메뉴 건너뛰기




Volumn , Issue 7 OCT, 2013, Pages

Real-time classification and sensor fusion with a spiking deep belief network

Author keywords

Deep belief networks; Deep learning; Generative model; Sensory fusion; Silicon cochlea; Silicon retina; Spiking neural network

Indexed keywords

SILICON;

EID: 84888811418     PISSN: 16624548     EISSN: 1662453X     Source Type: Journal    
DOI: 10.3389/fnins.2013.00178     Document Type: Article
Times cited : (420)

References (59)
  • 1
    • 51449113682 scopus 로고    scopus 로고
    • Live search for mobile: web services by voice on the cellphone
    • in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE), (Las Vegas, NV)
    • Acero, A., Bernstein, N., Chambers, R., Ju, Y.-C., Li, X., Odell, J., et al. (2008). "Live search for mobile: web services by voice on the cellphone," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (IEEE), (Las Vegas, NV), 5256-5259.
    • (2008) , pp. 5256-5259
    • Acero, A.1    Bernstein, N.2    Chambers, R.3    Ju, Y.-C.4    Li, X.5    Odell, J.6
  • 2
    • 51449110493 scopus 로고    scopus 로고
    • Greedy layer-wise training of deep networks
    • in Advances in Neural Information Processing Systems 19. Vancouver: MIT Press
    • Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006). "Greedy layer-wise training of deep networks," in Advances in Neural Information Processing Systems 19. Vancouver: MIT Press.
    • (2006)
    • Bengio, Y.1    Lamblin, P.2    Popovici, D.3    Larochelle, H.4
  • 3
    • 0034750717 scopus 로고    scopus 로고
    • Integrated model of visual processing
    • doi: 10.1016/S0165-0173(01)00085-6
    • Bullier, J. (2001). Integrated model of visual processing. Brain Res. Rev. 36, 96-107. doi: 10.1016/S0165-0173(01)00085-6
    • (2001) Brain Res. Rev. , vol.36 , pp. 96-107
    • Bullier, J.1
  • 4
    • 81355133300 scopus 로고    scopus 로고
    • Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons
    • doi: 10.1371/journal.pcbi.1002211
    • Büsing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput. Biol. 7: e1002211. doi: 10.1371/journal.pcbi.1002211
    • (2011) PLoS Comput. Biol. , vol.7
    • Büsing, L.1    Bill, J.2    Nessler, B.3    Maass, W.4
  • 5
    • 77956004252 scopus 로고    scopus 로고
    • On scalable spiking ConvNet hardware for cortex-like visual sensory processing systems
    • in Processing of IEEE International Symposium on Circuits and Systems (ISCAS), (Paris)
    • Camuñas Mesa, L., Pérez-Carrasco, J., Zamarreño Ramos, C., Serrano-Gotarredona, T., and Linares-Barranco, B. (2010). "On scalable spiking ConvNet hardware for cortex-like visual sensory processing systems," in Processing of IEEE International Symposium on Circuits and Systems (ISCAS), (Paris), 249-252.
    • (2010) , pp. 249-252
    • Camuñas Mesa, L.1    Pérez-Carrasco, J.2    Zamarreño Ramos, C.3    Serrano-Gotarredona, T.4    Linares-Barranco, B.5
  • 6
    • 78649669320 scopus 로고    scopus 로고
    • Deep, big, simple neural nets for handwritten digit recognition
    • doi: 10.1162/NECO_a_00052
    • Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22, 3207-3220. doi: 10.1162/NECO_a_00052
    • (2010) Neural Comput. , vol.22 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 7
    • 69449100592 scopus 로고    scopus 로고
    • The proportion of synapses formed by the axons of the lateral geniculate nucleus in layer 4 of area 17 of the cat
    • doi: 10.1002/cne.22133
    • da Costa, N. M., and Martin, K. A. C. (2009). The proportion of synapses formed by the axons of the lateral geniculate nucleus in layer 4 of area 17 of the cat. J. Comp. Neurol. 516, 264-276. doi: 10.1002/cne.22133
    • (2009) J. Comp. Neurol. , vol.516 , pp. 264-276
    • Da Costa, N.M.1    Martin, K.A.C.2
  • 8
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • doi: 10.1109/TASL.2011.2134090
    • Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012). Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20, 30-42. doi: 10.1109/TASL.2011.2134090
    • (2012) IEEE Trans. Audio Speech Lang. Process. , vol.20 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 9
    • 77956001965 scopus 로고    scopus 로고
    • jAER Open Source Project
    • Available online at
    • Delbruck, T. (2013). jAER Open Source Project. Available online at: http://sourceforge.net/apps/trac/jaer/wiki.
    • (2013)
    • Delbruck, T.1
  • 10
    • 0021182724 scopus 로고
    • Stimulus-selective properties of inferior temporal neurons in the macaque
    • doi: 10.1007/s12021-011-9106-1
    • Desimone, R., Albright, T. D., Gross, C. G., and Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051-2062. doi: 10.1007/s12021-011-9106-1
    • (1984) J. Neurosci. , vol.4 , pp. 2051-2062
    • Desimone, R.1    Albright, T.D.2    Gross, C.G.3    Bruce, C.4
  • 11
    • 79958176378 scopus 로고    scopus 로고
    • What's black and white about the grey matter?
    • doi: 10.1007/s12021-011-9106-1
    • Douglas, R. J., and Martin, K. A. C. (2011). What's black and white about the grey matter? Neuroinformatics 9, 167-179. doi: 10.1007/s12021-011-9106-1
    • (2011) Neuroinformatics , vol.9 , pp. 167-179
    • Douglas, R.J.1    Martin, K.A.C.2
  • 13
    • 0036663076 scopus 로고    scopus 로고
    • Anatomical evidence of multimodal integration in primate striate cortex
    • Falchier, A., Clavagnier, S., Barone, P., and Kennedy, H. (2002). Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 22, 5749-5759.
    • (2002) J. Neurosci. , vol.22 , pp. 5749-5759
    • Falchier, A.1    Clavagnier, S.2    Barone, P.3    Kennedy, H.4
  • 14
    • 84862236095 scopus 로고    scopus 로고
    • Comparison between frame-constrained fix-pixel-value and frame-free spiking-dynamic-pixel ConvNets for visual processing
    • doi: 10.3389/fnins.2012.00032
    • Farabet, C., Paz, R., Pérez-Carrasco, J., Zamarreño, C., Linares-Barranco, A., LeCun, Y., et al. (2012). Comparison between frame-constrained fix-pixel-value and frame-free spiking-dynamic-pixel ConvNets for visual processing. Front. Neurosci. 6: 32. doi: 10.3389/fnins.2012.00032
    • (2012) Front. Neurosci. , vol.6 , pp. 32
    • Farabet, C.1    Paz, R.2    Pérez-Carrasco, J.3    Zamarreño, C.4    Linares-Barranco, A.5    LeCun, Y.6
  • 15
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • doi: 10.1093/cercor/1.1.1
    • Felleman, D. J., and Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1-47. doi: 10.1093/cercor/1.1.1
    • (1991) Cereb. Cortex , vol.1 , pp. 1-47
    • Felleman, D.J.1    Van Essen, D.C.2
  • 16
    • 75549090229 scopus 로고    scopus 로고
    • The free-energy principle: a unified brain theory?
    • doi: 10.1038/nrn2787
    • Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127-138. doi: 10.1038/nrn2787
    • (2010) Nat. Rev. Neurosci. , vol.11 , pp. 127-138
    • Friston, K.1
  • 17
    • 0004017463 scopus 로고    scopus 로고
    • Spiking Neuron Models. Single Neurons, Populations, Plasticity
    • Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511815706
    • Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511815706
    • (2002)
    • Gerstner, W.1    Kistler, W.2
  • 18
    • 84899683325 scopus 로고    scopus 로고
    • Biasing restricted Boltzmann machines to manipulate latent selectivity and sparsity
    • in NIPS workshop on deep learning and unsupervised feature learning, (Whistler, BC)
    • Goh, H., Thome, N., and Cord, M. (2010). "Biasing restricted Boltzmann machines to manipulate latent selectivity and sparsity," in NIPS workshop on deep learning and unsupervised feature learning, (Whistler, BC).
    • (2010)
    • Goh, H.1    Thome, N.2    Cord, M.3
  • 19
    • 0015261210 scopus 로고
    • Visual properties of neurons in the inferotemporal cortex of the macaque
    • Gross, C. G., Roche-Miranda, G. E., and Bender, D. B. (1972). Visual properties of neurons in the inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96-111.
    • (1972) J. Neurophysiol. , vol.35 , pp. 96-111
    • Gross, C.G.1    Roche-Miranda, G.E.2    Bender, D.B.3
  • 20
    • 67649219352 scopus 로고    scopus 로고
    • Learning long-range vision for autonomous off-road driving
    • doi: 10.1002/rob.20276
    • Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Scoffier, M., Kavukcuoglu, K., et al. (2009). Learning long-range vision for autonomous off-road driving. J. Field Robot. 26, 120-144. doi: 10.1002/rob.20276
    • (2009) J. Field Robot. , vol.26 , pp. 120-144
    • Hadsell, R.1    Sermanet, P.2    Ben, J.3    Erkan, A.4    Scoffier, M.5    Kavukcuoglu, K.6
  • 21
    • 20844454983 scopus 로고    scopus 로고
    • On intelligence
    • New York, NY: Times Books
    • Hawkins, J., and Blakeslee, S. (2004). On intelligence. New York, NY: Times Books.
    • (2004)
    • Hawkins, J.1    Blakeslee, S.2
  • 22
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
    • doi: 10.1109/MSP.2012.2205597
    • Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82-97. doi: 10.1109/MSP.2012.2205597
    • (2012) IEEE Signal Process. Mag. , vol.29 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3    Dahl, G.E.4    Mohamed, A.5    Jaitly, N.6
  • 23
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • doi: 10.1162/neco.2006.18.7.1527
    • Hinton, G., Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527-1554. doi: 10.1162/neco.2006.18.7.1527
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.W.3
  • 24
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • doi: 10.1126/science.1127647
    • Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science 313, 504-507. doi: 10.1126/science.1127647
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 25
    • 0000999440 scopus 로고
    • Learning and Relearning in Boltzmann Machines
    • Hinton, G. E., and Sejnowski, T. J. (1986). Learning and Relearning in Boltzmann Machines. Cambridge, MA: MIT Press 1, 282-317.
    • (1986) Cambridge, MA: MIT Press , vol.1 , pp. 282-317
    • Hinton, G.E.1    Sejnowski, T.J.2
  • 26
    • 0041914606 scopus 로고    scopus 로고
    • Gradient flow in recurrent nets: the difficulty of learning long-term dependencies
    • in A Field Guide to Dynamical Recurrent Neural Networks. eds S. C. Kremer and J. F. Kolen (New York, NY: IEEE Press)
    • Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., and Elvezia, C. (2001). "Gradient flow in recurrent nets: the difficulty of learning long-term dependencies," in A Field Guide to Dynamical Recurrent Neural Networks. eds S. C. Kremer and J. F. Kolen (New York, NY: IEEE Press), 237-244.
    • (2001) , pp. 237-244
    • Hochreiter, S.1    Bengio, Y.2    Frasconi, P.3    Schmidhuber, J.4    Elvezia, C.5
  • 27
    • 0037028040 scopus 로고    scopus 로고
    • View from the top: hierarchies and reverse hierarchies review
    • doi: 10.1016/S0896-6273(02)01091-7
    • Hochstein, S., and Ahissar, M. (2002). View from the top: hierarchies and reverse hierarchies review. Neuron 36, 791-804. doi: 10.1016/S0896-6273(02)01091-7
    • (2002) Neuron , vol.36 , pp. 791-804
    • Hochstein, S.1    Ahissar, M.2
  • 29
    • 84865073476 scopus 로고    scopus 로고
    • Recurrent competitive networks can learn locally excitatory topologies
    • in International Joint Conference on Neural Networks (IJCNN), (Brisbane)
    • Jug, F., Cook, M., and Steger, A. (2012). "Recurrent competitive networks can learn locally excitatory topologies," in International Joint Conference on Neural Networks (IJCNN), (Brisbane), 1-8.
    • (2012) , pp. 1-8
    • Jug, F.1    Cook, M.2    Steger, A.3
  • 30
    • 34548575471 scopus 로고    scopus 로고
    • Do early sensory cortices integrate cross-modal information?
    • doi: 10.1007/s00429-007-0154-0
    • Kayser, C., and Logothetis, N. K. (2007). Do early sensory cortices integrate cross-modal information? Brain Struct. Funct. 212, 121-132. doi: 10.1007/s00429-007-0154-0
    • (2007) Brain Struct. Funct. , vol.212 , pp. 121-132
    • Kayser, C.1    Logothetis, N.K.2
  • 31
    • 0038396223 scopus 로고    scopus 로고
    • Bayesian models of object perception
    • doi: 10.1016/S0959-4388(03)00042-4
    • Kersten, D., and Yuille, A. (2003). Bayesian models of object perception. Curr. Opin. Neurobiol. 13, 150-158. doi: 10.1016/S0959-4388(03)00042-4
    • (2003) Curr. Opin. Neurobiol. , vol.13 , pp. 150-158
    • Kersten, D.1    Yuille, A.2
  • 32
    • 8444239052 scopus 로고    scopus 로고
    • The Bayesian brain: the role of uncertainty in neural coding and computation
    • doi: 10.1016/j.tins.2004.10.007
    • Knill, D. C., and Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712-719. doi: 10.1016/j.tins.2004.10.007
    • (2004) Trends Neurosci. , vol.27 , pp. 712-719
    • Knill, D.C.1    Pouget, A.2
  • 33
    • 0033515885 scopus 로고    scopus 로고
    • The role of Area 17 in visual imagery: Convergent evidence from PET and rTMS
    • doi: 10.1126/science.284.5411.167
    • Kosslyn, S. M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J. P., Thompson, W. L., et al. (1999). The role of Area 17 in visual imagery: Convergent evidence from PET and rTMS. Science 284, 167-170. doi: 10.1126/science.284.5411.167
    • (1999) Science , vol.284 , pp. 167-170
    • Kosslyn, S.M.1    Pascual-Leone, A.2    Felician, O.3    Camposano, S.4    Keenan, J.P.5    Thompson, W.L.6
  • 34
    • 0032144155 scopus 로고    scopus 로고
    • Feedforward, horizontal, and feedback processing in the visual cortex
    • doi: 10.1016/S0959-4388(98)80042-1
    • Lamme, V. A. F., Supér, H., and Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8, 529-535. doi: 10.1016/S0959-4388(98)80042-1
    • (1998) Curr. Opin. Neurobiol. , vol.8 , pp. 529-535
    • Lamme, V.A.F.1    Supér, H.2    Spekreijse, H.3
  • 35
    • 34547967782 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • in Proceedings of ICML, ACM
    • Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007). "An empirical evaluation of deep architectures on problems with many factors of variation," in Proceedings of ICML, 473-480. ACM.
    • (2007) , pp. 473-480
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio, Y.5
  • 36
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • in Proceedings of ICML, (Edinburgh)
    • Le, Q. V., Ranzato, M. A., Monga, R., Devin, M., Chen, K., Corrado, G., et al. (2012). "Building high-level features using large scale unsupervised learning," in Proceedings of ICML, (Edinburgh).
    • (2012)
    • Le, Q.V.1    Ranzato, M.A.2    Monga, R.3    Devin, M.4    Chen, K.5    Corrado, G.6
  • 37
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • doi: 10.1109/5.726791
    • LeCun, Y. L., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278-2324. doi: 10.1109/5.726791
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.L.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 38
    • 56449086627 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • in Advances in Neural Information Processing Systems, (Vancouver)
    • Lee, H., Ekanadham, C., and Ng, A. (2008). "Sparse deep belief net model for visual area V2," in Advances in Neural Information Processing Systems, Vol 20, (Vancouver), 873-880.
    • (2008) , vol.20 , pp. 873-880
    • Lee, H.1    Ekanadham, C.2    Ng, A.3
  • 39
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • in Proceedings of ICML, (Montreal), doi: 10.1145/1553374.1553453
    • Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proceedings of ICML, (Montreal), 609-616. doi: 10.1145/1553374.1553453
    • (2009) , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 40
    • 38849206826 scopus 로고    scopus 로고
    • A 128× 128 120 db 15 μs latency asynchronous temporal contrast vision sensor
    • doi: 10.1109/JSSC.2007.914337
    • Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120 db 15 μs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43, 566-576. doi: 10.1109/JSSC.2007.914337
    • (2008) IEEE J. Solid-State Circ. , vol.43 , pp. 566-576
    • Lichtsteiner, P.1    Posch, C.2    Delbruck, T.3
  • 41
    • 77954762538 scopus 로고    scopus 로고
    • Event-based 64-channel binaural silicon cochlea with Q enhancement mechanisms
    • in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), (Paris)
    • Liu, S., Van Schaik, A., Minch, B., and Delbruck, T. (2010). "Event-based 64-channel binaural silicon cochlea with Q enhancement mechanisms," in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), (Paris), 2027-2030.
    • (2010) , pp. 2027-2030
    • Liu, S.1    Van Schaik, A.2    Minch, B.3    Delbruck, T.4
  • 42
    • 84875870814 scopus 로고    scopus 로고
    • The importance of being hierarchical
    • doi: 10.1016/j.conb.2012.12.008
    • Markov, N., and Kennedy, H. (2013). The importance of being hierarchical. Curr. Opin. Neurobiol. 23, 187-194. doi: 10.1016/j.conb.2012.12.008
    • (2013) Curr. Opin. Neurobiol. , vol.23 , pp. 187-194
    • Markov, N.1    Kennedy, H.2
  • 43
    • 84890545141 scopus 로고    scopus 로고
    • A weighted and directed interareal connectivity matrix for macaque cerebral cortex
    • doi: 10.1093/cercor/bhs270
    • Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A. R., Lamy, C., Magrou, L., Vezoli, J., et al. (2012). A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 1-20. doi: 10.1093/cercor/bhs270
    • (2012) Cereb. Cortex , pp. 1-20
    • Markov, N.T.1    Ercsey-Ravasz, M.M.2    Ribeiro Gomes, A.R.3    Lamy, C.4    Magrou, L.5    Vezoli, J.6
  • 44
    • 84888796277 scopus 로고    scopus 로고
    • The Thermodynamic Temperature of a Rhythmic Spiking Network
    • Merolla, P., Ursell, T., and Arthur, J. (2010). The Thermodynamic Temperature of a Rhythmic Spiking Network. Arxiv preprint arXiv: 1009.5473.
    • (2010) Arxiv preprint arXiv , vol.1009 , pp. 5473
    • Merolla, P.1    Ursell, T.2    Arthur, J.3
  • 45
    • 84951076983 scopus 로고    scopus 로고
    • 10 breakthrough technologies 2013: Deep learning
    • MIT Technology Review, Available online at
    • MIT Technology Review (2013). 10 breakthrough technologies 2013: Deep learning. Available online at: http://www.technologyreview.com/featuredstory/513696/deep-learning/
    • (2013)
  • 46
    • 84055211743 scopus 로고    scopus 로고
    • Acoustic modeling using deep belief networks
    • doi: 10.1109/TASL.2011.2109382
    • Mohamed, A.-R., Dahl, G. E., and Hinton, G. (2012). Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20, 14-22. doi: 10.1109/TASL.2011.2109382
    • (2012) IEEE Trans. Audio Speech Lang. Process. , vol.20 , pp. 14-22
    • Mohamed, A.-R.1    Dahl, G.E.2    Hinton, G.3
  • 47
    • 0037069498 scopus 로고    scopus 로고
    • Shape perception reduces activity in human primary visual cortex
    • doi: 10.1073/pnas.192579399
    • Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., and Woods, D. L. (2002). Shape perception reduces activity in human primary visual cortex. Proc. Natl. Acad. Sci. U.S.A. 99, 15164-15169. doi: 10.1073/pnas.192579399
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 15164-15169
    • Murray, S.O.1    Kersten, D.2    Olshausen, B.A.3    Schrater, P.4    Woods, D.L.5
  • 48
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve Restricted Boltzmann Machines
    • in Proceedings of ICML, (Haifa)
    • Nair, V., and Hinton, G. (2010). "Rectified linear units improve Restricted Boltzmann Machines," in Proceedings of ICML, (Haifa), 807-814.
    • (2010) , pp. 807-814
    • Nair, V.1    Hinton, G.2
  • 49
    • 84876928403 scopus 로고    scopus 로고
    • Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
    • doi: 10.1371/journal.pcbi.1003037
    • Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Comput. Biol. 9: e1003037. doi: 10.1371/journal.pcbi.1003037
    • (2013) PLoS Comput. Biol. , vol.9
    • Nessler, B.1    Pfeiffer, M.2    Buesing, L.3    Maass, W.4
  • 50
    • 84884548464 scopus 로고    scopus 로고
    • Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate-coding and coincidence processing. application to feed forward ConvNets
    • doi: 10.1109/TPAMI.2013.71
    • Pérez-Carrasco, J., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T., Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate-coding and coincidence processing. application to feed forward ConvNets. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2706-2719. doi: 10.1109/TPAMI.2013.71
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 2706-2719
    • Pérez-Carrasco, J.1    Zhao, B.2    Serrano, C.3    Acha, B.4    Serrano-Gotarredona, T.5    Chen, S.6
  • 51
    • 0033360288 scopus 로고    scopus 로고
    • Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects
    • doi: 10.1038/4580
    • Rao, R. P. N., and Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79-87. doi: 10.1038/4580
    • (1999) Nat. Neurosci. , vol.2 , pp. 79-87
    • Rao, R.P.N.1    Ballard, D.H.2
  • 52
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • doi: 10.1038/14819
    • Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019-1025. doi: 10.1038/14819
    • (1999) Nat. Neurosci. , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 53
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • in Proceedings of Interspeech, (Florence)
    • Seide, F., Li, G., and Yu, D. (2011). "Conversational speech transcription using context-dependent deep neural networks," in Proceedings of Interspeech, (Florence), 437-440.
    • (2011) , pp. 437-440
    • Seide, F.1    Li, G.2    Yu, D.3
  • 54
    • 36149019489 scopus 로고
    • On the first passage time probability problem
    • doi: 10.1103/PhysRev.81.617
    • Siegert, A. J. F. (1951). On the first passage time probability problem. Phys. Rev. 81: 617. doi: 10.1103/PhysRev.81.617
    • (1951) Phys. Rev. , vol.81 , pp. 617
    • Siegert, A.J.F.1
  • 55
    • 41149111920 scopus 로고    scopus 로고
    • Multisensory integration: current issues from the perspective of the single neuron
    • doi: 10.1038/nrn2331
    • Stein, B. E., and Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255-266. doi: 10.1038/nrn2331
    • (2008) Nat. Rev. Neurosci. , vol.9 , pp. 255-266
    • Stein, B.E.1    Stanford, T.R.2
  • 56
    • 84864026688 scopus 로고    scopus 로고
    • Modeling human motion using binary latent variables
    • in Advances in Neural Information Processing Systems, (Vancouver)
    • Taylor, G., Hinton, G., and Roweis, S. (2007). "Modeling human motion using binary latent variables," in Advances in Neural Information Processing Systems, (Vancouver), 1345-1352.
    • (2007) , pp. 1345-1352
    • Taylor, G.1    Hinton, G.2    Roweis, S.3
  • 57
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • in Proceedings of ICML, (Helsinki: ACM)
    • Tieleman, T. (2008). "Training restricted Boltzmann machines using approximations to the likelihood gradient," in Proceedings of ICML, (Helsinki: ACM), 1064-1071.
    • (2008) , pp. 1064-1071
    • Tieleman, T.1
  • 58
    • 71149084943 scopus 로고    scopus 로고
    • Using fast weights to improve persistent contrastive divergence
    • in Proceedings of ICML, (Montreal: ACM)
    • Tieleman, T., and Hinton, G. (2009). "Using fast weights to improve persistent contrastive divergence," in Proceedings of ICML, (Montreal: ACM), 1033-1040.
    • (2009) , pp. 1033-1040
    • Tieleman, T.1    Hinton, G.2
  • 59
    • 0021072179 scopus 로고
    • Hierarchical organization and functional streams in the visual cortex
    • doi: 10.1016/0166-2236(83)90167-4
    • Van Essen, D. C., and Maunsell, J. H. R. (1983). Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370-375. doi: 10.1016/0166-2236(83)90167-4
    • (1983) Trends Neurosci. , vol.6 , pp. 370-375
    • Van Essen, D.C.1    Maunsell, J.H.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.