neuromorphic VLSI
-
M. Giulioni et al., "Robust working memory in an asynchronously spiking neural network realized in neuromorphic VLSI," Front. Neurosci., vol. 5, no. 149, 2012, DOI: 10.3389/fnins.2011.00149.
-
(2012)
Front. Neurosci.
, vol.5
, Issue.149
-
-
Giulioni, M.1
-
114
-
-
0035219552
-
Silicon synaptic depression
-
C. Rasche and R. Hahnloser, "Silicon synaptic depression," Biol. Cybern., vol. 84, no. 1, pp. 57-62, 2001.
-
(2001)
Biol. Cybern.
, vol.84
, Issue.1
, pp. 57-62
-
-
Rasche, C.1
Hahnloser, R.2
-
115
-
-
0037315364
-
Modeling short-term synaptic depression in silicon
-
Feb.
-
M. Boegerhausen, P. Suter, and S.-C. Liu, "Modeling short-term synaptic depression in silicon," Neural Comput., vol. 15, no. 2, pp. 331-348, Feb. 2003.
-
(2003)
Neural Comput.
, vol.15
, Issue.2
, pp. 331-348
-
-
Boegerhausen, M.1
Suter, P.2
Liu, S.-C.3
-
116
-
-
79955749812
-
Compensating inhomogeneities of neuromorphic VLSI devices via short-term synaptic plasticity
-
J. Bill et al., "Compensating inhomogeneities of neuromorphic VLSI devices via short-term synaptic plasticity," Front. Comput. Neurosci., vol. 4, 2010, DOI: 10.3389/fncom.2010.00129.
-
(2010)
Front. Comput. Neurosci.
, vol.4
-
-
Bill, J.1
-
117
-
-
80355139616
-
Synapse dynamics in CMOS derived from a model of neurotransmitter release
-
M. Noack, C. Mayr, J. Partzsch, and R. Schuffny, "Synapse dynamics in CMOS derived from a model of neurotransmitter release," in Proc. IEEE Eur. Conf. Circuit Theory Design, 2011, pp. 198-201.
-
Proc. IEEE Eur. Conf. Circuit Theory Design, 2011
, pp. 198-201
-
-
Noack, M.1
Mayr, C.2
Partzsch, J.3
Schuffny, R.4
-
118
-
-
79960642436
-
Short-term plasticity and long-term potentiation mimicked in single inorganic synapses
-
T. Ohno et al., "Short-term plasticity and long-term potentiation mimicked in single inorganic synapses," Nature Mater., vol. 10, no. 8, pp. 591-595, 2011.
-
(2011)
Nature Mater.
, vol.10
, Issue.8
, pp. 591-595
-
-
Ohno, T.1
-
119
-
-
84875112887
-
Silicon-based dynamic synapse with depressing response
-
Oct.
-
T. Dowrick, S. Hall, and L. Mcdaid, "Silicon-based dynamic synapse with depressing response," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1513-1525, Oct. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.10
, pp. 1513-1525
-
-
Dowrick, T.1
Hall, S.2
Mcdaid, L.3
-
120
-
-
84898988362
-
Neuromorphic bistable VLSI synapses with spike-timing-dependent plasticity
-
Cambridge, MA, USA: MIT Press, Dec.
-
G. Indiveri, "Neuromorphic bistable VLSI synapses with spike-timing-dependent plasticity," in Advances in Neural Information Processing Systems (NIPS), vol. 15. Cambridge, MA, USA: MIT Press, Dec. 2003, pp. 1091-1098.
-
(2003)
Advances in Neural Information Processing Systems (NIPS)
, vol.15
, pp. 1091-1098
-
-
Indiveri, G.1
-
121
-
-
4644246168
-
Synchrony detection and amplification by silicon neurons with STDP synapses
-
Sep.
-
A. Bofill-i-Petit and A. Murray, "Synchrony detection and amplification by silicon neurons with STDP synapses," IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1296-1304, Sep. 2004.
-
(2004)
IEEE Trans. Neural Netw.
, vol.15
, Issue.5
, pp. 1296-1304
-
-
Bofill-i-Petit, A.1
Murray, A.2
-
123
-
-
33244465845
-
A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity
-
Jan.
-
G. Indiveri, E. Chicca, and R. Douglas, "A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity," IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 211-221, Jan. 2006.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.1
, pp. 211-221
-
-
Indiveri, G.1
Chicca, E.2
Douglas, R.3
-
124
-
-
33846099276
-
Learning in silicon: Timing is everything
-
Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press
-
J. Arthur and K. Boahen, "Learning in silicon: Timing is everything," in Advances in Neural Information Processing Systems (NIPS), vol. 20, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge, MA, USA: MIT Press, 2008, pp. 1401-1408.
-
(2008)
Advances in Neural Information Processing Systems (NIPS)
, vol.20
, pp. 1401-1408
-
-
Arthur, J.1
Boahen, K.2
-
125
-
-
60149108117
-
Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI
-
Feb.
-
S. Mitra, S. Fusi, and G. Indiveri, "Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI," IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 1, pp. 32-42, Feb. 2009.
-
(2009)
IEEE Trans. Biomed. Circuits Syst.
, vol.3
, Issue.1
, pp. 32-42
-
-
Mitra, S.1
Fusi, S.2
Indiveri, G.3
-
126
-
-
77953735451
-
Classification of correlated patterns with a configurable analog VLSI neural network of spiking neurons and self-regulating plastic synapses
-
M. Giulioni, M. Pannunzi, D. Badoni, V. Dante, and P. Del Giudice, "Classification of correlated patterns with a configurable analog VLSI neural network of spiking neurons and self-regulating plastic synapses," Neural Comput., vol. 21, no. 11, pp. 3106-3129, 2009.
-
(2009)
Neural Comput.
, vol.21
, Issue.11
, pp. 3106-3129
-
-
Giulioni, M.1
Pannunzi, M.2
Badoni, D.3
Dante, V.4
Del Giudice, P.5
-
127
-
-
84864561413
-
Spike-timing-dependent plasticity with weight dependence evoked from physical constraints
-
Aug.
-
S. Bamford, A. Murray, and D. Willshaw, "Spike-timing-dependent plasticity with weight dependence evoked from physical constraints," IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 4, pp. 385-398, Aug. 2012.
-
(2012)
IEEE Trans. Biomed. Circuits Syst.
, vol.6
, Issue.4
, pp. 385-398
-
-
Bamford, S.1
Murray, A.2
Willshaw, D.3
-
128
-
-
84874135325
-
Neuron array with plastic synapses and programmable dendrites
-
S. Ramakrishnan, R. Wunderlich, and P. Hasler, "Neuron array with plastic synapses and programmable dendrites," in Proc. IEEE Biomed. Circuits Syst. Conf., Nov. 2012, pp. 400-403.
-
Proc. IEEE Biomed. Circuits Syst. Conf., Nov. 2012
, pp. 400-403
-
-
Ramakrishnan, S.1
Wunderlich, R.2
Hasler, P.3
-
129
-
-
58149464971
-
Global scaling of synaptic efficacy: Homeostasis in silicon synapses
-
Jan.
-
C. Bartolozzi and G. Indiveri, "Global scaling of synaptic efficacy: Homeostasis in silicon synapses," Neurocomputing, vol. 72, no. 4-6, pp. 726-731, Jan. 2009.
-
(2009)
Neurocomputing
, vol.72
, Issue.4-6
, pp. 726-731
-
-
Bartolozzi, C.1
Indiveri, G.2
-
130
-
-
84907411562
-
Ultra low leakage synaptic scaling circuits for implementing homeostatic plasticity in neuromorphic architectures
-
G. Rovere, Q. Ning, C. Bartolozzi, and G. Indiveri, "Ultra low leakage synaptic scaling circuits for implementing homeostatic plasticity in neuromorphic architectures," in Proc. IEEE Int. Symp. Circuits Syst., 2014, pp. 2073-2076.
-
Proc. IEEE Int. Symp. Circuits Syst., 2014
, pp. 2073-2076
-
-
Rovere, G.1
Ning, Q.2
Bartolozzi, C.3
Indiveri, G.4
-
131
-
-
84907384663
-
Improved margin multiclass classification using dendritic neurons with morphological learning
-
S. Hussain, S.-C. Liu, and A. Basu, "Improved margin multiclass classification using dendritic neurons with morphological learning," in Proc. IEEE Int. Symp. Circuits Syst., Jun. 2014, pp. 2640-2643.
-
Proc. IEEE Int. Symp. Circuits Syst., Jun. 2014
, pp. 2640-2643
-
-
Hussain, S.1
Liu, S.-C.2
Basu, A.3
-
132
-
-
79957876155
-
A PCI based high-fanout AER mapper with 2 GiB RAM look-up table, 0.8s latency and 66 MHz output event-rate
-
D. Fasnacht and G. Indiveri, "A PCI based high-fanout AER mapper with 2 GiB RAM look-up table, 0.8s latency and 66 MHz output event-rate," in Proc. Conf. Inf. Sci. Syst., Mar. 2011, DOI: 10.1109/CISS.2011.5766102.
-
Proc. Conf. Inf. Sci. Syst., Mar. 2011
-
-
Fasnacht, D.1
Indiveri, G.2
-
133
-
-
34248635722
-
A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity
-
May
-
E. Chicca et al., "A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 981-993, May 2007.
-
(2007)
IEEE Trans. Circuits Syst. I, Reg. Papers
, vol.54
, Issue.5
, pp. 981-993
-
-
Chicca, E.1
-
134
-
-
84928671707
-
A re-configurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses
-
N. Qiao et al., "A re-configurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses," Front. Neurosci., vol. 9, no. 141, 2015, DOI: 10.3389/fnins.2015.00141.
-
(2015)
Front. Neurosci.
, vol.9
, Issue.141
-
-
Qiao, N.1
-
135
-
-
36248934673
-
Learning real world stimuli in a neural network with spike-driven synaptic dynamics
-
J. Brader, W. Senn, and S. Fusi, "Learning real world stimuli in a neural network with spike-driven synaptic dynamics," Neural Comput., vol. 19, pp. 2881-2912, 2007.
-
(2007)
Neural Comput.
, vol.19
, pp. 2881-2912
-
-
Brader, J.1
Senn, W.2
Fusi, S.3
-
136
-
-
70350173824
-
A current-mode conductance-based silicon neuron for address-event neuromorphic systems
-
P. Livi and G. Indiveri, "A current-mode conductance-based silicon neuron for address-event neuromorphic systems," in Proc. IEEE Int. Symp. Circuits Syst., May 2009, pp. 2898-2901.
-
Proc. IEEE Int. Symp. Circuits Syst., May 2009
, pp. 2898-2901
-
-
Livi, P.1
Indiveri, G.2
-
137
-
-
84890866325
-
Automatic fitting of spiking neuron models to electrophysiological recordings
-
C. Rossant, D. Goodman, J. Platkiewicz, and R. Brette, "Automatic fitting of spiking neuron models to electrophysiological recordings," Front. Neuroinf., 2010, DOI: 10.3389/neuro.11.002.2010.
-
(2010)
Front. Neuroinf.
-
-
Rossant, C.1
Goodman, D.2
Platkiewicz, J.3
Brette, R.4
-
138
-
-
27144498986
-
Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
-
R. Brette and W. Gerstner, "Adaptive exponential integrate-and-fire model as an effective description of neuronal activity," J. Neurophysiol., vol. 94, pp. 3637-3642, 2005.
-
(2005)
J. Neurophysiol.
, vol.94
, pp. 3637-3642
-
-
Brette, R.1
Gerstner, W.2
-
139
-
-
54549125798
-
The self-tuning neuron: Synaptic scaling of excitatory synapses
-
G. Turrigiano, "The self-tuning neuron: Synaptic scaling of excitatory synapses," Cell, vol. 135, no. 3, pp. 422-435, 2008.
-
(2008)
Cell
, vol.135
, Issue.3
, pp. 422-435
-
-
Turrigiano, G.1
-
140
-
-
34548821852
-
Synaptic dynamics in analog VLSI
-
Oct.
-
C. Bartolozzi and G. Indiveri, "Synaptic dynamics in analog VLSI," Neural Comput., vol. 19, no. 10, pp. 2581-2603, Oct. 2007.
-
(2007)
Neural Comput.
, vol.19
, Issue.10
, pp. 2581-2603
-
-
Bartolozzi, C.1
Indiveri, G.2
-
141
-
-
77955997054
-
32-bit configurable bias current generator with sub-offcurrent capability
-
T. Delbruck, R. Berner, P. Lichtsteiner, and C. Dualibe, "32-bit configurable bias current generator with sub-offcurrent capability," in Proc. IEEE Int. Symp. Circuits Syst., 2010, pp. 1647-1650.
-
Proc. IEEE Int. Symp. Circuits Syst., 2010
, pp. 1647-1650
-
-
Delbruck, T.1
Berner, R.2
Lichtsteiner, P.3
Dualibe, C.4
-
142
-
-
84883772282
-
Synthesizing cognition in neuromorphic electronic systems
-
E. Neftci et al., "Synthesizing cognition in neuromorphic electronic systems," Proc. Nat. Acad. Sci., vol. 110, no. 37, pp. E3468-E3476, 2013.
-
(2013)
Proc. Nat. Acad. Sci.
, vol.110
, Issue.37
, pp. E3468-E3476
-
-
Neftci, E.1
-
143
-
-
84883543408
-
Integration of nanoscale memristor synapses in neuromorphic computing architectures
-
G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis, "Integration of nanoscale memristor synapses in neuromorphic computing architectures," Nanotechnology, vol. 24, no. 38, 2013, Art. ID. 384010.
-
(2013)
Nanotechnology
, vol.24
, Issue.38
-
-
Indiveri, G.1
Linares-Barranco, B.2
Legenstein, R.3
Deligeorgis, G.4
Prodromakis, T.5
-
144
-
-
79960834019
-
An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation
-
Aug.
-
S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H.-S. Wong, "An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation," IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2729-2737, Aug. 2011.
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.8
, pp. 2729-2737
-
-
Yu, S.1
Wu, Y.2
Jeyasingh, R.3
Kuzum, D.4
Wong, H.-S.5
-
145
-
-
77951622926
-
Complementary resistive switches for passive nanocrossbar memories
-
E. Linn, R. Rosezin, C. Kügeler, and R. Waser, "Complementary resistive switches for passive nanocrossbar memories," Nature Mater., vol. 9, no. 5, pp. 403-406, 2010.
-
(2010)
Nature Mater.
, vol.9
, Issue.5
, pp. 403-406
-
-
Linn, E.1
Rosezin, R.2
Kügeler, C.3
Waser, R.4
-
146
-
-
84873322812
-
A scaling roadmap and performance evaluation of in-plane and perpendicular MTJ based STT-MRAMs for high-density cache memory
-
Feb.
-
K. C. Chun et al., "A scaling roadmap and performance evaluation of in-plane and perpendicular MTJ based STT-MRAMs for high-density cache memory," IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 598-610, Feb. 2013.
-
(2013)
IEEE J. Solid-State Circuits
, vol.48
, Issue.2
, pp. 598-610
-
-
Chun, K.C.1
-
147
-
-
84907400794
-
Spin-transfer torque magnetic memory as a stochastic memristive synapse
-
A. Vincent et al., "Spin-transfer torque magnetic memory as a stochastic memristive synapse," in Proc. IEEE Int. Symp. Circuits Syst., 2014, pp. 1074-1077.
-
Proc. IEEE Int. Symp. Circuits Syst., 2014
, pp. 1074-1077
-
-
Vincent, A.1
-
148
-
-
84890462788
-
Spin-torque building blocks
-
N. Locatelli, V. Cros, and J. Grollier, "Spin-torque building blocks," Nature Mater., vol. 13, no. 1, pp. 11-20, 2014.
-
(2014)
Nature Mater.
, vol.13
, Issue.1
, pp. 11-20
-
-
Locatelli, N.1
Cros, V.2
Grollier, J.3
-
149
-
-
84866735724
-
A ferroelectric memristor
-
A. Chanthbouala et al., "A ferroelectric memristor," Nature Mater., vol. 11, no. 10, pp. 860-864, 2012.
-
(2012)
Nature Mater.
, vol.11
, Issue.10
, pp. 860-864
-
-
Chanthbouala, A.1
-
150
-
-
84866367657
-
Physical aspects of low power synapses based on phase change memory devices
-
M. Suri et al., "Physical aspects of low power synapses based on phase change memory devices," J. Appl. Phys., vol. 112, no. 5, 2012, Art. ID. 054904.
-
(2012)
J. Appl. Phys.
, vol.112
, Issue.5
-
-
Suri, M.1
-
151
-
-
84861089198
-
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
-
D. Kuzum, R.-G.-D. Jeyasingh, B. Lee, and H.-S. P. Wong, "Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing," Nano Lett., vol. 12, no. 5, pp. 2179-2186, 2012.
-
(2012)
Nano Lett.
, vol.12
, Issue.5
, pp. 2179-2186
-
-
Kuzum, D.1
Jeyasingh, R.-G.-D.2
Lee, B.3
Wong, H.-S.P.4
-
152
-
-
84918501139
-
The gradual nature of threshold switching
-
M. Wimmer and M. Salinga, "The gradual nature of threshold switching," New J. Phys., vol. 16, no. 11, 2014, Art. ID. 113044.
-
(2014)
New J. Phys.
, vol.16
, Issue.11
-
-
Wimmer, M.1
Salinga, M.2
-
153
-
-
35248866865
-
Simulation of networks of spiking neurons: A review of tools and strategies
-
Dec.
-
R. Brette et al., "Simulation of networks of spiking neurons: A review of tools and strategies," J. Comput. Neurosci., vol. 23, no. 3, pp. 349-398, Dec. 2007.
-
(2007)
J. Comput. Neurosci.
, vol.23
, Issue.3
, pp. 349-398
-
-
Brette, R.1
-
154
-
-
84993985120
-
An efficient simulation environment for modeling large-scale cortical processing
-
M. Richert, J. Nageswaran, N. Dutt, and J. Krichmar, "An efficient simulation environment for modeling large-scale cortical processing," Front. Neuroinf., vol. 5, 2011, DOI: 10.3389/fninf.2011.00019.
-
(2011)
Front. Neuroinf.
, vol.5
-
-
Richert, M.1
Nageswaran, J.2
Dutt, N.3
Krichmar, J.4
-
155
-
-
31444442519
-
The blue brain project
-
H. Markram, "The blue brain project," Nature Rev. Neurosci., vol. 7, pp. 153-160, 2006.
-
(2006)
Nature Rev. Neurosci.
, vol.7
, pp. 153-160
-
-
Markram, H.1
-
156
-
-
84907215849
-
Neuroscience: Where is the brain in the Human Brain Project?
-
Y. Frégnac and G. Laurent, "Neuroscience: Where is the brain in the Human Brain Project?" Nature, vol. 513, 2014, DOI: 10. 1038/513027a.
-
(2014)
Nature
, vol.513
-
-
Frégnac, Y.1
Laurent, G.2
-
157
-
-
84929095672
-
Training and operation of an integrated neuromorphic network based on metal-oxide memristors
-
M. Prezioso et al., "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, vol. 521, no. 7550, pp. 61-64, 2015.
-
(2015)
Nature
, vol.521
, Issue.7550
, pp. 61-64
-
-
Prezioso, M.1
-
158
-
-
0004288620
-
-
New York, NY, USA: Scientific American Library
-
J. M. Allman, Evolving Brains. New York, NY, USA: Scientific American Library, 2000.
-
(2000)
Evolving Brains.
-
-
Allman, J.M.1
-
160
-
-
67650295931
-
State-dependent computation using coupled recurrent networks
-
U. Rutishauser and R. Douglas, "State-dependent computation using coupled recurrent networks," Neural Comput., vol. 21, pp. 478-509, 2009.
-
(2009)
Neural Comput.
, vol.21
, pp. 478-509
-
-
Rutishauser, U.1
Douglas, R.2
-
161
-
-
0026509547
-
Information processing in the primate visual system - An integrated systems perspective
-
D. Van Essen, C. Anderson, and D. Felleman, "Information processing in the primate visual system - An integrated systems perspective," Science, vol. 255, pp. 419-423, 1992.
-
(1992)
Science
, vol.255
, pp. 419-423
-
-
Van Essen, D.1
Anderson, C.2
Felleman, D.3
-
162
-
-
84871348611
-
Behavioral architecture of the cortical sheet
-
R. Douglas and K. Martin, "Behavioral architecture of the cortical sheet," Current Biol., vol. 22, no. 24, pp. R1033-R1038, 2012.
-
(2012)
Current Biol.
, vol.22
, Issue.24
, pp. R1033-R1038
-
-
Douglas, R.1
Martin, K.2
-
163
-
-
79959666098
-
Embedding of cortical representations by the superficial patch system
-
D. Muir et al., "Embedding of cortical representations by the superficial patch system," Cerebral Cortex, vol. 21, no. 10, pp. 2244-2260, 2011.
-
(2011)
Cerebral Cortex
, vol.21
, Issue.10
, pp. 2244-2260
-
-
Muir, D.1
-
164
-
-
84875870814
-
The importance of being hierarchical
-
N. Markov and H. Kennedy, "The importance of being hierarchical," Current Opinion Neurobiol., vol. 23, no. 2, pp. 187-194, 2013.
-
(2013)
Current Opinion Neurobiol.
, vol.23
, Issue.2
, pp. 187-194
-
-
Markov, N.1
Kennedy, H.2
-
165
-
-
84937241174
-
Networks and hierarchical routing fabrics with heterogeneous memory structures for scalable event-driven computing systems
-
Eur. Patent Appl. Apr.
-
S. Moradi, G. Indiveri, N. Qiao, and F. Stefanini, "Networks and hierarchical routing fabrics with heterogeneous memory structures for scalable event-driven computing systems," Eur. Patent Appl. EP 15/165272, Apr. 2015.
-
(2015)
-
-
Moradi, S.1
Indiveri, G.2
Qiao, N.3
Stefanini, F.4
|