메뉴 건너뛰기




Volumn 36, Issue 3, 2015, Pages 161-178

Nitric oxide synthase in innate and adaptive immunity: An update

Author keywords

Antimicrobial activity; B cells; Microenvironment; Myeloid cells; Nitric oxide synthases (NOS1 nNOS; NOS2 iNOS; NOS3 eNOS); Th17 cells

Indexed keywords

ALPHA INTERFERON; ARGININE; BETA INTERFERON; COMPLEMENTARY RNA; CYTOKINE; ENDOTHELIAL NITRIC OXIDE SYNTHASE; ERYTHROPOIETIN; GAMMA INTERFERON; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; INDUCIBLE NITRIC OXIDE SYNTHASE; NEURONAL NITRIC OXIDE SYNTHASE; NITRIC OXIDE; NITRIC OXIDE SYNTHASE; NITROGEN; NITROUS OXIDE; S NITROSOTHIOL; SUPPRESSOR OF CYTOKINE SIGNALING 1; UNTRANSLATED RNA; INTERFERON REGULATORY FACTOR 9; IRF9 PROTEIN, HUMAN; ISOENZYME; NOS2 PROTEIN, HUMAN; STAT PROTEIN;

EID: 84924228289     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2015.01.003     Document Type: Review
Times cited : (656)

References (257)
  • 1
    • 0001509578 scopus 로고
    • Mammalian nitrite biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide
    • Stuehr D.J., Marletta M.A. Mammalian nitrite biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:7738-7742.
    • (1985) Proc. Natl. Acad. Sci. U.S.A. , vol.82 , pp. 7738-7742
    • Stuehr, D.J.1    Marletta, M.A.2
  • 2
    • 0023250888 scopus 로고
    • Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines or interferon-γ
    • Stuehr D.J., Marletta M.A. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines or interferon-γ. J. Immunol. 1987, 139:518-525.
    • (1987) J. Immunol. , vol.139 , pp. 518-525
    • Stuehr, D.J.1    Marletta, M.A.2
  • 3
    • 0023142137 scopus 로고
    • L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells
    • Hibbs J.B., et al. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 1987, 138:550-565.
    • (1987) J. Immunol. , vol.138 , pp. 550-565
    • Hibbs, J.B.1
  • 4
    • 0023092102 scopus 로고
    • Macrophage cytotoxicity: role of L-arginine deiminase and imino nitrogen oxidation to nitrite
    • Hibbs J.B., et al. Macrophage cytotoxicity: role of L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 1987, 235:473-476.
    • (1987) Science , vol.235 , pp. 473-476
    • Hibbs, J.B.1
  • 5
    • 0026569273 scopus 로고
    • Cloning and characterization of inducible nitric oxide synthase from mouse macrophages
    • Xie Q-W., et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992, 256:225-228.
    • (1992) Science , vol.256 , pp. 225-228
    • Xie, Q.-W.1
  • 6
    • 0026729267 scopus 로고
    • Cloned and expressed macrophage nitric oxide synthase contrasts with the brain synthase
    • Lowenstein C.J., et al. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain synthase. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:6711-6715.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 6711-6715
    • Lowenstein, C.J.1
  • 7
    • 0028959180 scopus 로고
    • Suppression of adjuvant-induced arthritis by selective inhibition of inducible nitric oxide synthase
    • Connor J.R., et al. Suppression of adjuvant-induced arthritis by selective inhibition of inducible nitric oxide synthase. Eur. J. Pharmacol. 1995, 273:15-24.
    • (1995) Eur. J. Pharmacol. , vol.273 , pp. 15-24
    • Connor, J.R.1
  • 8
    • 0029415193 scopus 로고
    • L-N6-(1-iminoethyl)lysine potently inhibits inducible nitric oxide synthase and is superior to NG-monomethyl-arginine in vitro and in vivo
    • Stenger S., et al. L-N6-(1-iminoethyl)lysine potently inhibits inducible nitric oxide synthase and is superior to NG-monomethyl-arginine in vitro and in vivo. Eur. J. Pharmacol. 1995, 294:703-712.
    • (1995) Eur. J. Pharmacol. , vol.294 , pp. 703-712
    • Stenger, S.1
  • 9
    • 0028999596 scopus 로고
    • Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase
    • MacMicking J.D., et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 1995, 81:641-650.
    • (1995) Cell , vol.81 , pp. 641-650
    • MacMicking, J.D.1
  • 10
    • 0028889439 scopus 로고
    • Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death
    • Laubach V.E., et al. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:10688-10692.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 10688-10692
    • Laubach, V.E.1
  • 11
    • 0029035476 scopus 로고
    • Altered immune responses in mice lacking inducible nitric oxide synthase
    • Wei X-Q., et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995, 375:408-411.
    • (1995) Nature , vol.375 , pp. 408-411
    • Wei, X.-Q.1
  • 12
    • 0032785432 scopus 로고    scopus 로고
    • Effects of nitric oxide on the induction and differentiation of Th1 cells
    • Niedbala W., et al. Effects of nitric oxide on the induction and differentiation of Th1 cells. Eur. J. Immunol. 1999, 29:2498-2505.
    • (1999) Eur. J. Immunol. , vol.29 , pp. 2498-2505
    • Niedbala, W.1
  • 13
    • 0026629902 scopus 로고
    • Nitric oxide as a secretory product of mammalian cells
    • Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992, 6:3051-3064.
    • (1992) FASEB J. , vol.6 , pp. 3051-3064
    • Nathan, C.1
  • 14
    • 0001332738 scopus 로고    scopus 로고
    • The function of nitric oxide in the immune system
    • Springer, B. Mayer (Ed.)
    • Bogdan C. The function of nitric oxide in the immune system. Handbook of Experimental Pharmacology: Nitric Oxide 2000, 443-492. Springer. B. Mayer (Ed.).
    • (2000) Handbook of Experimental Pharmacology: Nitric Oxide , pp. 443-492
    • Bogdan, C.1
  • 15
    • 0034769118 scopus 로고    scopus 로고
    • Nitric oxide and the immune response
    • Bogdan C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2:907-916.
    • (2001) Nat. Immunol. , vol.2 , pp. 907-916
    • Bogdan, C.1
  • 16
    • 0037365968 scopus 로고    scopus 로고
    • Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling
    • Nathan C. Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 2003, 111:769-778.
    • (2003) J. Clin. Invest. , vol.111 , pp. 769-778
    • Nathan, C.1
  • 17
    • 79952200691 scopus 로고    scopus 로고
    • Regulation of lymphocytes by nitric oxide
    • Bogdan C. Regulation of lymphocytes by nitric oxide. Methods Mol. Biol. 2011, 677:375-393.
    • (2011) Methods Mol. Biol. , vol.677 , pp. 375-393
    • Bogdan, C.1
  • 18
    • 79957862375 scopus 로고    scopus 로고
    • Nitric oxide and redox mechanisms in the immune response
    • Wink D.A., et al. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol. 2011, 89:873-891.
    • (2011) J. Leukoc. Biol. , vol.89 , pp. 873-891
    • Wink, D.A.1
  • 19
    • 84861173553 scopus 로고    scopus 로고
    • Reactive oxygen and reactive nitrogen intermediates in the immune system
    • ASM Press, S.H.E. Kaufmann (Ed.)
    • Bogdan C. Reactive oxygen and reactive nitrogen intermediates in the immune system. The Immune Response to Infection 2011, 69-84. ASM Press. S.H.E. Kaufmann (Ed.).
    • (2011) The Immune Response to Infection , pp. 69-84
    • Bogdan, C.1
  • 20
    • 0028940960 scopus 로고
    • Vesicle membrane association of nitric oxide synthase in primary mouuse macrophages
    • Vodovotz Y., et al. Vesicle membrane association of nitric oxide synthase in primary mouuse macrophages. J. Immunol. 1995, 154:2914-2925.
    • (1995) J. Immunol. , vol.154 , pp. 2914-2925
    • Vodovotz, Y.1
  • 21
    • 0034826872 scopus 로고    scopus 로고
    • Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes
    • Webb J.L., et al. Macrophage nitric oxide synthase associates with cortical actin but is not recruited to phagosomes. Infect. Immun. 2001, 69:6391-6400.
    • (2001) Infect. Immun. , vol.69 , pp. 6391-6400
    • Webb, J.L.1
  • 22
    • 84873864037 scopus 로고    scopus 로고
    • Molecular mechanisms regulating macrophage response to hypoxia
    • Rahat M.A., et al. Molecular mechanisms regulating macrophage response to hypoxia. Front. Immunol. 2011, 2:45.
    • (2011) Front. Immunol. , vol.2 , pp. 45
    • Rahat, M.A.1
  • 23
    • 84874088795 scopus 로고    scopus 로고
    • Nitric-oxide synthase-2 linkage to focal adhesion kinase in neutrophils influences enzyme activity and beta2 integrin function
    • Thom S.R., et al. Nitric-oxide synthase-2 linkage to focal adhesion kinase in neutrophils influences enzyme activity and beta2 integrin function. J. Biol. Chem. 2013, 288:4810-4818.
    • (2013) J. Biol. Chem. , vol.288 , pp. 4810-4818
    • Thom, S.R.1
  • 24
    • 0037031937 scopus 로고    scopus 로고
    • Epithelial inducible nitric-oxide synthase is an apical EBP50-binding protein that directs vectorial nitric oxide output
    • Glynne P.A., et al. Epithelial inducible nitric-oxide synthase is an apical EBP50-binding protein that directs vectorial nitric oxide output. J. Biol. Chem. 2002, 277:33132-33138.
    • (2002) J. Biol. Chem. , vol.277 , pp. 33132-33138
    • Glynne, P.A.1
  • 25
    • 84892562419 scopus 로고    scopus 로고
    • Interaction of inducible nitric oxide synthase with rac2 regulates reactive oxygen and nitrogen species generation in the human neutrophil phagosomes: implication in microbial killing
    • Jyoti A., et al. Interaction of inducible nitric oxide synthase with rac2 regulates reactive oxygen and nitrogen species generation in the human neutrophil phagosomes: implication in microbial killing. Antioxid. Redox Signal. 2014, 20:417-431.
    • (2014) Antioxid. Redox Signal. , vol.20 , pp. 417-431
    • Jyoti, A.1
  • 26
    • 79952454531 scopus 로고    scopus 로고
    • Kinase suppressor of Ras-1 protects against pulmonary Pseudomonas aeruginosa infections
    • Zhang Y., et al. Kinase suppressor of Ras-1 protects against pulmonary Pseudomonas aeruginosa infections. Nat. Med. 2011, 17:341-346.
    • (2011) Nat. Med. , vol.17 , pp. 341-346
    • Zhang, Y.1
  • 27
    • 59049100124 scopus 로고    scopus 로고
    • The physiologic aggresome mediates cellular inactivation of iNOS
    • Pandit L., et al. The physiologic aggresome mediates cellular inactivation of iNOS. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:1211-1215.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 1211-1215
    • Pandit, L.1
  • 28
    • 33646116085 scopus 로고    scopus 로고
    • Nitric oxide synthase localization in the rat neutrophils: immunocytochemical, molecular, and biochemical studies
    • Saini R., et al. Nitric oxide synthase localization in the rat neutrophils: immunocytochemical, molecular, and biochemical studies. J. Leukoc. Biol. 2006, 79:519-528.
    • (2006) J. Leukoc. Biol. , vol.79 , pp. 519-528
    • Saini, R.1
  • 29
    • 84861927963 scopus 로고    scopus 로고
    • Neuronal nitric oxide synthase regulates endothelial inflammation
    • Chakrabarti S., et al. Neuronal nitric oxide synthase regulates endothelial inflammation. J. Leukoc. Biol. 2012, 91:947-956.
    • (2012) J. Leukoc. Biol. , vol.91 , pp. 947-956
    • Chakrabarti, S.1
  • 30
    • 0039558662 scopus 로고    scopus 로고
    • Expressional control of the 'constitutive' isoforms of nitric oxide synthase (NOSI and NOSIII)
    • Förstermann U., et al. Expressional control of the 'constitutive' isoforms of nitric oxide synthase (NOSI and NOSIII). FASEB J. 1998, 12:773-790.
    • (1998) FASEB J. , vol.12 , pp. 773-790
    • Förstermann, U.1
  • 31
    • 0034697293 scopus 로고    scopus 로고
    • Induction of endothelial nitric oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment
    • Iwase K., et al. Induction of endothelial nitric oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment. J. Biol. Chem. 2000, 275:11929-11933.
    • (2000) J. Biol. Chem. , vol.275 , pp. 11929-11933
    • Iwase, K.1
  • 32
    • 3042637956 scopus 로고    scopus 로고
    • The neuronal nitric oxide synthase is upregulated in mouse skin repair and in response to epidermal growth factor in human HaCaT keratinocytes
    • Boissel J.P., et al. The neuronal nitric oxide synthase is upregulated in mouse skin repair and in response to epidermal growth factor in human HaCaT keratinocytes. J. Invest. Dermatol. 2004, 123:132-139.
    • (2004) J. Invest. Dermatol. , vol.123 , pp. 132-139
    • Boissel, J.P.1
  • 33
    • 33144464485 scopus 로고    scopus 로고
    • The regulation and pharmacology of endothelial nitric oxide synthase
    • Dudzinski D.M., et al. The regulation and pharmacology of endothelial nitric oxide synthase. Annu. Rev. Pharmacol. Toxicol. 2006, 46:235-276.
    • (2006) Annu. Rev. Pharmacol. Toxicol. , vol.46 , pp. 235-276
    • Dudzinski, D.M.1
  • 34
    • 0037977031 scopus 로고    scopus 로고
    • Nitric oxide in experimental joint inflammation. Benefit or detriment?
    • Wahl S.M., et al. Nitric oxide in experimental joint inflammation. Benefit or detriment?. Cells Tissues Organs 2003, 174:26-33.
    • (2003) Cells Tissues Organs , vol.174 , pp. 26-33
    • Wahl, S.M.1
  • 35
    • 15444369648 scopus 로고    scopus 로고
    • Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived no in vivo
    • Connelly L., et al. Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived no in vivo. J. Biol. Chem. 2005, 280:10040-10046.
    • (2005) J. Biol. Chem. , vol.280 , pp. 10040-10046
    • Connelly, L.1
  • 36
    • 29644437159 scopus 로고    scopus 로고
    • Neuronal nitric oxide synthase is necessary for elimination of Giardia lamblia infections in mice
    • Li E., et al. Neuronal nitric oxide synthase is necessary for elimination of Giardia lamblia infections in mice. J. Immunol. 2006, 176:516-521.
    • (2006) J. Immunol. , vol.176 , pp. 516-521
    • Li, E.1
  • 37
    • 64049100607 scopus 로고    scopus 로고
    • ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration
    • Martinelli R., et al. ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol. Biol. Cell 2009, 20:995-1005.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 995-1005
    • Martinelli, R.1
  • 38
    • 77953402823 scopus 로고    scopus 로고
    • Neuronal nitric oxide synthase modulates maturation of human dendritic cells
    • Adler H.S., et al. Neuronal nitric oxide synthase modulates maturation of human dendritic cells. J. Immunol. 2010, 184:6025-6034.
    • (2010) J. Immunol. , vol.184 , pp. 6025-6034
    • Adler, H.S.1
  • 39
    • 77955472335 scopus 로고    scopus 로고
    • Endothelial nitric oxide synthase limits the inflammatory response in mouse cutaneous leishmaniasis
    • Fritzsche C., et al. Endothelial nitric oxide synthase limits the inflammatory response in mouse cutaneous leishmaniasis. Immunobiology 2010, 215:826-832.
    • (2010) Immunobiology , vol.215 , pp. 826-832
    • Fritzsche, C.1
  • 40
    • 81755186998 scopus 로고    scopus 로고
    • Impaired lymphatic contraction associated with immunosuppression
    • Liao S., et al. Impaired lymphatic contraction associated with immunosuppression. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:18784-18789.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 18784-18789
    • Liao, S.1
  • 41
    • 80052066106 scopus 로고    scopus 로고
    • NOS-1-derived NO is an essential triggering signal for the development of systemic inflammatory responses
    • Duma D., et al. NOS-1-derived NO is an essential triggering signal for the development of systemic inflammatory responses. Eur. J. Pharmacol. 2011, 668:285-292.
    • (2011) Eur. J. Pharmacol. , vol.668 , pp. 285-292
    • Duma, D.1
  • 42
    • 84859487532 scopus 로고    scopus 로고
    • Nitric oxide synthases: regulation and function
    • Forstermann U., Sessa W.C. Nitric oxide synthases: regulation and function. Eur. Heart J. 2012, 33:829-837.
    • (2012) Eur. Heart J. , vol.33 , pp. 829-837
    • Forstermann, U.1    Sessa, W.C.2
  • 43
    • 84865754557 scopus 로고    scopus 로고
    • ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration
    • Liu G., et al. ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 2012, 120:1942-1952.
    • (2012) Blood , vol.120 , pp. 1942-1952
    • Liu, G.1
  • 44
    • 84856865418 scopus 로고    scopus 로고
    • Stimulation of unprimed macrophages with immune complexes triggers a low output of nitric oxide by calcium-dependent neuronal nitric-oxide synthase
    • Huang Z., et al. Stimulation of unprimed macrophages with immune complexes triggers a low output of nitric oxide by calcium-dependent neuronal nitric-oxide synthase. J. Biol. Chem. 2012, 287:4492-4502.
    • (2012) J. Biol. Chem. , vol.287 , pp. 4492-4502
    • Huang, Z.1
  • 45
    • 84875725817 scopus 로고    scopus 로고
    • Nitric oxide and TNFalpha are critical regulators of reversible lymph node vascular remodeling and adaptive immune response
    • Sellers S.L., et al. Nitric oxide and TNFalpha are critical regulators of reversible lymph node vascular remodeling and adaptive immune response. PLoS ONE 2013, 8:e60741.
    • (2013) PLoS ONE , vol.8 , pp. e60741
    • Sellers, S.L.1
  • 46
    • 38849162730 scopus 로고    scopus 로고
    • The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics
    • Lundberg J.O., et al. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7:156-167.
    • (2008) Nat. Rev. Drug Discov. , vol.7 , pp. 156-167
    • Lundberg, J.O.1
  • 47
    • 0019807744 scopus 로고
    • Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites
    • Doyle M.P., et al. Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J. Biol. Chem. 1981, 256:12393-12398.
    • (1981) J. Biol. Chem. , vol.256 , pp. 12393-12398
    • Doyle, M.P.1
  • 48
    • 49649118849 scopus 로고    scopus 로고
    • Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase
    • Li H., et al. Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J. Biol. Chem. 2008, 283:17855-17863.
    • (2008) J. Biol. Chem. , vol.283 , pp. 17855-17863
    • Li, H.1
  • 50
    • 84887070404 scopus 로고    scopus 로고
    • Mechanism and biological relevance of blue-light (420-453nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo
    • Oplander C., et al. Mechanism and biological relevance of blue-light (420-453nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. Free Radic. Biol. Med. 2013, 65:1363-1377.
    • (2013) Free Radic. Biol. Med. , vol.65 , pp. 1363-1377
    • Oplander, C.1
  • 51
    • 84872179764 scopus 로고    scopus 로고
    • The role of photolabile dermal nitric oxide derivates in ultraviolet radiation (UVR)-induced cell death
    • Oplander C., Suschek C.V. The role of photolabile dermal nitric oxide derivates in ultraviolet radiation (UVR)-induced cell death. Int. J. Mol. Sci. 2012, 14:191-204.
    • (2012) Int. J. Mol. Sci. , vol.14 , pp. 191-204
    • Oplander, C.1    Suschek, C.V.2
  • 52
    • 84902544764 scopus 로고    scopus 로고
    • UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase
    • Liu D., et al. UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. J. Invest. Dermatol. 2014, 134:1839-1846.
    • (2014) J. Invest. Dermatol. , vol.134 , pp. 1839-1846
    • Liu, D.1
  • 53
    • 79953239813 scopus 로고    scopus 로고
    • Microbial nitrate respiration - genes, enzymes and environmental distribution
    • Kraft B., et al. Microbial nitrate respiration - genes, enzymes and environmental distribution. J. Biotechnol. 2011, 155:104-117.
    • (2011) J. Biotechnol. , vol.155 , pp. 104-117
    • Kraft, B.1
  • 54
    • 77953641425 scopus 로고    scopus 로고
    • Bacterial nitric oxide synthases
    • Crane B.R., et al. Bacterial nitric oxide synthases. Annu. Rev. Biochem. 2010, 79:445-470.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 445-470
    • Crane, B.R.1
  • 55
    • 84862556342 scopus 로고    scopus 로고
    • Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease
    • Anand P., Stamler J.S. Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J. Mol. Med. (Berl.) 2012, 90:233-244.
    • (2012) J. Mol. Med. (Berl.) , vol.90 , pp. 233-244
    • Anand, P.1    Stamler, J.S.2
  • 56
    • 84884169659 scopus 로고    scopus 로고
    • Peroxynitrite, a stealthy biological oxidant
    • Radi R. Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 2013, 288:26464-26472.
    • (2013) J. Biol. Chem. , vol.288 , pp. 26464-26472
    • Radi, R.1
  • 57
    • 67649781729 scopus 로고    scopus 로고
    • Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology
    • Vanin A.F. Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Nitric Oxide 2009, 21:1-13.
    • (2009) Nitric Oxide , vol.21 , pp. 1-13
    • Vanin, A.F.1
  • 58
    • 64549163306 scopus 로고    scopus 로고
    • Zinc fingers as biologic redox switches?
    • Kroncke K.D., Klotz L.O. Zinc fingers as biologic redox switches?. Antioxid. Redox Signal. 2009, 11:1015-1027.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 1015-1027
    • Kroncke, K.D.1    Klotz, L.O.2
  • 59
    • 31544453292 scopus 로고    scopus 로고
    • Nitrative DNA damage in inflammation and its possible role in carcinogenesis
    • Sawa T., Ohshima H. Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide 2006, 14:91-100.
    • (2006) Nitric Oxide , vol.14 , pp. 91-100
    • Sawa, T.1    Ohshima, H.2
  • 60
    • 84866687594 scopus 로고    scopus 로고
    • Chemistry and biology of biomolecule nitration
    • Jones L.H. Chemistry and biology of biomolecule nitration. Chem. Biol. 2012, 19:1086-1092.
    • (2012) Chem. Biol. , vol.19 , pp. 1086-1092
    • Jones, L.H.1
  • 61
    • 0035253023 scopus 로고    scopus 로고
    • Nitric oxide and the regulation of gene expression
    • Bogdan C. Nitric oxide and the regulation of gene expression. Trends Cell Biol. 2001, 11:66-75.
    • (2001) Trends Cell Biol. , vol.11 , pp. 66-75
    • Bogdan, C.1
  • 62
    • 84884194110 scopus 로고    scopus 로고
    • Regulation of protein function and signaling by reversible cysteine S-nitrosylation
    • Gould N., et al. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J. Biol. Chem. 2013, 288:26473-26479.
    • (2013) J. Biol. Chem. , vol.288 , pp. 26473-26479
    • Gould, N.1
  • 63
    • 84870684441 scopus 로고    scopus 로고
    • Nitrosothiols in the immune system: signaling and protection
    • Hernansanz-Agustin P., et al. Nitrosothiols in the immune system: signaling and protection. Antioxid. Redox Signal. 2013, 18:288-308.
    • (2013) Antioxid. Redox Signal. , vol.18 , pp. 288-308
    • Hernansanz-Agustin, P.1
  • 64
    • 84891758535 scopus 로고    scopus 로고
    • Protein microarray characterization of the S-nitrosoproteome
    • Lee Y.I., et al. Protein microarray characterization of the S-nitrosoproteome. Mol. Cell. Proteomics 2014, 13:63-72.
    • (2014) Mol. Cell. Proteomics , vol.13 , pp. 63-72
    • Lee, Y.I.1
  • 65
    • 84872577684 scopus 로고    scopus 로고
    • Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation
    • Doulias P.T., et al. Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci. Signal. 2013, 6:rs1.
    • (2013) Sci. Signal. , vol.6 , pp. rs1
    • Doulias, P.T.1
  • 66
    • 84864218734 scopus 로고    scopus 로고
    • 2S and S-nitrosothiols
    • 2S and S-nitrosothiols. J. Am. Chem. Soc. 2012, 134:12016-12027.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 12016-12027
    • Filipovic, M.R.1
  • 67
    • 84870683393 scopus 로고    scopus 로고
    • 2S) with the nitrogen oxides
    • 2S) with the nitrogen oxides. Free Radic. Biol. Med. 2013, 55:1-7.
    • (2013) Free Radic. Biol. Med. , vol.55 , pp. 1-7
    • King, S.B.1
  • 68
    • 84860117196 scopus 로고    scopus 로고
    • Physiological implications of hydrogen sulfide: a whiff exploration that blossomed
    • Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 2012, 92:791-896.
    • (2012) Physiol. Rev. , vol.92 , pp. 791-896
    • Wang, R.1
  • 69
    • 4644359359 scopus 로고    scopus 로고
    • Regulation of the expression of inducible nitric oxide synthase
    • Kleinert H., et al. Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 2004, 500:255-266.
    • (2004) Eur. J. Pharmacol. , vol.500 , pp. 255-266
    • Kleinert, H.1
  • 70
    • 0001378811 scopus 로고    scopus 로고
    • Autocrine/paracrine IFN-α/β mediates the lipopolysaccharide-induced activation of transcription factor Stat1α in mouse macrophages: pivotal role of Stat1α in induction of the inducible nitric oxide synthase gene
    • Gao J.J., et al. Autocrine/paracrine IFN-α/β mediates the lipopolysaccharide-induced activation of transcription factor Stat1α in mouse macrophages: pivotal role of Stat1α in induction of the inducible nitric oxide synthase gene. J. Immunol. 1998, 161:4803-4810.
    • (1998) J. Immunol. , vol.161 , pp. 4803-4810
    • Gao, J.J.1
  • 71
    • 0036222241 scopus 로고    scopus 로고
    • TLR4, but not TLR2, mediates IFN-β-induced STAT1αβ-dependent gene expression in macrophages
    • Toshchakov V., et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1αβ-dependent gene expression in macrophages. Nat. Immunol. 2002, 3:392-398.
    • (2002) Nat. Immunol. , vol.3 , pp. 392-398
    • Toshchakov, V.1
  • 72
    • 77954917130 scopus 로고    scopus 로고
    • Nonconventional initiation complex assembly by STAT and NF-kappaB transcription factors regulates nitric oxide synthase expression
    • Farlik M., et al. Nonconventional initiation complex assembly by STAT and NF-kappaB transcription factors regulates nitric oxide synthase expression. Immunity 2010, 33:25-34.
    • (2010) Immunity , vol.33 , pp. 25-34
    • Farlik, M.1
  • 73
    • 84892469287 scopus 로고    scopus 로고
    • Regulation of NO synthesis, local inflammation, and innate immunity to pathogens by BET family proteins
    • Wienerroither S., et al. Regulation of NO synthesis, local inflammation, and innate immunity to pathogens by BET family proteins. Mol. Cell. Biol. 2014, 34:415-427.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 415-427
    • Wienerroither, S.1
  • 74
    • 14844337253 scopus 로고    scopus 로고
    • Reactive oxygen and reactive nitrogen metabolites as effector molecules against infectious pathogens
    • ASM Press, S.H.E. Kaufmann (Ed.)
    • Bogdan C. Reactive oxygen and reactive nitrogen metabolites as effector molecules against infectious pathogens. The Innate Immune Response to Infection 2004, 357-396. ASM Press. S.H.E. Kaufmann (Ed.).
    • (2004) The Innate Immune Response to Infection , pp. 357-396
    • Bogdan, C.1
  • 76
    • 46049098541 scopus 로고    scopus 로고
    • L-arginine and vitamin D: novel adjunctive immunotherapies in tuberculosis
    • Ralph A.P., et al. L-arginine and vitamin D: novel adjunctive immunotherapies in tuberculosis. Trends Microbiol. 2008, 16:336-344.
    • (2008) Trends Microbiol. , vol.16 , pp. 336-344
    • Ralph, A.P.1
  • 77
    • 84918775146 scopus 로고    scopus 로고
    • 'Of mice and men': arginine metabolism in macrophages
    • Thomas A.C., Mattila J.T. 'Of mice and men': arginine metabolism in macrophages. Front. Immunol. 2014, 5:479.
    • (2014) Front. Immunol. , vol.5 , pp. 479
    • Thomas, A.C.1    Mattila, J.T.2
  • 78
    • 84880934841 scopus 로고    scopus 로고
    • Impaired pulmonary nitric oxide bioavailability in pulmonary tuberculosis: association with disease severity and delayed mycobacterial clearance with treatment
    • Ralph A.P., et al. Impaired pulmonary nitric oxide bioavailability in pulmonary tuberculosis: association with disease severity and delayed mycobacterial clearance with treatment. J. Infect. Dis. 2013, 208:616-626.
    • (2013) J. Infect. Dis. , vol.208 , pp. 616-626
    • Ralph, A.P.1
  • 79
    • 84880126124 scopus 로고    scopus 로고
    • Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms
    • Mattila J.T., et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J. Immunol. 2013, 191:773-784.
    • (2013) J. Immunol. , vol.191 , pp. 773-784
    • Mattila, J.T.1
  • 80
    • 84880280249 scopus 로고    scopus 로고
    • Generation and functional analysis of human TNF-alpha/iNOS-producing dendritic cells (Tip-DC)
    • Wilsmann-Theis D., et al. Generation and functional analysis of human TNF-alpha/iNOS-producing dendritic cells (Tip-DC). Allergy 2013, 68:890-898.
    • (2013) Allergy , vol.68 , pp. 890-898
    • Wilsmann-Theis, D.1
  • 81
    • 0029886747 scopus 로고    scopus 로고
    • Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-γ
    • Zhang X., et al. Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-γ. J. Leukoc. Biol. 1996, 59:575-585.
    • (1996) J. Leukoc. Biol. , vol.59 , pp. 575-585
    • Zhang, X.1
  • 82
    • 77954624383 scopus 로고    scopus 로고
    • Regulation of the expression of inducible nitric oxide synthase
    • Pautz A., et al. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010, 23:75-93.
    • (2010) Nitric Oxide , vol.23 , pp. 75-93
    • Pautz, A.1
  • 83
    • 84896508960 scopus 로고    scopus 로고
    • Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses
    • Gross T.J., et al. Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J. Immunol. 2014, 192:2326-2338.
    • (2014) J. Immunol. , vol.192 , pp. 2326-2338
    • Gross, T.J.1
  • 84
    • 84863487251 scopus 로고    scopus 로고
    • Identification of hamster inducible nitric oxide synthase (iNOS) promoter sequences that influence basal and inducible iNOS expression
    • Saldarriaga O.A., et al. Identification of hamster inducible nitric oxide synthase (iNOS) promoter sequences that influence basal and inducible iNOS expression. J. Leukoc. Biol. 2012, 92:205-218.
    • (2012) J. Leukoc. Biol. , vol.92 , pp. 205-218
    • Saldarriaga, O.A.1
  • 85
    • 84880255426 scopus 로고    scopus 로고
    • Inflammasome-derived IL-1beta production induces nitric oxide-mediated resistance to Leishmania
    • Lima-Junior D.S., et al. Inflammasome-derived IL-1beta production induces nitric oxide-mediated resistance to Leishmania. Nat. Med. 2013, 19:909-915.
    • (2013) Nat. Med. , vol.19 , pp. 909-915
    • Lima-Junior, D.S.1
  • 86
    • 84859563249 scopus 로고    scopus 로고
    • MiRNA-939 regulates human inducible nitric oxide synthase posttranscriptional gene expression in human hepatocytes
    • Guo Z., et al. miRNA-939 regulates human inducible nitric oxide synthase posttranscriptional gene expression in human hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:5826-5831.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 5826-5831
    • Guo, Z.1
  • 87
    • 39549087223 scopus 로고    scopus 로고
    • Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes
    • Matsui K., et al. Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology 2008, 47:686-697.
    • (2008) Hepatology , vol.47 , pp. 686-697
    • Matsui, K.1
  • 88
    • 84895767962 scopus 로고    scopus 로고
    • Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin
    • Li C., et al. Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin. PLoS Pathog. 2014, 10:e1003918.
    • (2014) PLoS Pathog. , vol.10 , pp. e1003918
    • Li, C.1
  • 89
    • 84862162820 scopus 로고    scopus 로고
    • The receptor that tames the innate immune response
    • Brines M., Cerami A. The receptor that tames the innate immune response. Mol. Med. 2012, 18:486-496.
    • (2012) Mol. Med. , vol.18 , pp. 486-496
    • Brines, M.1    Cerami, A.2
  • 90
    • 78751698162 scopus 로고    scopus 로고
    • Erythropoietin contrastingly affects bacterial infection and experimental colitis by inhibiting nuclear factor-kappaB-inducible immune pathways
    • Nairz M., et al. Erythropoietin contrastingly affects bacterial infection and experimental colitis by inhibiting nuclear factor-kappaB-inducible immune pathways. Immunity 2011, 34:61-74.
    • (2011) Immunity , vol.34 , pp. 61-74
    • Nairz, M.1
  • 91
    • 62849112815 scopus 로고    scopus 로고
    • Therapeutic effects of erythropoietin in murine models of endotoxin shock
    • Aoshiba K., et al. Therapeutic effects of erythropoietin in murine models of endotoxin shock. Crit. Care Med. 2009, 37:889-898.
    • (2009) Crit. Care Med. , vol.37 , pp. 889-898
    • Aoshiba, K.1
  • 92
    • 84890283575 scopus 로고    scopus 로고
    • MiR-125a-5p regulates differential activation of macrophages and inflammation
    • Banerjee S., et al. miR-125a-5p regulates differential activation of macrophages and inflammation. J. Biol. Chem. 2013, 288:35428-35436.
    • (2013) J. Biol. Chem. , vol.288 , pp. 35428-35436
    • Banerjee, S.1
  • 93
    • 70350455091 scopus 로고    scopus 로고
    • Inducible nitric-oxide synthase expression is regulated by mitogen-activated protein kinase phosphatase-1
    • Wang X., et al. Inducible nitric-oxide synthase expression is regulated by mitogen-activated protein kinase phosphatase-1. J. Biol. Chem. 2009, 284:27123-27134.
    • (2009) J. Biol. Chem. , vol.284 , pp. 27123-27134
    • Wang, X.1
  • 94
    • 84902246218 scopus 로고    scopus 로고
    • MiR-155 suppresses bacterial clearance in Pseudomonas aeruginosa-induced keratitis by targeting Rheb
    • Yang K., et al. miR-155 suppresses bacterial clearance in Pseudomonas aeruginosa-induced keratitis by targeting Rheb. J. Infect. Dis. 2014, 210:89-98.
    • (2014) J. Infect. Dis. , vol.210 , pp. 89-98
    • Yang, K.1
  • 95
    • 84884962976 scopus 로고    scopus 로고
    • Down-regulation of miR-301a suppresses pro-inflammatory cytokines in Toll-like receptor-triggered macrophages
    • Huang L., et al. Down-regulation of miR-301a suppresses pro-inflammatory cytokines in Toll-like receptor-triggered macrophages. Immunology 2013, 140:314-322.
    • (2013) Immunology , vol.140 , pp. 314-322
    • Huang, L.1
  • 96
    • 58049186787 scopus 로고    scopus 로고
    • Suppression of LPS-induced Interferon-gamma and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation
    • Dai R., et al. Suppression of LPS-induced Interferon-gamma and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood 2008, 112:4591-4597.
    • (2008) Blood , vol.112 , pp. 4591-4597
    • Dai, R.1
  • 97
    • 84876584007 scopus 로고    scopus 로고
    • MiR-155 regulates immune modulatory properties of mesenchymal stem cells by targeting TAK1-binding protein 2
    • Xu C., et al. miR-155 regulates immune modulatory properties of mesenchymal stem cells by targeting TAK1-binding protein 2. J. Biol. Chem. 2013, 288:11074-11079.
    • (2013) J. Biol. Chem. , vol.288 , pp. 11074-11079
    • Xu, C.1
  • 98
    • 84890859979 scopus 로고    scopus 로고
    • TNFalpha induces the expression of genes associated with endothelial dysfunction through p38MAPK-mediated down-regulation of miR-149
    • Palmieri D., et al. TNFalpha induces the expression of genes associated with endothelial dysfunction through p38MAPK-mediated down-regulation of miR-149. Biochem. Biophys. Res. Commun. 2014, 443:246-251.
    • (2014) Biochem. Biophys. Res. Commun. , vol.443 , pp. 246-251
    • Palmieri, D.1
  • 99
    • 84876118820 scopus 로고    scopus 로고
    • NPM-ALK up-regulates iNOS expression through a STAT3/microRNA-26a-dependent mechanism
    • Zhu H., et al. NPM-ALK up-regulates iNOS expression through a STAT3/microRNA-26a-dependent mechanism. J. Pathol. 2013, 230:82-94.
    • (2013) J. Pathol. , vol.230 , pp. 82-94
    • Zhu, H.1
  • 100
    • 77957358055 scopus 로고    scopus 로고
    • Loss of inducible nitric oxide synthase expression in the mouse renal cell carcinoma cell line RENCA is mediated by microRNA miR-146a
    • Perske C., et al. Loss of inducible nitric oxide synthase expression in the mouse renal cell carcinoma cell line RENCA is mediated by microRNA miR-146a. Am. J. Pathol. 2010, 177:2046-2054.
    • (2010) Am. J. Pathol. , vol.177 , pp. 2046-2054
    • Perske, C.1
  • 101
    • 84906839674 scopus 로고    scopus 로고
    • Natural antisense transcripts
    • Khorkova O., et al. Natural antisense transcripts. Hum. Mol. Genet. 2014, 23:R54-R63.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. R54-R63
    • Khorkova, O.1
  • 102
    • 84873700233 scopus 로고    scopus 로고
    • Natural antisense transcript-targeted regulation of inducible nitric oxide synthase mRNA levels
    • Yoshigai E., et al. Natural antisense transcript-targeted regulation of inducible nitric oxide synthase mRNA levels. Nitric Oxide 2013, 30:9-16.
    • (2013) Nitric Oxide , vol.30 , pp. 9-16
    • Yoshigai, E.1
  • 103
    • 84878992840 scopus 로고    scopus 로고
    • Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1 protects against antisense RNA and microRNAs
    • Ho J.J., et al. Active stabilization of human endothelial nitric oxide synthase mRNA by hnRNP E1 protects against antisense RNA and microRNAs. Mol. Cell. Biol. 2013, 33:2029-2046.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 2029-2046
    • Ho, J.J.1
  • 104
    • 52949127993 scopus 로고    scopus 로고
    • Novel noncoding antisense RNA transcribed from human anti-NOS2A locus is differentially regulated during neuronal differentiation of embryonic stem cells
    • Korneev S.A., et al. Novel noncoding antisense RNA transcribed from human anti-NOS2A locus is differentially regulated during neuronal differentiation of embryonic stem cells. RNA 2008, 14:2030-2037.
    • (2008) RNA , vol.14 , pp. 2030-2037
    • Korneev, S.A.1
  • 105
    • 80051549232 scopus 로고    scopus 로고
    • Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease
    • Olson N., van der Vliet A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide 2011, 25:125-137.
    • (2011) Nitric Oxide , vol.25 , pp. 125-137
    • Olson, N.1    van der Vliet, A.2
  • 106
    • 84892447705 scopus 로고    scopus 로고
    • Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation
    • Campbell E.L., et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 2014, 40:66-77.
    • (2014) Immunity , vol.40 , pp. 66-77
    • Campbell, E.L.1
  • 107
    • 84906322474 scopus 로고    scopus 로고
    • Hypoxia in Leishmania major skin lesions impairs the NO-dependent leishmanicidal activity of macrophages
    • Mahnke A., et al. Hypoxia in Leishmania major skin lesions impairs the NO-dependent leishmanicidal activity of macrophages. J. Invest. Dermatol. 2014, 134:2339-2346.
    • (2014) J. Invest. Dermatol. , vol.134 , pp. 2339-2346
    • Mahnke, A.1
  • 108
    • 80255134510 scopus 로고    scopus 로고
    • Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase
    • Robinson M.A., et al. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic. Biol. Med. 2011, 51:1952-1965.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 1952-1965
    • Robinson, M.A.1
  • 109
    • 80052364757 scopus 로고    scopus 로고
    • Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1alpha (HIF1A) and result in differential HIF1A-dependent gene expression
    • Jantsch J., et al. Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1alpha (HIF1A) and result in differential HIF1A-dependent gene expression. J. Leukoc. Biol. 2011, 90:551-562.
    • (2011) J. Leukoc. Biol. , vol.90 , pp. 551-562
    • Jantsch, J.1
  • 110
    • 84890224385 scopus 로고    scopus 로고
    • Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism
    • Elks P.M., et al. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog. 2013, 9:e1003789.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003789
    • Elks, P.M.1
  • 111
    • 3242674944 scopus 로고    scopus 로고
    • NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment
    • Go W.Y., et al. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:10673-10678.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 10673-10678
    • Go, W.Y.1
  • 112
    • 84879616239 scopus 로고    scopus 로고
    • Immune cells control skin lymphatic electrolyte homeostasis and blood pressure
    • Wiig H., et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 2013, 123:2803-2815.
    • (2013) J. Clin. Invest. , vol.123 , pp. 2803-2815
    • Wiig, H.1
  • 113
    • 0029585124 scopus 로고
    • Osmotic regulation of cytokine synthesis in vitro
    • Shapiro L., Dinarello C.A. Osmotic regulation of cytokine synthesis in vitro. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:12230-12234.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 12230-12234
    • Shapiro, L.1    Dinarello, C.A.2
  • 114
    • 84924259577 scopus 로고    scopus 로고
    • + storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense
    • (in press)
    • + storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 2015, (in press).
    • (2015) Cell Metab.
    • Jantsch, J.1
  • 115
    • 78649983233 scopus 로고    scopus 로고
    • Role of NFAT5 in inflammatory disorders associated with osmotic stress
    • Neuhofer W. Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr. Genomics 2010, 11:584-590.
    • (2010) Curr. Genomics , vol.11 , pp. 584-590
    • Neuhofer, W.1
  • 116
    • 84856947469 scopus 로고    scopus 로고
    • Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5
    • Buxade M., et al. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. J. Exp. Med. 2012, 209:379-393.
    • (2012) J. Exp. Med. , vol.209 , pp. 379-393
    • Buxade, M.1
  • 117
    • 84878380012 scopus 로고    scopus 로고
    • Positive feedback regulation of human inducible nitric-oxide synthase expression by Ras protein S-nitrosylation
    • Lee M., Choy J.C. Positive feedback regulation of human inducible nitric-oxide synthase expression by Ras protein S-nitrosylation. J. Biol. Chem. 2013, 288:15677-15686.
    • (2013) J. Biol. Chem. , vol.288 , pp. 15677-15686
    • Lee, M.1    Choy, J.C.2
  • 118
    • 79960965896 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice
    • Mundy-Bosse B.L., et al. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res. 2011, 71:5101-5110.
    • (2011) Cancer Res. , vol.71 , pp. 5101-5110
    • Mundy-Bosse, B.L.1
  • 119
    • 84881191992 scopus 로고    scopus 로고
    • Hydrogen sulfide chemical biology: pathophysiological roles and detection
    • Kolluru G.K., et al. Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 2013, 35:5-20.
    • (2013) Nitric Oxide , vol.35 , pp. 5-20
    • Kolluru, G.K.1
  • 120
    • 84907462766 scopus 로고    scopus 로고
    • The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide
    • Altaany Z., et al. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci. Signal. 2014, 7:ra87.
    • (2014) Sci. Signal. , vol.7 , pp. ra87
    • Altaany, Z.1
  • 121
    • 33745115862 scopus 로고    scopus 로고
    • Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide
    • Oh G.S., et al. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic. Biol. Med. 2006, 41:106-119.
    • (2006) Free Radic. Biol. Med. , vol.41 , pp. 106-119
    • Oh, G.S.1
  • 122
    • 84892604786 scopus 로고    scopus 로고
    • Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity of LPS-activated RAW264.7 cells
    • Badiei A., et al. Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity of LPS-activated RAW264.7 cells. Appl. Microbiol. Biotechnol. 2013, 97:7845-7852.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 7845-7852
    • Badiei, A.1
  • 123
    • 77949525185 scopus 로고    scopus 로고
    • Mechanisms of cell protection by heme oxygenase-1
    • Gozzelino R., et al. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010, 50:323-354.
    • (2010) Annu. Rev. Pharmacol. Toxicol. , vol.50 , pp. 323-354
    • Gozzelino, R.1
  • 124
    • 77950887186 scopus 로고    scopus 로고
    • Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation
    • Fourquet S., et al. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J. Biol. Chem. 2010, 285:8463-8471.
    • (2010) J. Biol. Chem. , vol.285 , pp. 8463-8471
    • Fourquet, S.1
  • 125
    • 4644251110 scopus 로고    scopus 로고
    • Carbon monoxide protection against endotoxic shock involves reciprocal effects on iNOS in the lung and liver
    • Sarady J.K., et al. Carbon monoxide protection against endotoxic shock involves reciprocal effects on iNOS in the lung and liver. FASEB J. 2004, 18:854-856.
    • (2004) FASEB J. , vol.18 , pp. 854-856
    • Sarady, J.K.1
  • 126
    • 45949083749 scopus 로고    scopus 로고
    • Heme oxygenase-1 is a critical regulator of nitric oxide production in enterohemorrhagic Escherichia coli-infected human enterocytes
    • Vareille M., et al. Heme oxygenase-1 is a critical regulator of nitric oxide production in enterohemorrhagic Escherichia coli-infected human enterocytes. J. Immunol. 2008, 180:5720-5726.
    • (2008) J. Immunol. , vol.180 , pp. 5720-5726
    • Vareille, M.1
  • 127
    • 84904768122 scopus 로고    scopus 로고
    • Iron at the interface of immunity and infection
    • Nairz M., et al. Iron at the interface of immunity and infection. Front. Pharmacol. 2014, 5:152.
    • (2014) Front. Pharmacol. , vol.5 , pp. 152
    • Nairz, M.1
  • 128
    • 66049098514 scopus 로고    scopus 로고
    • Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-beta production
    • Tzima S., et al. Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-beta production. J. Exp. Med. 2009, 206:1167-1179.
    • (2009) J. Exp. Med. , vol.206 , pp. 1167-1179
    • Tzima, S.1
  • 129
    • 84904015307 scopus 로고    scopus 로고
    • Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man
    • Jais A., et al. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell 2014, 158:25-40.
    • (2014) Cell , vol.158 , pp. 25-40
    • Jais, A.1
  • 130
    • 0042333363 scopus 로고    scopus 로고
    • Hypoxia inactivates inducible nitric oxide synthase in mouse macrophages by disrupting its interaction with alpha-actinin 4
    • Daniliuc S., et al. Hypoxia inactivates inducible nitric oxide synthase in mouse macrophages by disrupting its interaction with alpha-actinin 4. J. Immunol. 2003, 171:3225-3232.
    • (2003) J. Immunol. , vol.171 , pp. 3225-3232
    • Daniliuc, S.1
  • 131
    • 0141922956 scopus 로고    scopus 로고
    • Protein-protein interactions involving inducible nitric oxide synthase
    • Zhang W., et al. Protein-protein interactions involving inducible nitric oxide synthase. Acta Physiol. Scand. 2003, 179:137-142.
    • (2003) Acta Physiol. Scand. , vol.179 , pp. 137-142
    • Zhang, W.1
  • 132
    • 0141480200 scopus 로고    scopus 로고
    • Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase
    • Yoshida M., Xia Y. Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. J. Biol. Chem. 2003, 278:36953-36958.
    • (2003) J. Biol. Chem. , vol.278 , pp. 36953-36958
    • Yoshida, M.1    Xia, Y.2
  • 133
    • 37849036848 scopus 로고    scopus 로고
    • Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes
    • Davis A.S., et al. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLOS Pathog. 2007, 3:1887-1894.
    • (2007) PLOS Pathog. , vol.3 , pp. 1887-1894
    • Davis, A.S.1
  • 134
    • 77956373713 scopus 로고    scopus 로고
    • Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13)
    • Mazumdar T., et al. Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13854-13859.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13854-13859
    • Mazumdar, T.1
  • 135
    • 2942750329 scopus 로고    scopus 로고
    • Carboxypeptidase-mediated enhancement of nitric oxide production in rat lungs and microvascular endothelial cells
    • Hadkar V., et al. Carboxypeptidase-mediated enhancement of nitric oxide production in rat lungs and microvascular endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 287:L35-L45.
    • (2004) Am. J. Physiol. Lung Cell. Mol. Physiol. , vol.287 , pp. L35-L45
    • Hadkar, V.1
  • 136
    • 84924271854 scopus 로고    scopus 로고
    • Substrate-dependent nitric oxide synthesis by secreted endoplasmic reticulum aminopeptidase 1 in macrophages
    • Published online January 9, 2015.
    • Goto Y., et al. Substrate-dependent nitric oxide synthesis by secreted endoplasmic reticulum aminopeptidase 1 in macrophages. J. Biochem. 2015, Published online January 9, 2015. http://dx.doi.org/10.1093/jb/mvv001.
    • (2015) J. Biochem.
    • Goto, Y.1
  • 137
    • 70350303578 scopus 로고    scopus 로고
    • Recent advances in arginine metabolism: roles and regulation of the arginases
    • Morris S.M. Recent advances in arginine metabolism: roles and regulation of the arginases. Br. J. Pharmacol. 2009, 157:922-930.
    • (2009) Br. J. Pharmacol. , vol.157 , pp. 922-930
    • Morris, S.M.1
  • 138
    • 84884665423 scopus 로고    scopus 로고
    • R is for arginine: metabolism of arginine takes off again, in new directions
    • Michel T. R is for arginine: metabolism of arginine takes off again, in new directions. Circulation 2013, 128:1400-1404.
    • (2013) Circulation , vol.128 , pp. 1400-1404
    • Michel, T.1
  • 139
    • 56349093356 scopus 로고    scopus 로고
    • Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens
    • El Kasmi K.C., et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 2008, 9:1399-1406.
    • (2008) Nat. Immunol. , vol.9 , pp. 1399-1406
    • El Kasmi, K.C.1
  • 140
    • 68349106855 scopus 로고    scopus 로고
    • Translational repression of inducible NO synthase in macrophages by L-arginine depletion is not associated with an increased phosphorylation of eIF2alpha
    • König T., et al. Translational repression of inducible NO synthase in macrophages by L-arginine depletion is not associated with an increased phosphorylation of eIF2alpha. Immunobiology 2009, 214:822-827.
    • (2009) Immunobiology , vol.214 , pp. 822-827
    • König, T.1
  • 141
    • 84907212873 scopus 로고    scopus 로고
    • Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas
    • Duque-Correa M.A., et al. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E4024-E4032.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E4024-E4032
    • Duque-Correa, M.A.1
  • 142
    • 84883412740 scopus 로고    scopus 로고
    • Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS
    • Elms S., et al. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS. Am. J. Physiol. Heart Circ. Physiol. 2013, 305:H651-H666.
    • (2013) Am. J. Physiol. Heart Circ. Physiol. , vol.305 , pp. H651-H666
    • Elms, S.1
  • 143
    • 84866434542 scopus 로고    scopus 로고
    • Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1
    • Qualls J.E., et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 2012, 12:313-323.
    • (2012) Cell Host Microbe , vol.12 , pp. 313-323
    • Qualls, J.E.1
  • 144
    • 84861536370 scopus 로고    scopus 로고
    • Citrulline a more suitable substrate than arginine to restore NO production and the microcirculation during endotoxemia
    • Wijnands K.A., et al. Citrulline a more suitable substrate than arginine to restore NO production and the microcirculation during endotoxemia. PLoS ONE 2012, 7:e37439.
    • (2012) PLoS ONE , vol.7 , pp. e37439
    • Wijnands, K.A.1
  • 145
    • 84890833382 scopus 로고    scopus 로고
    • Argininosuccinate synthetase 1 depletion produces a metabolic state conducive to herpes simplex virus 1 infection
    • Grady S.L., et al. Argininosuccinate synthetase 1 depletion produces a metabolic state conducive to herpes simplex virus 1 infection. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E5006-E5015.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E5006-E5015
    • Grady, S.L.1
  • 146
    • 67349147426 scopus 로고    scopus 로고
    • Arginine metabolism and nutrition in growth, health and disease
    • Wu G., et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009, 37:153-168.
    • (2009) Amino Acids , vol.37 , pp. 153-168
    • Wu, G.1
  • 147
    • 84887345433 scopus 로고    scopus 로고
    • The role of arginine and arginine-metabolizing enzymes during Giardia-host cell interactions in vitro
    • Stadelmann B., et al. The role of arginine and arginine-metabolizing enzymes during Giardia-host cell interactions in vitro. BMC Microbiol. 2013, 13:256.
    • (2013) BMC Microbiol. , vol.13 , pp. 256
    • Stadelmann, B.1
  • 148
    • 1342305418 scopus 로고    scopus 로고
    • Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes
    • Regunathan S., Piletz J.E. Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann. N. Y. Acad. Sci. 2003, 1009:20-29.
    • (2003) Ann. N. Y. Acad. Sci. , vol.1009 , pp. 20-29
    • Regunathan, S.1    Piletz, J.E.2
  • 149
    • 84856492820 scopus 로고    scopus 로고
    • Agmatine (decarboxylated L-arginine): physiological role and therapeutic potential
    • Molderings G.J., Haenisch B. Agmatine (decarboxylated L-arginine): physiological role and therapeutic potential. Pharmacol. Ther. 2012, 133:351-365.
    • (2012) Pharmacol. Ther. , vol.133 , pp. 351-365
    • Molderings, G.J.1    Haenisch, B.2
  • 150
    • 84883349829 scopus 로고    scopus 로고
    • Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase
    • Deeb R.S., et al. Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase. Am. J. Physiol. Heart Circ. Physiol. 2013, 305:H687-H698.
    • (2013) Am. J. Physiol. Heart Circ. Physiol. , vol.305 , pp. H687-H698
    • Deeb, R.S.1
  • 151
    • 0034255209 scopus 로고    scopus 로고
    • Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens
    • Nathan C., Shiloh M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:8841-8848.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 8841-8848
    • Nathan, C.1    Shiloh, M.U.2
  • 152
    • 4844227764 scopus 로고    scopus 로고
    • Antimicrobial reactive oxygen and nitrogen species: concepts and controversies
    • Fang F.C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Immunol. 2004, 2:820-832.
    • (2004) Nat. Rev. Immunol. , vol.2 , pp. 820-832
    • Fang, F.C.1
  • 153
    • 0034440779 scopus 로고    scopus 로고
    • Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages
    • Feng H.M., Walker D.H. Mechanisms of intracellular killing of Rickettsia conorii in infected human endothelial cells, hepatocytes, and macrophages. Infect. Immun. 2000, 68:6729-6736.
    • (2000) Infect. Immun. , vol.68 , pp. 6729-6736
    • Feng, H.M.1    Walker, D.H.2
  • 154
    • 0037625155 scopus 로고    scopus 로고
    • TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection
    • Serbina N.V., et al. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003, 19:59-70.
    • (2003) Immunity , vol.19 , pp. 59-70
    • Serbina, N.V.1
  • 155
    • 84861211003 scopus 로고    scopus 로고
    • In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice
    • Copin R., et al. In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice. PLoS Pathog. 2012, 8:e1002575.
    • (2012) PLoS Pathog. , vol.8 , pp. e1002575
    • Copin, R.1
  • 156
    • 84855384507 scopus 로고    scopus 로고
    • Eosinophils preserve parasitic nematode larvae by regulating local immunity
    • Gebreselassie N.G., et al. Eosinophils preserve parasitic nematode larvae by regulating local immunity. J. Immunol. 2012, 188:417-425.
    • (2012) J. Immunol. , vol.188 , pp. 417-425
    • Gebreselassie, N.G.1
  • 157
    • 84921501593 scopus 로고    scopus 로고
    • Dual pro-inflammatory and antiviral properties of pulmonary eosinophils in respiratory syncytial virus (RSV) vaccine-enhanced disease
    • Su Y.C., et al. Dual pro-inflammatory and antiviral properties of pulmonary eosinophils in respiratory syncytial virus (RSV) vaccine-enhanced disease. J. Virol. 2015, 89:1564-1578.
    • (2015) J. Virol. , vol.89 , pp. 1564-1578
    • Su, Y.C.1
  • 158
    • 44849086204 scopus 로고    scopus 로고
    • Inactivation of [Fe-S] metalloproteins mediates nitric oxide-dependent killing of Burkholderia mallei
    • Jones-Carson J., et al. Inactivation of [Fe-S] metalloproteins mediates nitric oxide-dependent killing of Burkholderia mallei. PLoS ONE 2008, 3:e1976.
    • (2008) PLoS ONE , vol.3 , pp. e1976
    • Jones-Carson, J.1
  • 159
    • 79960549151 scopus 로고    scopus 로고
    • Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar typhimurium
    • Richardson A.R., et al. Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar typhimurium. Cell Host Microbe 2011, 10:33-43.
    • (2011) Cell Host Microbe , vol.10 , pp. 33-43
    • Richardson, A.R.1
  • 160
    • 80052483609 scopus 로고    scopus 로고
    • Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins
    • Savidge T.C., et al. Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins. Nat. Med. 2011, 17:1136-1141.
    • (2011) Nat. Med. , vol.17 , pp. 1136-1141
    • Savidge, T.C.1
  • 161
    • 84886047191 scopus 로고    scopus 로고
    • Photoconvertible pathogen labeling reveals nitric oxide control of Leishmania major infection in vivo via dampening of parasite metabolism
    • Muller A.J., et al. Photoconvertible pathogen labeling reveals nitric oxide control of Leishmania major infection in vivo via dampening of parasite metabolism. Cell Host Microbe 2013, 14:460-467.
    • (2013) Cell Host Microbe , vol.14 , pp. 460-467
    • Muller, A.J.1
  • 162
    • 84855756293 scopus 로고    scopus 로고
    • A small molecule deubiquitinase inhibitor increases localization of inducible nitric oxide synthase to the macrophage phagosome and enhances bacterial killing
    • Burkholder K.M., et al. A small molecule deubiquitinase inhibitor increases localization of inducible nitric oxide synthase to the macrophage phagosome and enhances bacterial killing. Infect. Immun. 2011, 79:4850-4857.
    • (2011) Infect. Immun. , vol.79 , pp. 4850-4857
    • Burkholder, K.M.1
  • 163
    • 0034686436 scopus 로고    scopus 로고
    • Fibroblasts as host cells in latent leishmaniosis
    • Bogdan C., et al. Fibroblasts as host cells in latent leishmaniosis. J. Exp. Med. 2000, 191:2121-2129.
    • (2000) J. Exp. Med. , vol.191 , pp. 2121-2129
    • Bogdan, C.1
  • 164
    • 84897553118 scopus 로고    scopus 로고
    • Collective nitric oxide production provides tissue-wide immunity during Leishmania infection
    • Olekhnovitch R., et al. Collective nitric oxide production provides tissue-wide immunity during Leishmania infection. J. Clin. Invest. 2014, 124:1711-1722.
    • (2014) J. Clin. Invest. , vol.124 , pp. 1711-1722
    • Olekhnovitch, R.1
  • 165
    • 79955750977 scopus 로고    scopus 로고
    • Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis
    • Herbst S., et al. Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS ONE 2011, 6:e19105.
    • (2011) PLoS ONE , vol.6 , pp. e19105
    • Herbst, S.1
  • 166
    • 42149167488 scopus 로고    scopus 로고
    • Stimulation of inducible nitric oxide synthase expression by beta interferon increases necrotic death of macrophages upon Listeria monocytogenes infection
    • Zwaferink H., et al. Stimulation of inducible nitric oxide synthase expression by beta interferon increases necrotic death of macrophages upon Listeria monocytogenes infection. Infect. Immun. 2008, 76:1649-1656.
    • (2008) Infect. Immun. , vol.76 , pp. 1649-1656
    • Zwaferink, H.1
  • 167
    • 84891132880 scopus 로고    scopus 로고
    • Endogenous nitrated nucleotide is a key mediator of autophagy and innate defense against bacteria
    • Ito C., et al. Endogenous nitrated nucleotide is a key mediator of autophagy and innate defense against bacteria. Mol. Cell 2013, 52:794-804.
    • (2013) Mol. Cell , vol.52 , pp. 794-804
    • Ito, C.1
  • 168
    • 84921529601 scopus 로고    scopus 로고
    • Atg7 enhances host defense against infection via downregulation of superoxide but upregulation of nitric oxide
    • Li X., et al. Atg7 enhances host defense against infection via downregulation of superoxide but upregulation of nitric oxide. J. Immunol. 2015, 194:1112-1121.
    • (2015) J. Immunol. , vol.194 , pp. 1112-1121
    • Li, X.1
  • 169
    • 84879571563 scopus 로고    scopus 로고
    • Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection
    • Nairz M., et al. Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. J. Exp. Med. 2013, 210:855-873.
    • (2013) J. Exp. Med. , vol.210 , pp. 855-873
    • Nairz, M.1
  • 170
    • 45249113977 scopus 로고    scopus 로고
    • Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide
    • Axelrod S., et al. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell Microbiol. 2008, 10:1530-1545.
    • (2008) Cell Microbiol. , vol.10 , pp. 1530-1545
    • Axelrod, S.1
  • 171
    • 34547220098 scopus 로고    scopus 로고
    • Nitric oxide inhibits Shiga-toxin synthesis by enterohemorrhagic Escherichia coli
    • Vareille M., et al. Nitric oxide inhibits Shiga-toxin synthesis by enterohemorrhagic Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:10199-10204.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 10199-10204
    • Vareille, M.1
  • 172
    • 84893740053 scopus 로고    scopus 로고
    • NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157:H7 LEE pathogenicity island in response to nitric oxide
    • Branchu P., et al. NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157:H7 LEE pathogenicity island in response to nitric oxide. PLoS Pathog. 2014, 10:e1003874.
    • (2014) PLoS Pathog. , vol.10 , pp. e1003874
    • Branchu, P.1
  • 173
    • 84904260698 scopus 로고    scopus 로고
    • Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases
    • Barraud N., et al. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr. Pharm. Des. 2014, 21:21-42.
    • (2014) Curr. Pharm. Des. , vol.21 , pp. 21-42
    • Barraud, N.1
  • 174
    • 84922242011 scopus 로고    scopus 로고
    • Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells
    • Published online December 31, 2014.
    • Ramphul U.N., et al. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells. Proc. Natl. Acad. Sci. U.S.A. 2014, Published online December 31, 2014. http://dx.doi.org/10.1073/pnas.1423586112.
    • (2014) Proc. Natl. Acad. Sci. U.S.A.
    • Ramphul, U.N.1
  • 175
    • 84892604268 scopus 로고    scopus 로고
    • Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice
    • Burton N.A., et al. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe 2014, 15:72-83.
    • (2014) Cell Host Microbe , vol.15 , pp. 72-83
    • Burton, N.A.1
  • 176
    • 84868575935 scopus 로고    scopus 로고
    • Structural and functional characterization of the nitrite channel NirC from Salmonella typhimurium
    • Lu W., et al. Structural and functional characterization of the nitrite channel NirC from Salmonella typhimurium. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:18395-18400.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 18395-18400
    • Lu, W.1
  • 177
    • 84861447117 scopus 로고    scopus 로고
    • Nitric oxide increases susceptibility of Toll-like receptor-activated macrophages to spreading Listeria monocytogenes
    • Cole C., et al. Nitric oxide increases susceptibility of Toll-like receptor-activated macrophages to spreading Listeria monocytogenes. Immunity 2012, 36:807-820.
    • (2012) Immunity , vol.36 , pp. 807-820
    • Cole, C.1
  • 178
    • 84861439961 scopus 로고    scopus 로고
    • Listeria monocytogenes: no spreading without NO
    • Bogdan C. Listeria monocytogenes: no spreading without NO. Immunity 2012, 36:697-699.
    • (2012) Immunity , vol.36 , pp. 697-699
    • Bogdan, C.1
  • 179
    • 38949187268 scopus 로고    scopus 로고
    • Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages
    • Shatalin K., et al. Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:1009-1013.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 1009-1013
    • Shatalin, K.1
  • 180
    • 84874782570 scopus 로고    scopus 로고
    • Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development
    • van Sorge N.M., et al. Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development. J. Biol. Chem. 2013, 288:6417-6426.
    • (2013) J. Biol. Chem. , vol.288 , pp. 6417-6426
    • van Sorge, N.M.1
  • 181
    • 0029132167 scopus 로고
    • Reversible binding and inhibition of catalase by nitric oxide
    • Brown G.C. Reversible binding and inhibition of catalase by nitric oxide. Eur. J. Biochem. 1995, 232:188-191.
    • (1995) Eur. J. Biochem. , vol.232 , pp. 188-191
    • Brown, G.C.1
  • 182
    • 0346728620 scopus 로고    scopus 로고
    • Cytokines and nitric oxide inhibit the enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells
    • Sigfrid L.A., et al. Cytokines and nitric oxide inhibit the enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells. J. Mol. Endocrinol. 2003, 31:509-518.
    • (2003) J. Mol. Endocrinol. , vol.31 , pp. 509-518
    • Sigfrid, L.A.1
  • 183
    • 84866045625 scopus 로고    scopus 로고
    • The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium
    • Karlinsey J.E., et al. The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 2012, 85:1179-1193.
    • (2012) Mol. Microbiol. , vol.85 , pp. 1179-1193
    • Karlinsey, J.E.1
  • 184
    • 84890854992 scopus 로고    scopus 로고
    • Ferric uptake regulator-dependent antinitrosative defenses in Salmonella enterica serovar Typhimurium pathogenesis
    • Husain M., et al. Ferric uptake regulator-dependent antinitrosative defenses in Salmonella enterica serovar Typhimurium pathogenesis. Infect. Immun. 2014, 82:333-340.
    • (2014) Infect. Immun. , vol.82 , pp. 333-340
    • Husain, M.1
  • 185
    • 84891605602 scopus 로고    scopus 로고
    • The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia
    • e00696-00613
    • Kinkel T.L., et al. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. MBio 2013, 4. e00696-00613.
    • (2013) MBio , vol.4
    • Kinkel, T.L.1
  • 186
    • 84863451084 scopus 로고    scopus 로고
    • Phage-mediated acquisition of a type III secreted effector protein boosts growth of salmonella by nitrate respiration
    • Lopez C.A., et al. Phage-mediated acquisition of a type III secreted effector protein boosts growth of salmonella by nitrate respiration. MBio 2012, 3:e00143-e212.
    • (2012) MBio , vol.3 , pp. e00143-e212
    • Lopez, C.A.1
  • 187
    • 84873513423 scopus 로고    scopus 로고
    • Host-derived nitrate boosts growth of E. coli in the inflamed gut
    • Winter S.E., et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 2013, 339:708-711.
    • (2013) Science , vol.339 , pp. 708-711
    • Winter, S.E.1
  • 188
    • 84883437835 scopus 로고    scopus 로고
    • Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration
    • Spees A.M., et al. Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration. MBio 2013, 4:e00143-e212.
    • (2013) MBio , vol.4 , pp. e00143-e212
    • Spees, A.M.1
  • 189
    • 84860176878 scopus 로고    scopus 로고
    • Endogenous protein S-mitrosylation in E. coli: regulation by OxyR
    • Seth D., et al. Endogenous protein S-mitrosylation in E. coli: regulation by OxyR. Science 2012, 336:470-473.
    • (2012) Science , vol.336 , pp. 470-473
    • Seth, D.1
  • 190
    • 84884258229 scopus 로고    scopus 로고
    • The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria
    • Jung J.Y., et al. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect. Immun. 2013, 81:3198-3209.
    • (2013) Infect. Immun. , vol.81 , pp. 3198-3209
    • Jung, J.Y.1
  • 191
    • 78149425904 scopus 로고    scopus 로고
    • Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses
    • Tan M.P., et al. Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS ONE 2010, 5:e13356.
    • (2010) PLoS ONE , vol.5 , pp. e13356
    • Tan, M.P.1
  • 192
    • 41949097208 scopus 로고    scopus 로고
    • Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration
    • Sohaskey C.D. Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J. Bacteriol. 2008, 190:2981-2986.
    • (2008) J. Bacteriol. , vol.190 , pp. 2981-2986
    • Sohaskey, C.D.1
  • 193
    • 84887276558 scopus 로고    scopus 로고
    • Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression
    • Cunningham-Bussel A., et al. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E4256-E4265.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E4256-E4265
    • Cunningham-Bussel, A.1
  • 194
    • 84866328107 scopus 로고    scopus 로고
    • Bacterium-generated nitric oxide hijacks host tumor necrosis factor alpha signaling and modulates the host cell cycle in vitro
    • Mocca B., Wang W. Bacterium-generated nitric oxide hijacks host tumor necrosis factor alpha signaling and modulates the host cell cycle in vitro. J. Bacteriol. 2012, 194:4059-4068.
    • (2012) J. Bacteriol. , vol.194 , pp. 4059-4068
    • Mocca, B.1    Wang, W.2
  • 195
    • 77954667437 scopus 로고    scopus 로고
    • Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator
    • Das P., et al. Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010, 6:e1000899.
    • (2010) PLoS Pathog. , vol.6 , pp. e1000899
    • Das, P.1
  • 196
    • 84890824598 scopus 로고    scopus 로고
    • Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity
    • Cusumano Z.T., et al. Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity. Infect. Immun. 2014, 82:233-242.
    • (2014) Infect. Immun. , vol.82 , pp. 233-242
    • Cusumano, Z.T.1
  • 197
    • 84870896221 scopus 로고    scopus 로고
    • Expression of STM4467-encoded arginine deiminase controlled by the STM4463 regulator contributes to Salmonella enterica serovar Typhimurium virulence
    • Choi Y., et al. Expression of STM4467-encoded arginine deiminase controlled by the STM4463 regulator contributes to Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 2012, 80:4291-4297.
    • (2012) Infect. Immun. , vol.80 , pp. 4291-4297
    • Choi, Y.1
  • 198
    • 67749114649 scopus 로고    scopus 로고
    • Arginine homeostasis and transport in the human pathogen Leishmania donovani
    • Darlyuk I., et al. Arginine homeostasis and transport in the human pathogen Leishmania donovani. J. Biol. Chem. 2009, 284:19800-19807.
    • (2009) J. Biol. Chem. , vol.284 , pp. 19800-19807
    • Darlyuk, I.1
  • 199
    • 43449096354 scopus 로고    scopus 로고
    • Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example
    • Bogdan C. Mechanisms and consequences of persistence of intracellular pathogens: leishmaniasis as an example. Cell. Microbiol. 2008, 10:1221-1234.
    • (2008) Cell. Microbiol. , vol.10 , pp. 1221-1234
    • Bogdan, C.1
  • 200
    • 84880672271 scopus 로고    scopus 로고
    • Redox control of inflammation in macrophages
    • Brune B., et al. Redox control of inflammation in macrophages. Antioxid. Redox Signal. 2013, 19:595-637.
    • (2013) Antioxid. Redox Signal. , vol.19 , pp. 595-637
    • Brune, B.1
  • 201
    • 84872543724 scopus 로고    scopus 로고
    • + macrophages in experimental autoimmune myocarditis
    • + macrophages in experimental autoimmune myocarditis. Cardiovasc. Res. 2013, 97:219-229.
    • (2013) Cardiovasc. Res. , vol.97 , pp. 219-229
    • Blyszczuk, P.1
  • 202
    • 84873533655 scopus 로고    scopus 로고
    • Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage
    • Rigamonti E., et al. Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. J. Immunol. 2013, 190:1767-1777.
    • (2013) J. Immunol. , vol.190 , pp. 1767-1777
    • Rigamonti, E.1
  • 203
    • 79959886743 scopus 로고    scopus 로고
    • Complex inhibitory effects of nitric oxide on autophagy
    • Sarkar S., et al. Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell 2011, 43:19-32.
    • (2011) Mol. Cell , vol.43 , pp. 19-32
    • Sarkar, S.1
  • 204
    • 78650663849 scopus 로고    scopus 로고
    • Lymphocyte development requires S-nitrosoglutathione reductase
    • Yang Z., et al. Lymphocyte development requires S-nitrosoglutathione reductase. J. Immunol. 2010, 185:6664-6669.
    • (2010) J. Immunol. , vol.185 , pp. 6664-6669
    • Yang, Z.1
  • 205
    • 84879665008 scopus 로고    scopus 로고
    • Nitric oxide-induced regulatory T cells inhibit Th17 but not Th1 cell differentiation and function
    • Niedbala W., et al. Nitric oxide-induced regulatory T cells inhibit Th17 but not Th1 cell differentiation and function. J. Immunol. 2013, 191:164-170.
    • (2013) J. Immunol. , vol.191 , pp. 164-170
    • Niedbala, W.1
  • 206
    • 84907365249 scopus 로고    scopus 로고
    • Nitric oxide enhances Th9 cell differentiation and airway inflammation
    • Niedbala W., et al. Nitric oxide enhances Th9 cell differentiation and airway inflammation. Nat. Commun. 2014, 5:4575.
    • (2014) Nat. Commun. , vol.5 , pp. 4575
    • Niedbala, W.1
  • 207
    • 84880662741 scopus 로고    scopus 로고
    • T cell-derived inducible nitric oxide synthase switches off Th17 cell differentiation
    • Yang J., et al. T cell-derived inducible nitric oxide synthase switches off Th17 cell differentiation. J. Exp. Med. 2013, 210:1447-1462.
    • (2013) J. Exp. Med. , vol.210 , pp. 1447-1462
    • Yang, J.1
  • 208
    • 79959566034 scopus 로고    scopus 로고
    • + regulatory T cell differentiation and potentiate Th1 development
    • + regulatory T cell differentiation and potentiate Th1 development. J. Immunol. 2011, 186:6972-6980.
    • (2011) J. Immunol. , vol.186 , pp. 6972-6980
    • Lee, S.W.1
  • 209
    • 84880653035 scopus 로고    scopus 로고
    • Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling
    • Obermajer N., et al. Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling. J. Exp. Med. 2013, 210:1433-1445.
    • (2013) J. Exp. Med. , vol.210 , pp. 1433-1445
    • Obermajer, N.1
  • 210
    • 77649192408 scopus 로고    scopus 로고
    • B1 cells produce nitric oxide in response to a series of toll-like receptor ligands
    • Tumurkhuu G., et al. B1 cells produce nitric oxide in response to a series of toll-like receptor ligands. Cell. Immunol. 2010, 261:122-127.
    • (2010) Cell. Immunol. , vol.261 , pp. 122-127
    • Tumurkhuu, G.1
  • 211
    • 84894472467 scopus 로고    scopus 로고
    • Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells
    • Saini A.S., et al. Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells. Nat. Immunol. 2014, 15:275-282.
    • (2014) Nat. Immunol. , vol.15 , pp. 275-282
    • Saini, A.S.1
  • 212
    • 33750253585 scopus 로고    scopus 로고
    • Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice
    • Jayasekera J.P., et al. Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice. J. Gen. Virol. 2006, 87:3361-3371.
    • (2006) J. Gen. Virol. , vol.87 , pp. 3361-3371
    • Jayasekera, J.P.1
  • 213
    • 34548176272 scopus 로고    scopus 로고
    • Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells
    • Tezuka H., et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 2007, 448:929-933.
    • (2007) Nature , vol.448 , pp. 929-933
    • Tezuka, H.1
  • 214
    • 84906077556 scopus 로고    scopus 로고
    • Nitric oxide regulates BAFF expression and T cell-independent antibody responses
    • Giordano D., et al. Nitric oxide regulates BAFF expression and T cell-independent antibody responses. J. Immunol. 2014, 193:1110-1120.
    • (2014) J. Immunol. , vol.193 , pp. 1110-1120
    • Giordano, D.1
  • 215
    • 38649105374 scopus 로고    scopus 로고
    • Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide
    • Ren G., et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008, 2:141-150.
    • (2008) Cell Stem Cell , vol.2 , pp. 141-150
    • Ren, G.1
  • 216
    • 84857684777 scopus 로고    scopus 로고
    • How mesenchymal stem cells interact with tissue immune responses
    • Shi Y., et al. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012, 33:136-143.
    • (2012) Trends Immunol. , vol.33 , pp. 136-143
    • Shi, Y.1
  • 217
    • 80054918372 scopus 로고    scopus 로고
    • Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes
    • Lukacs-Kornek V., et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat. Immunol. 2011, 12:1096-1104.
    • (2011) Nat. Immunol. , vol.12 , pp. 1096-1104
    • Lukacs-Kornek, V.1
  • 218
    • 81055124813 scopus 로고    scopus 로고
    • Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide
    • Siegert S., et al. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS ONE 2011, 6:e27618.
    • (2011) PLoS ONE , vol.6 , pp. e27618
    • Siegert, S.1
  • 219
    • 84876319324 scopus 로고    scopus 로고
    • Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels
    • Scallan J.P., Davis M.J. Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels. J. Physiol. 2013, 591:2139-2156.
    • (2013) J. Physiol. , vol.591 , pp. 2139-2156
    • Scallan, J.P.1    Davis, M.J.2
  • 220
    • 84876562902 scopus 로고    scopus 로고
    • Regulation of chemokines, CCL3 and CCL4, by interferon gamma and nitric oxide synthase 2 in mouse macrophages and during Salmonella enterica serovar typhimurium infection
    • Chandrasekar B., et al. Regulation of chemokines, CCL3 and CCL4, by interferon gamma and nitric oxide synthase 2 in mouse macrophages and during Salmonella enterica serovar typhimurium infection. J. Infect. Dis. 2013, 207:1556-1568.
    • (2013) J. Infect. Dis. , vol.207 , pp. 1556-1568
    • Chandrasekar, B.1
  • 221
    • 80054694464 scopus 로고    scopus 로고
    • Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells
    • Molon B., et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 2011, 208:1949-1962.
    • (2011) J. Exp. Med. , vol.208 , pp. 1949-1962
    • Molon, B.1
  • 222
    • 47049125295 scopus 로고    scopus 로고
    • Interferon-gamma limits Th1 lymphocyte adhesion to inflamed endothelium: a nitric oxide regulatory feedback mechanism
    • Norman M.U., et al. Interferon-gamma limits Th1 lymphocyte adhesion to inflamed endothelium: a nitric oxide regulatory feedback mechanism. Eur. J. Immunol. 2008, 38:1368-1380.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 1368-1380
    • Norman, M.U.1
  • 223
    • 79952229169 scopus 로고    scopus 로고
    • + DC subset that regulates Th1 immune responses
    • + DC subset that regulates Th1 immune responses. J. Leukoc. Biol. 2011, 89:443-455.
    • (2011) J. Leukoc. Biol. , vol.89 , pp. 443-455
    • Giordano, D.1
  • 224
    • 84869785875 scopus 로고    scopus 로고
    • Cutting edge: nitric oxide inhibits the NLRP3 inflammasome
    • Hernandez-Cuellar E., et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J. Immunol. 2012, 189:5113-5117.
    • (2012) J. Immunol. , vol.189 , pp. 5113-5117
    • Hernandez-Cuellar, E.1
  • 225
    • 84871188736 scopus 로고    scopus 로고
    • Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta
    • Mishra B.B., et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. Nat. Immunol. 2013, 14:52-60.
    • (2013) Nat. Immunol. , vol.14 , pp. 52-60
    • Mishra, B.B.1
  • 226
    • 84873710963 scopus 로고    scopus 로고
    • Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock
    • Mao K., et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res. 2013, 23:201-212.
    • (2013) Cell Res. , vol.23 , pp. 201-212
    • Mao, K.1
  • 227
    • 84871824378 scopus 로고    scopus 로고
    • + T effectors: selective regulation of T effector-memory apoptosis by inducible nitric oxide synthase
    • + T effectors: selective regulation of T effector-memory apoptosis by inducible nitric oxide synthase. J. Immunol. 2013, 190:97-105.
    • (2013) J. Immunol. , vol.190 , pp. 97-105
    • Purushothaman, D.1
  • 228
    • 0032482189 scopus 로고    scopus 로고
    • The multiplex function of nitric oxide in (auto)immunity
    • Bogdan C. The multiplex function of nitric oxide in (auto)immunity. J. Exp. Med. 1998, 187:1361-1365.
    • (1998) J. Exp. Med. , vol.187 , pp. 1361-1365
    • Bogdan, C.1
  • 229
    • 84874779118 scopus 로고    scopus 로고
    • The yin and yang of nitric oxide in cancer progression
    • Burke A.J., et al. The yin and yang of nitric oxide in cancer progression. Carcinogenesis 2013, 34:503-512.
    • (2013) Carcinogenesis , vol.34 , pp. 503-512
    • Burke, A.J.1
  • 230
    • 84862852281 scopus 로고    scopus 로고
    • The potential of nitric oxide releasing therapies as antimicrobial agents
    • Schairer D.O., et al. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 2012, 3:271-279.
    • (2012) Virulence , vol.3 , pp. 271-279
    • Schairer, D.O.1
  • 231
    • 22944444837 scopus 로고    scopus 로고
    • Nitric oxide synthase inhibition in sepsis? Lessons learned from large-animal studies
    • Hauser B., et al. Nitric oxide synthase inhibition in sepsis? Lessons learned from large-animal studies. Anesth. Analg. 2005, 101:488-498.
    • (2005) Anesth. Analg. , vol.101 , pp. 488-498
    • Hauser, B.1
  • 232
    • 84907383506 scopus 로고    scopus 로고
    • Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality murine sepsis
    • 249ra109
    • Fletcher A.L., et al. Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality murine sepsis. Sci. Transl. Med. 2014, 6:249ra109.
    • (2014) Sci. Transl. Med. , vol.6
    • Fletcher, A.L.1
  • 233
    • 84914096079 scopus 로고    scopus 로고
    • Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors
    • Beury D.W., et al. Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors. J. Leukoc. Biol. 2014, 96:1109-1118.
    • (2014) J. Leukoc. Biol. , vol.96 , pp. 1109-1118
    • Beury, D.W.1
  • 234
    • 47049089532 scopus 로고    scopus 로고
    • Nitric oxide, apoptosis and macrophage polarization during tumor progression
    • Weigert A., Brune B. Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide 2008, 19:95-102.
    • (2008) Nitric Oxide , vol.19 , pp. 95-102
    • Weigert, A.1    Brune, B.2
  • 235
    • 84858785703 scopus 로고    scopus 로고
    • Coordinated regulation of myeloid cells by tumours
    • Gabrilovich D.I., et al. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012, 12:253-268.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 253-268
    • Gabrilovich, D.I.1
  • 236
    • 84899655872 scopus 로고    scopus 로고
    • Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression
    • Heinecke J.L., et al. Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:6323-6328.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 6323-6328
    • Heinecke, J.L.1
  • 237
    • 84887483618 scopus 로고    scopus 로고
    • Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction
    • Long Y., et al. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol. Cancer Ther. 2013, 12:2581-2590.
    • (2013) Mol. Cancer Ther. , vol.12 , pp. 2581-2590
    • Long, Y.1
  • 238
    • 84887455091 scopus 로고    scopus 로고
    • Attenuation of argininosuccinate lyase inhibits cancer growth via cyclin A2 and nitric oxide
    • Huang H.L., et al. Attenuation of argininosuccinate lyase inhibits cancer growth via cyclin A2 and nitric oxide. Mol. Cancer Ther. 2013, 12:2505-2516.
    • (2013) Mol. Cancer Ther. , vol.12 , pp. 2505-2516
    • Huang, H.L.1
  • 239
    • 84893360415 scopus 로고    scopus 로고
    • Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges
    • Phillips M.M., et al. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res. Treat. 2013, 45:251-262.
    • (2013) Cancer Res. Treat. , vol.45 , pp. 251-262
    • Phillips, M.M.1
  • 240
    • 84916624777 scopus 로고    scopus 로고
    • Arginine deprivation in cancer therapy
    • Feun L.G., et al. Arginine deprivation in cancer therapy. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18:78-82.
    • (2015) Curr. Opin. Clin. Nutr. Metab. Care , vol.18 , pp. 78-82
    • Feun, L.G.1
  • 241
    • 84887615734 scopus 로고    scopus 로고
    • Endothelial nitric oxide deficiency promotes Alzheimer's disease pathology
    • Austin S.A., et al. Endothelial nitric oxide deficiency promotes Alzheimer's disease pathology. J. Neurochem. 2013, 127:691-700.
    • (2013) J. Neurochem. , vol.127 , pp. 691-700
    • Austin, S.A.1
  • 242
    • 27744495494 scopus 로고    scopus 로고
    • Protection from Alzheimer's-like disease in the mouse by genetic ablation of inducible nitric oxide synthase
    • Nathan C., et al. Protection from Alzheimer's-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J. Exp. Med. 2005, 202:1163-1169.
    • (2005) J. Exp. Med. , vol.202 , pp. 1163-1169
    • Nathan, C.1
  • 243
    • 84873087532 scopus 로고    scopus 로고
    • NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice
    • Heneka M.T., et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 2013, 493:674-678.
    • (2013) Nature , vol.493 , pp. 674-678
    • Heneka, M.T.1
  • 244
    • 84860704720 scopus 로고    scopus 로고
    • Nitric oxide decreases the enzymatic activity of insulin degrading enzyme in APP/PS1 mice
    • Kummer M.P., et al. Nitric oxide decreases the enzymatic activity of insulin degrading enzyme in APP/PS1 mice. J. Neuroimmune Pharmacol. 2012, 7:165-172.
    • (2012) J. Neuroimmune Pharmacol. , vol.7 , pp. 165-172
    • Kummer, M.P.1
  • 245
    • 84902112745 scopus 로고    scopus 로고
    • Altered arginine metabolism in Alzheimer's disease brains
    • Liu P., et al. Altered arginine metabolism in Alzheimer's disease brains. Neurobiol. Aging 2014, 35:1992-2003.
    • (2014) Neurobiol. Aging , vol.35 , pp. 1992-2003
    • Liu, P.1
  • 246
    • 68149166459 scopus 로고    scopus 로고
    • Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain
    • Stuehr D.J., et al. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J. 2009, 276:3959-3974.
    • (2009) FEBS J. , vol.276 , pp. 3959-3974
    • Stuehr, D.J.1
  • 247
    • 84907227897 scopus 로고    scopus 로고
    • Molecular architecture of mammalian nitric oxide synthases
    • Campbell M.G., et al. Molecular architecture of mammalian nitric oxide synthases. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E3614-E3623.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E3614-E3623
    • Campbell, M.G.1
  • 248
    • 84872277775 scopus 로고    scopus 로고
    • Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling
    • Smith B.C., Marletta M.A. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr. Opin. Chem. Biol. 2012, 16:498-506.
    • (2012) Curr. Opin. Chem. Biol. , vol.16 , pp. 498-506
    • Smith, B.C.1    Marletta, M.A.2
  • 249
    • 84880268679 scopus 로고    scopus 로고
    • Biological nitric oxide signalling: chemistry and terminology
    • Heinrich T.A., et al. Biological nitric oxide signalling: chemistry and terminology. Br. J. Pharmacol. 2013, 169:1417-1429.
    • (2013) Br. J. Pharmacol. , vol.169 , pp. 1417-1429
    • Heinrich, T.A.1
  • 250
    • 84880757177 scopus 로고    scopus 로고
    • Deciphering and reversing tumor immune suppression
    • Motz G.T., Coukos G. Deciphering and reversing tumor immune suppression. Immunity 2013, 39:61-73.
    • (2013) Immunity , vol.39 , pp. 61-73
    • Motz, G.T.1    Coukos, G.2
  • 251
    • 84862076074 scopus 로고    scopus 로고
    • Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release
    • Jayaraman P., et al. Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J. Immunol. 2012, 188:5365-5376.
    • (2012) J. Immunol. , vol.188 , pp. 5365-5376
    • Jayaraman, P.1
  • 252
    • 84887561907 scopus 로고    scopus 로고
    • +/M1 phenotype that orchestrates effective T cell immunotherapy
    • +/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 2013, 24:589-602.
    • (2013) Cancer Cell , vol.24 , pp. 589-602
    • Klug, F.1
  • 253
    • 79959969874 scopus 로고    scopus 로고
    • Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2
    • Eyler C.E., et al. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 2011, 146:53-66.
    • (2011) Cell , vol.146 , pp. 53-66
    • Eyler, C.E.1
  • 254
    • 78149305887 scopus 로고    scopus 로고
    • Macrophage-dependent nitric oxide expression regulates tumor cell detachment and metastasis after IL-2/anti-CD40 immunotherapy
    • Weiss J.M., et al. Macrophage-dependent nitric oxide expression regulates tumor cell detachment and metastasis after IL-2/anti-CD40 immunotherapy. J. Exp. Med. 2010, 207:2455-2467.
    • (2010) J. Exp. Med. , vol.207 , pp. 2455-2467
    • Weiss, J.M.1
  • 255
    • 84866497973 scopus 로고    scopus 로고
    • S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer
    • Switzer C.H., et al. S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer. Mol. Cancer Res. 2012, 10:1203-1215.
    • (2012) Mol. Cancer Res. , vol.10 , pp. 1203-1215
    • Switzer, C.H.1
  • 256
    • 84905984393 scopus 로고    scopus 로고
    • Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression
    • Jeon H.M., et al. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res. 2014, 74:4482-4492.
    • (2014) Cancer Res. , vol.74 , pp. 4482-4492
    • Jeon, H.M.1
  • 257
    • 84921863311 scopus 로고    scopus 로고
    • Shedding of the tumor necrosis factor (TNF) receptor from the surface of hepatocytes during sepsis limits inflammation through cGMP signaling
    • Deng M., et al. Shedding of the tumor necrosis factor (TNF) receptor from the surface of hepatocytes during sepsis limits inflammation through cGMP signaling. Sci. Signal. 2015, http://stke.sciencemag.org/content/8/361/ra11.long.
    • (2015) Sci. Signal.
    • Deng, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.