-
1
-
-
44849094339
-
An integrated low-noise multichannel system for neural signals amplification
-
Sep.
-
T. Borghi et al., "An integrated low-noise multichannel system for neural signals amplification," in Proc. 33rd Eur. Solid State Circuits Conf., Sep. 2007, pp. 456-459.
-
(2007)
Proc. 33rd Eur. Solid State Circuits Conf.
, pp. 456-459
-
-
Borghi, T.1
-
2
-
-
85008063690
-
The design of integrated circuits to observe brain activity
-
R. Harrison, "The design of integrated circuits to observe brain activity," Proc. IEEE, vol. 96, no. 7, pp. 1203-1216, 2008.
-
(2008)
Proc. IEEE
, vol.96
, Issue.7
, pp. 1203-1216
-
-
Harrison, R.1
-
3
-
-
57049182226
-
A bidirectional wireless link for neural prostheses that minimizes implanted power consumption
-
Nov.
-
S. Mandal and R. Sarpeshkar, "A bidirectional wireless link for neural prostheses that minimizes implanted power consumption," in Proc. Biomed. Circuits and Systems Conf., Nov. 2007, pp. 45-48.
-
(2007)
Proc. Biomed. Circuits and Systems Conf.
, pp. 45-48
-
-
Mandal, S.1
Sarpeshkar, R.2
-
4
-
-
71949122770
-
Wireless data links for BIOMEDICAL implants: Current research and future directions
-
Nov.
-
C. Charles, "Wireless data links for BIOMEDICAL implants: Current research and future directions," in Proc. Biomed. Circuits and Systems Conf., Nov. 2007, pp. 13-16.
-
(2007)
Proc. Biomed. Circuits and Systems Conf.
, pp. 13-16
-
-
Charles, C.1
-
5
-
-
77949424838
-
Listening to brain microcircuits for interfacing with externalworld, progress in wireless implantable microelectronic neuroengineering devices
-
A. Nurmikko et al., "Listening to brain microcircuits for interfacing with externalworld, progress in wireless implantable microelectronic neuroengineering devices," Proc. IEEE, vol. 98, no. 3, pp. 375-388, 2010.
-
(2010)
Proc. IEEE
, vol.98
, Issue.3
, pp. 375-388
-
-
Nurmikko, A.1
-
6
-
-
77950319551
-
Microelectrodes, microelectronics, and implantable neural microsystems
-
B. K. D. Wise et al., "Microelectrodes, microelectronics, and implantable neural microsystems," Proc. IEEE, vol. 96, no. 7, pp. 1184-1202, 2008.
-
(2008)
Proc. IEEE
, vol.96
, Issue.7
, pp. 1184-1202
-
-
Wise, B.K.D.1
-
7
-
-
61449148727
-
256-channel neural recording and delta compression microsystem with 3d electrodes
-
Mar.
-
J. Aziz et al., "256-channel neural recording and delta compression microsystem with 3d electrodes," IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 995-1005, Mar. 2009.
-
(2009)
IEEE J. Solid-State Circuits
, vol.44
, Issue.3
, pp. 995-1005
-
-
Aziz, J.1
-
8
-
-
84855357003
-
A low-power 32-channel digitally programmable neural recording integrated circuit
-
Dec.
-
W. Wattanapanitch and R. Sarpeshkar, "A low-power 32-channel digitally programmable neural recording integrated circuit," IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 592-602, Dec. 2011.
-
(2011)
IEEE Trans. Biomed. Circuits Syst.
, vol.5
, Issue.6
, pp. 592-602
-
-
Wattanapanitch, W.1
Sarpeshkar, R.2
-
9
-
-
79251589964
-
Dynamic causal models of neural system dynamics: Current state and future extensions
-
I. Stevenson and K. Kording, "Dynamic causal models of neural system dynamics: Current state and future extensions," Nature Neurosci., vol. 14, no. 2, pp. 139-142, 2011.
-
(2011)
Nature Neurosci.
, vol.14
, Issue.2
, pp. 139-142
-
-
Stevenson, I.1
Kording, K.2
-
10
-
-
84891630716
-
An implantable 455-active-electrode 52-channel CMOS neural probe
-
Jan.
-
C. Lopez et al., "An implantable 455-active-electrode 52-channel CMOS neural probe," IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 248-261, Jan. 2014.
-
(2014)
IEEE J. Solid-State Circuits
, vol.49
, Issue.1
, pp. 248-261
-
-
Lopez, C.1
-
11
-
-
84930225020
-
A closed-loop compressive-sensing-based neural recording system
-
J. Zhang et al., "A closed-loop compressive-sensing-based neural recording system," J. Neural Eng., vol. 12, no. 3, p. 036005, 2015.
-
(2015)
J. Neural Eng.
, vol.12
, Issue.3
, pp. 036005
-
-
Zhang, J.1
-
12
-
-
0003005916
-
A pulse-coded communications infrastructure for neuromorphic systems
-
W. Maass and C. Bishop, Eds. Cambridge, MA, USA: MIT Press, ch. 6
-
S. Deiss, R. Douglas, and A. Whatley, "A pulse-coded communications infrastructure for neuromorphic systems," in Pulsed Neural Netw., W. Maass and C. Bishop, Eds. Cambridge, MA, USA: MIT Press, 1998, ch. 6, pp. 157-78.
-
(1998)
Pulsed Neural Netw.
, pp. 157-178
-
-
Deiss, S.1
Douglas, R.2
Whatley, A.3
-
13
-
-
77954760819
-
Neuromorphic sensory systems
-
S.-C. Liu and T. Delbruck, "Neuromorphic sensory systems," Current Opin. Neurobiol., vol. 20, no. 3, pp. 288-295, 2010.
-
(2010)
Current Opin. Neurobiol.
, vol.20
, Issue.3
, pp. 288-295
-
-
Liu, S.-C.1
Delbruck, T.2
-
14
-
-
80255127113
-
Neuromorphic silicon neuron circuits
-
G. Indiveri et al., "Neuromorphic silicon neuron circuits," Frontiers Neurosci., vol. 5, pp. 1-23, 2011.
-
(2011)
Frontiers Neurosci.
, vol.5
, pp. 1-23
-
-
Indiveri, G.1
-
15
-
-
84906780089
-
Neuromorphic electronic circuits for building autonomous cognitive systems
-
Sep.
-
E. Chicca et al., "Neuromorphic electronic circuits for building autonomous cognitive systems," Proc. IEEE, vol. 102, no. 9, pp. 1367-1388, Sep. 2014.
-
(2014)
Proc. IEEE
, vol.102
, Issue.9
, pp. 1367-1388
-
-
Chicca, E.1
-
16
-
-
84883772282
-
Synthesizing cognition in neuromorphic electronic systems
-
E. Neftci et al., "Synthesizing cognition in neuromorphic electronic systems," Proc. Nat. Acad. Sci., vol. 110, no. 37, pp. E3468-E3476, 2013.
-
(2013)
Proc. Nat. Acad. Sci.
, vol.110
, Issue.37
, pp. E3468-E3476
-
-
Neftci, E.1
-
17
-
-
0038718680
-
A low-power low-noise CMOS amplifier for neural recording applications
-
Jun.
-
R. Harrison and C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958-965, Jun. 2003.
-
(2003)
IEEE J. Solid-State Circuits
, vol.38
, Issue.6
, pp. 958-965
-
-
Harrison, R.1
Charles, C.2
-
18
-
-
84878421840
-
Continuous time level crossing sampling ADC for bio-potential recording systems
-
W. Tang et al., "Continuous time level crossing sampling ADC for bio-potential recording systems," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 6, p. 1407, 2013.
-
(2013)
IEEE Trans. Circuits Syst. I, Reg. Papers
, vol.60
, Issue.6
, pp. 1407
-
-
Tang, W.1
-
19
-
-
38849206826
-
A 128 128 120 dB 15 latency asynchronous temporal contrast vision sensor
-
Feb.
-
P. Lichtsteiner, C. Posch, and T. Delbruck, "A 128 128 120 dB 15 latency asynchronous temporal contrast vision sensor," IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 566-576, Feb. 2008.
-
(2008)
IEEE J. Solid-State Circuits
, vol.43
, Issue.2
, pp. 566-576
-
-
Lichtsteiner, P.1
Posch, C.2
Delbruck, T.3
-
20
-
-
4344635562
-
A low-power CMOS neural amplifier with amplitude measurements for spike sorting
-
May
-
T. Horiuchi et al., "A low-power CMOS neural amplifier with amplitude measurements for spike sorting," in Proc. Int. Symp. Circuits and Systems, May 2004, vol. 4, pp. 29-32.
-
(2004)
Proc. Int. Symp. Circuits and Systems
, vol.4
, pp. 29-32
-
-
Horiuchi, T.1
-
21
-
-
34548850628
-
Spike discrimination using amplitude measurements with a low-power CMOS neural amplifier
-
T. Horiuchi et al., "Spike discrimination using amplitude measurements with a low-power CMOS neural amplifier," in Proc. IEEE Int. Symp. Circuits and Systems, 2007, pp. 3123-3126.
-
(2007)
Proc. IEEE Int. Symp. Circuits and Systems
, pp. 3123-3126
-
-
Horiuchi, T.1
-
23
-
-
84928671707
-
A re-configurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128 k synapses
-
N. Qiao et al., "A re-configurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128 k synapses," Frontiers Neurosci., vol. 9, no. 141, 2015.
-
(2015)
Frontiers Neurosci.
, vol.9
, Issue.141
-
-
Qiao, N.1
-
24
-
-
84892641934
-
Automated synthesis of asynchronous event-based interfaces for neuromorphic systems
-
H. Mostafa et al., "Automated synthesis of asynchronous event-based interfaces for neuromorphic systems," in Proc. Eur. Conf. Circuit Theory and Design, 2013, pp. 1-4.
-
(2013)
Proc. Eur. Conf. Circuit Theory and Design
, pp. 1-4
-
-
Mostafa, H.1
-
25
-
-
84902288788
-
An analogue front-end model for developing neural spike sorting systems
-
D. Barsakcioglu et al., "An analogue front-end model for developing neural spike sorting systems," IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 216-227, 2014.
-
(2014)
IEEE Trans. Biomed. Circuits Syst.
, vol.8
, Issue.2
, pp. 216-227
-
-
Barsakcioglu, D.1
-
26
-
-
36248934673
-
Learning real world stimuli in a neural network with spike-driven synaptic dynamics
-
J. Brader, W. Senn, and S. Fusi, "Learning real world stimuli in a neural network with spike-driven synaptic dynamics," Neural Computat., vol. 19, pp. 2881-2912, 2007.
-
(2007)
Neural Computat.
, vol.19
, pp. 2881-2912
-
-
Brader, J.1
Senn, W.2
Fusi, S.3
-
27
-
-
60149108117
-
Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI
-
Feb.
-
S. Mitra, S. Fusi, and G. Indiveri, "Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI," IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 1, pp. 32-42, Feb. 2009.
-
(2009)
IEEE Trans. Biomed. Circuits Syst.
, vol.3
, Issue.1
, pp. 32-42
-
-
Mitra, S.1
Fusi, S.2
Indiveri, G.3
-
28
-
-
84907398151
-
A hybrid analog/digital spike-timing dependent plasticity learning circuit for neuromorphic VLSI multi-neuron architectures
-
H. Mostafa et al., "A hybrid analog/digital spike-timing dependent plasticity learning circuit for neuromorphic VLSI multi-neuron architectures," in Proc. Int. Symp. Circuits and Systems, 2014, pp. 854-857.
-
(2014)
Proc. Int. Symp. Circuits and Systems
, pp. 854-857
-
-
Mostafa, H.1
-
29
-
-
84928658339
-
Pyncs: A microkernel for high-level definition and configuration of neuromorphic electronic systems
-
F. Stefanini et al., "Pyncs: A microkernel for high-level definition and configuration of neuromorphic electronic systems," Frontiers Neuroinf., vol. 8, no. 73, 2014.
-
(2014)
Frontiers Neuroinf.
, vol.8
, Issue.73
-
-
Stefanini, F.1
-
30
-
-
1842421269
-
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
-
H. Jaeger and H. Haas, "Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication," Science, vol. 304, no. 5667, pp. 78-80, 2004.
-
(2004)
Science
, vol.304
, Issue.5667
, pp. 78-80
-
-
Jaeger, H.1
Haas, H.2
-
31
-
-
84893820774
-
A 0.45 v 100-channel neural-recording IC with sub-/channel consumption in 0.18 CMOS
-
D. Han et al., "A 0.45 v 100-channel neural-recording IC with sub-/channel consumption in 0.18 CMOS," IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 6, pp. 735-746, 2013.
-
(2013)
IEEE Trans. Biomed. Circuits Syst.
, vol.7
, Issue.6
, pp. 735-746
-
-
Han, D.1
-
32
-
-
84880075362
-
Energy efficient low-noise multichannel neural amplifier in submicron CMOS process
-
Jul.
-
P. Kmon and P. Grybos, "Energy efficient low-noise multichannel neural amplifier in submicron CMOS process," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 7, pp. 1764-1775, Jul. 2013.
-
(2013)
IEEE Trans. Circuits Syst. I, Reg. Papers
, vol.60
, Issue.7
, pp. 1764-1775
-
-
Kmon, P.1
Grybos, P.2
-
33
-
-
84905381448
-
A digitally assisted, signal folding neural recording amplifier
-
Y. Chen et al., "A digitally assisted, signal folding neural recording amplifier," IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 528-542, 2014.
-
(2014)
IEEE Trans. Biomed. Circuits Syst.
, vol.8
, Issue.4
, pp. 528-542
-
-
Chen, Y.1
-
34
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
W. Maass, T. Natschläger, and H. Markram, "Real-time computing without stable states: A new framework for neural computation based on perturbations," Neural Comput., vol. 14, no. 11, pp. 2531-2560, 2002.
-
(2002)
Neural Comput.
, vol.14
, Issue.11
, pp. 2531-2560
-
-
Maass, W.1
Natschläger, T.2
Markram, H.3
-
35
-
-
84880713240
-
Spatio-temporal spike pattern classification in neuromorphic systems
-
New York NY, USA: Springer
-
S. Sheik et al., "Spatio-temporal spike pattern classification in neuromorphic systems," in Biomimetic and Biohybrid Systems. New York, NY, USA: Springer, 2013, pp. 262-273.
-
(2013)
Biomimetic and Biohybrid Systems
, pp. 262-273
-
-
Sheik, S.1
-
36
-
-
77953735451
-
Classification of correlated patterns with a configurable analog VLSI neural network of spiking neurons and self-regulating plastic synapses
-
M. Giulioni et al., "Classification of correlated patterns with a configurable analog VLSI neural network of spiking neurons and self-regulating plastic synapses," Neural Comput., vol. 21, no. 11, pp. 3106-3129, 2009.
-
(2009)
Neural Comput.
, vol.21
, Issue.11
, pp. 3106-3129
-
-
Giulioni, M.1
-
37
-
-
84944342778
-
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems
-
to be published
-
M. Giulioni et al., "Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems," Scientific Rep., 2015, to be published.
-
(2015)
Scientific Rep.
-
-
Giulioni, M.1
-
38
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, pp. 123-140, 1996.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
39
-
-
0036080160
-
Bagging, boosting and the random subspace method for linear classifiers
-
M. Skurichina and R. P. Duin, "Bagging, boosting and the random subspace method for linear classifiers," Pattern Anal. Appl., vol. 5, no. 2, pp. 121-135, 2002.
-
(2002)
Pattern Anal. Appl.
, vol.5
, Issue.2
, pp. 121-135
-
-
Skurichina, M.1
Duin, R.P.2
-
40
-
-
84937212908
-
Memory and information processing in neuromorphic systems
-
G. Indiveri and S.-C. Liu, "Memory and information processing in neuromorphic systems," Proc. IEEE, vol. 103, no. 8, pp. 1379-1397, 2015.
-
(2015)
Proc. IEEE
, vol.103
, Issue.8
, pp. 1379-1397
-
-
Indiveri, G.1
Liu, S.-C.2
-
41
-
-
35348818718
-
Learning multiple layers of representation
-
G. Hinton, "Learning multiple layers of representation," Trends Cognit. Sci., vol. 11, no. 10, pp. 428-434, 2007.
-
(2007)
Trends Cognit. Sci.
, vol.11
, Issue.10
, pp. 428-434
-
-
Hinton, G.1
|