메뉴 건너뛰기




Volumn 46, Issue 3, 2015, Pages 933-943

Role of TGFβ in regulation of the tumor microenvironment and drug delivery (review)

Author keywords

Cancer therapy; Cancer associated fibroblasts; Desmoplasia; Extracellular matrix; Immune cells

Indexed keywords

TRANSFORMING GROWTH FACTOR BETA; ANTINEOPLASTIC AGENT;

EID: 84921916417     PISSN: 10196439     EISSN: 17912423     Source Type: Journal    
DOI: 10.3892/ijo.2015.2816     Document Type: Article
Times cited : (173)

References (184)
  • 1
    • 34548329486 scopus 로고    scopus 로고
    • Differentiation plasticity regulated by TGF-beta family proteins in development and disease
    • Derynck R and Akhurst RJ: Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol 9: 1000-1004, 2007.
    • (2007) Nat Cell Biol , vol.9 , pp. 1000-1004
    • Derynck, R.1    Akhurst, R.J.2
  • 2
    • 84876817355 scopus 로고    scopus 로고
    • Beyond TGFβ: Roles of other TGFβ superfamily members in cancer
    • Wakefield LM and Hill CS: Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat Rev Cancer 13: 328-341, 2013.
    • (2013) Nat Rev Cancer , vol.13 , pp. 328-341
    • Wakefield, L.M.1    Hill, C.S.2
  • 4
    • 0037439630 scopus 로고    scopus 로고
    • Making sense of latent TGFbeta activation
    • Annes JP, Munger JS and Rifkin DB: Making sense of latent TGFbeta activation. J Cell Sci 116: 217-224, 2003.
    • (2003) J Cell Sci , vol.116 , pp. 217-224
    • Annes, J.P.1    Munger, J.S.2    Rifkin, D.B.3
  • 5
    • 0029860747 scopus 로고    scopus 로고
    • Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta1
    • Gleizes PE, Beavis RC, Mazzieri R, Shen B and Rifkin DB: Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta1. J Biol Chem 271: 29891-29896, 1996.
    • (1996) J Biol Chem , vol.271 , pp. 29891-29896
    • Gleizes, P.E.1    Beavis, R.C.2    Mazzieri, R.3    Shen, B.4    Rifkin, D.B.5
  • 6
    • 0025765844 scopus 로고
    • A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1
    • Miyazono K, Olofsson A, Colosetti P and Heldin CH: A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1. EMBO J 10: 1091-1101, 1991.
    • (1991) EMBO J , vol.10 , pp. 1091-1101
    • Miyazono, K.1    Olofsson, A.2    Colosetti, P.3    Heldin, C.H.4
  • 7
    • 0030058699 scopus 로고    scopus 로고
    • Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1
    • Saharinen J, Taipale J and Keski-Oja J: Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J 15: 245-253, 1996.
    • (1996) EMBO J , vol.15 , pp. 245-253
    • Saharinen, J.1    Taipale, J.2    Keski-Oja, J.3
  • 8
    • 0035153291 scopus 로고    scopus 로고
    • Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains
    • Unsöld C, Hyytiäinen M, Bruckner-Tuderman L and Keski-Oja J: Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J Cell Sci 114: 187-197, 2001.
    • (2001) J Cell Sci , vol.114 , pp. 187-197
    • Unsöld, C.1    Hyytiäinen, M.2    Bruckner-Tuderman, L.3    Keski-Oja, J.4
  • 9
    • 0030974902 scopus 로고    scopus 로고
    • Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta
    • Nunes I, Gleizes PE, Metz CN and Rifkin DB: Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol 136: 1151-1163, 1997.
    • (1997) J Cell Biol , vol.136 , pp. 1151-1163
    • Nunes, I.1    Gleizes, P.E.2    Metz, C.N.3    Rifkin, D.B.4
  • 10
    • 0021173481 scopus 로고
    • Normal embryo fibroblasts release transforming growth factors in a latent form
    • Lawrence DA, Pircher R, Krycève-Martinerie C and Jullien P: Normal embryo fibroblasts release transforming growth factors in a latent form. J Cell Physiol 121: 184-188, 1984.
    • (1984) J Cell Physiol , vol.121 , pp. 184-188
    • Lawrence, D.A.1    Pircher, R.2    Krycève-Martinerie, C.3    Jullien, P.4
  • 11
    • 12344320716 scopus 로고    scopus 로고
    • Thrombospondin-1 is a major activator of TGF-beta1 in vivo
    • Crawford SE, Stellmach V, Murphy-Ullrich JE, et al: Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell 93: 1159-1170, 1998.
    • (1998) Cell , vol.93 , pp. 1159-1170
    • Crawford, S.E.1    Stellmach, V.2    Murphy-Ullrich, J.E.3
  • 12
    • 0033532054 scopus 로고    scopus 로고
    • The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta
    • Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M and Murphy-Ullrich JE: The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem 274: 13586-13593, 1999.
    • (1999) J Biol Chem , vol.274 , pp. 13586-13593
    • Ribeiro, S.M.1    Poczatek, M.2    Schultz-Cherry, S.3    Villain, M.4    Murphy-Ullrich, J.E.5
  • 13
    • 0028906190 scopus 로고
    • Processing of transforming growth factor beta 1 precursor by human furin convertase
    • Dubois CM, Laprise MH, Blanchette F, Gentry LE and Leduc R: Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 270: 10618-10624, 1995.
    • (1995) J Biol Chem , vol.270 , pp. 10618-10624
    • Dubois, C.M.1    Laprise, M.H.2    Blanchette, F.3    Gentry, L.E.4    Leduc, R.5
  • 14
    • 0024382711 scopus 로고
    • Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture
    • Sato Y and Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 109: 309-315, 1989.
    • (1989) J Cell Biol , vol.109 , pp. 309-315
    • Sato, Y.1    Rifkin, D.B.2
  • 15
    • 0034650486 scopus 로고    scopus 로고
    • Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis
    • Yu Q and Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163-176, 2000.
    • (2000) Genes Dev , vol.14 , pp. 163-176
    • Yu, Q.1    Stamenkovic, I.2
  • 16
    • 0032442852 scopus 로고    scopus 로고
    • Smads: Transcriptional activators of TGF-beta responses
    • Derynck R, Zhang Y and Feng XH: Smads: transcriptional activators of TGF-beta responses. Cell 95: 737-740, 1998.
    • (1998) Cell , vol.95 , pp. 737-740
    • Derynck, R.1    Zhang, Y.2    Feng, X.H.3
  • 17
    • 0031685620 scopus 로고    scopus 로고
    • TGF-beta signal transduction
    • Massagué J: TGF-beta signal transduction. Annu Rev Biochem 67: 753-791, 1998.
    • (1998) Annu Rev Biochem , vol.67 , pp. 753-791
    • Massagué, J.1
  • 19
    • 0029834067 scopus 로고    scopus 로고
    • Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways
    • Lagna G, Hata A, Hemmati-Brivanlou A and Massagué J: Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383: 832-836, 1996.
    • (1996) Nature , vol.383 , pp. 832-836
    • Lagna, G.1    Hata, A.2    Hemmati-Brivanlou, A.3    Massagué, J.4
  • 20
    • 0030768644 scopus 로고    scopus 로고
    • TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4
    • Nakao A, Imamura T, Souchelnytskyi S, et al: TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16: 5353-5362, 1997.
    • (1997) EMBO J , vol.16 , pp. 5353-5362
    • Nakao, A.1    Imamura, T.2    Souchelnytskyi, S.3
  • 21
    • 0031438047 scopus 로고    scopus 로고
    • TGF-beta signalling from cell membrane to nucleus through SMAD proteins
    • Heldin CH, Miyazono K and ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465-471, 1997.
    • (1997) Nature , vol.390 , pp. 465-471
    • Heldin, C.H.1    Miyazono, K.2    Ten Dijke, P.3
  • 22
    • 33745515023 scopus 로고    scopus 로고
    • Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer
    • Bierie B and Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506-520, 2006.
    • (2006) Nat Rev Cancer , vol.6 , pp. 506-520
    • Bierie, B.1    Moses, H.L.2
  • 23
    • 0034704753 scopus 로고    scopus 로고
    • Betaglycan binds inhibin and can mediate functional antagonism of activin signalling
    • Lewis KA, Gray PC, Blount AL, et al: Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 404: 411-414, 2000.
    • (2000) Nature , vol.404 , pp. 411-414
    • Lewis, K.A.1    Gray, P.C.2    Blount, A.L.3
  • 25
    • 0038682002 scopus 로고    scopus 로고
    • Mechanisms of TGF-beta signaling from cell membrane to the nucleus
    • Shi Y and Massagué J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685-700, 2003.
    • (2003) Cell , vol.113 , pp. 685-700
    • Shi, Y.1    Massagué, J.2
  • 26
    • 21344455768 scopus 로고    scopus 로고
    • BMP receptor signaling: Transcriptional targets, regulation of signals, and signaling cross-talk
    • Miyazono K, Maeda S and Imamura T: BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16: 251-263, 2005.
    • (2005) Cytokine Growth Factor Rev , vol.16 , pp. 251-263
    • Miyazono, K.1    Maeda, S.2    Imamura, T.3
  • 27
    • 0142104985 scopus 로고    scopus 로고
    • Smad-dependent and Smad-independent pathways in TGF-beta family signalling
    • Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577-584, 2003.
    • (2003) Nature , vol.425 , pp. 577-584
    • Derynck, R.1    Zhang, Y.E.2
  • 28
    • 0030613249 scopus 로고    scopus 로고
    • TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling
    • Abdollah S, Macías-Silva M, Tsukazaki T, Hayashi H, Attisano L and Wrana JL: TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272: 27678-27685, 1997.
    • (1997) J Biol Chem , vol.272 , pp. 27678-27685
    • Abdollah, S.1    Macías-Silva, M.2    Tsukazaki, T.3    Hayashi, H.4    Attisano, L.5    Wrana, J.L.6
  • 29
    • 0029786212 scopus 로고    scopus 로고
    • Receptor-associated Mad homologues synergize as effectors of the TGF-beta response
    • Zhang Y, Feng X, We R and Derynck R: Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 383: 168-172, 1996.
    • (1996) Nature , vol.383 , pp. 168-172
    • Zhang, Y.1    Feng, X.2    We, R.3    Derynck, R.4
  • 30
    • 0032428684 scopus 로고    scopus 로고
    • SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor
    • Tsukazaki T, Chiang TA, Davison AF, Attisano L and Wrana JL: SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95: 779-791, 1998.
    • (1998) Cell , vol.95 , pp. 779-791
    • Tsukazaki, T.1    Chiang, T.A.2    Davison, A.F.3    Attisano, L.4    Wrana, J.L.5
  • 31
    • 0032528236 scopus 로고    scopus 로고
    • The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation
    • Feng XH, Zhang Y, Wu RY and Derynck R: The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 12: 2153-2163, 1998.
    • (1998) Genes Dev , vol.12 , pp. 2153-2163
    • Feng, X.H.1    Zhang, Y.2    Wu, R.Y.3    Derynck, R.4
  • 32
    • 0032527756 scopus 로고    scopus 로고
    • TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300
    • Janknecht R, Wells NJ and Hunter T: TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev 12: 2114-2119, 1998.
    • (1998) Genes Dev , vol.12 , pp. 2114-2119
    • Janknecht, R.1    Wells, N.J.2    Hunter, T.3
  • 34
    • 0036119191 scopus 로고    scopus 로고
    • SMIF, a Smad4-interacting protein that functions as a co-activator in TGFbeta signalling
    • Bai RY, Koester C, Ouyang T, et al: SMIF, a Smad4-interacting protein that functions as a co-activator in TGFbeta signalling. Nat Cell Biol 4: 181-190, 2002.
    • (2002) Nat Cell Biol , vol.4 , pp. 181-190
    • Bai, R.Y.1    Koester, C.2    Ouyang, T.3
  • 35
    • 0037067653 scopus 로고    scopus 로고
    • E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression
    • Chen CR, Kang Y, Siegel PM and Massagué J: E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110: 19-32, 2002.
    • (2002) Cell , vol.110 , pp. 19-32
    • Chen, C.R.1    Kang, Y.2    Siegel, P.M.3    Massagué, J.4
  • 36
    • 0038369998 scopus 로고    scopus 로고
    • A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells
    • Kang Y, Chen CR and Massagué J: A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11: 915-926, 2003.
    • (2003) Mol Cell , vol.11 , pp. 915-926
    • Kang, Y.1    Chen, C.R.2    Massagué, J.3
  • 38
    • 0033521032 scopus 로고    scopus 로고
    • c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads
    • Akiyoshi S, Inoue H, Hanai J, et al: c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 274: 35269-35277, 1999.
    • (1999) J Biol Chem , vol.274 , pp. 35269-35277
    • Akiyoshi, S.1    Inoue, H.2    Hanai, J.3
  • 39
    • 0033200361 scopus 로고    scopus 로고
    • The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling
    • Luo K, Stroschein SL, Wang W, et al: The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 13: 2196-2206, 1999.
    • (1999) Genes Dev , vol.13 , pp. 2196-2206
    • Luo, K.1    Stroschein, S.L.2    Wang, W.3
  • 40
    • 0033595704 scopus 로고    scopus 로고
    • Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein
    • Stroschein SL, Wang W, Zhou S, Zhou Q and Luo K: Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 286: 771-774, 1999.
    • (1999) Science , vol.286 , pp. 771-774
    • Stroschein, S.L.1    Wang, W.2    Zhou, S.3    Zhou, Q.4    Luo, K.5
  • 41
    • 0033213606 scopus 로고    scopus 로고
    • Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling
    • Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF and Weinberg RA: Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol Cell 4: 499-509, 1999.
    • (1999) Mol Cell , vol.4 , pp. 499-509
    • Sun, Y.1    Liu, X.2    Eaton, E.N.3    Lane, W.S.4    Lodish, H.F.5    Weinberg, R.A.6
  • 42
    • 1642332084 scopus 로고    scopus 로고
    • Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation
    • Seoane J, Le HV, Shen L, Anderson SA and Massagué J: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211-223, 2004.
    • (2004) Cell , vol.117 , pp. 211-223
    • Seoane, J.1    Le, H.V.2    Shen, L.3    Anderson, S.A.4    Massagué, J.5
  • 43
    • 0034703083 scopus 로고    scopus 로고
    • Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta
    • Pardali K, Kurisaki A, Morén A, ten Dijke P, Kardassis D and Moustakas A: Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem 275: 29244-29256, 2000.
    • (2000) J Biol Chem , vol.275 , pp. 29244-29256
    • Pardali, K.1    Kurisaki, A.2    Morén, A.3    Ten Dijke, P.4    Kardassis, D.5    Moustakas, A.6
  • 44
    • 0032572723 scopus 로고    scopus 로고
    • Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription
    • Zhang Y, Feng XH and Derynck R: Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394: 909-913, 1998.
    • (1998) Nature , vol.394 , pp. 909-913
    • Zhang, Y.1    Feng, X.H.2    Derynck, R.3
  • 45
    • 0344629431 scopus 로고    scopus 로고
    • Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription
    • Lin X, Liang YY, Sun B, et al: Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription. Mol Cell Biol 23: 9081-9093, 2003.
    • (2003) Mol Cell Biol , vol.23 , pp. 9081-9093
    • Lin, X.1    Liang, Y.Y.2    Sun, B.3
  • 46
    • 84888855943 scopus 로고    scopus 로고
    • Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts
    • Peng Y, Zhao S, Song L, Wang M and Jiao K: Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts. Biochem Biophys Res Commun 441: 751-756, 2013.
    • (2013) Biochem Biophys Res Commun , vol.441 , pp. 751-756
    • Peng, Y.1    Zhao, S.2    Song, L.3    Wang, M.4    Jiao, K.5
  • 47
    • 0035353203 scopus 로고    scopus 로고
    • The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling
    • Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K and Hirai H: The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 97: 2815-2822, 2001.
    • (2001) Blood , vol.97 , pp. 2815-2822
    • Izutsu, K.1    Kurokawa, M.2    Imai, Y.3    Maki, K.4    Mitani, K.5    Hirai, H.6
  • 48
    • 84455167662 scopus 로고    scopus 로고
    • A poised chromatin platform for TGF-β access to master regulators
    • Xi Q, Wang Z, Zaromytidou AI, et al: A poised chromatin platform for TGF-β access to master regulators. Cell 147: 1511-1524, 2011.
    • (2011) Cell , vol.147 , pp. 1511-1524
    • Xi, Q.1    Wang, Z.2    Zaromytidou, A.I.3
  • 49
    • 33749344476 scopus 로고    scopus 로고
    • Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription
    • Ross S, Cheung E, Petrakis TG, Howell M, Kraus WL and Hill CS: Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO J 25: 4490-4502, 2006.
    • (2006) EMBO J , vol.25 , pp. 4490-4502
    • Ross, S.1    Cheung, E.2    Petrakis, T.G.3    Howell, M.4    Kraus, W.L.5    Hill, C.S.6
  • 50
    • 76249084838 scopus 로고    scopus 로고
    • Smad signaling is required to maintain epigenetic silencing during breast cancer progression
    • Papageorgis P, Lambert AW, Ozturk S, et al: Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res 70: 968-978, 2010.
    • (2010) Cancer Res , vol.70 , pp. 968-978
    • Papageorgis, P.1    Lambert, A.W.2    Ozturk, S.3
  • 51
    • 0030611757 scopus 로고    scopus 로고
    • Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling
    • Nakao A, Afrakhte M, Morén A, et al: Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389: 631-635, 1997.
    • (1997) Nature , vol.389 , pp. 631-635
    • Nakao, A.1    Afrakhte, M.2    Morén, A.3
  • 52
    • 0032582672 scopus 로고    scopus 로고
    • Transforming growth factor beta1 induces nuclear export of inhibitory Smad7
    • Itóh S, Landström M, Hermansson A, et al: Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J Biol Chem 273: 29195-29201, 1998.
    • (1998) J Biol Chem , vol.273 , pp. 29195-29201
    • Itóh, S.1    Landström, M.2    Hermansson, A.3
  • 53
    • 0031587828 scopus 로고    scopus 로고
    • The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling
    • Hayashi H, Abdollah S, Qiu Y, et al: The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89: 1165-1173, 1997.
    • (1997) Cell , vol.89 , pp. 1165-1173
    • Hayashi, H.1    Abdollah, S.2    Qiu, Y.3
  • 54
    • 0035918274 scopus 로고    scopus 로고
    • Smurf1 interacts with transforming growth factor-beta type I Receptor through Smad7 and induces receptor degradation
    • Ebisawa T, Fukuchi M, Murakami G, et al: Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276: 12477-12480, 2001.
    • (2001) J Biol Chem , vol.276 , pp. 12477-12480
    • Ebisawa, T.1    Fukuchi, M.2    Murakami, G.3
  • 55
    • 0034517389 scopus 로고    scopus 로고
    • Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation
    • Kavsak P, Rasmussen RK, Causing CG, et al: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6: 1365-1375, 2000.
    • (2000) Mol Cell , vol.6 , pp. 1365-1375
    • Kavsak, P.1    Rasmussen, R.K.2    Causing, C.G.3
  • 56
    • 34250203586 scopus 로고    scopus 로고
    • Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation
    • Zhang S, Fei T, Zhang L, et al: Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol 27: 4488-4499, 2007.
    • (2007) Mol Cell Biol , vol.27 , pp. 4488-4499
    • Zhang, S.1    Fei, T.2    Zhang, L.3
  • 57
    • 58149213801 scopus 로고    scopus 로고
    • Non-Smad pathways in TGF-beta signaling
    • Zhang YE: Non-Smad pathways in TGF-beta signaling. Cell Res 19: 128-139, 2009.
    • (2009) Cell Res , vol.19 , pp. 128-139
    • Zhang, Y.E.1
  • 58
    • 0028937610 scopus 로고
    • Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells
    • Hartsough MT and Mulder KM: Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem 270: 7117-7124, 1995.
    • (1995) J Biol Chem , vol.270 , pp. 7117-7124
    • Hartsough, M.T.1    Mulder, K.M.2
  • 59
    • 0030609939 scopus 로고    scopus 로고
    • TGFbeta regulation of mitogen-activated protein kinases in human breast cancer cells
    • Frey RS and Mulder KM: TGFbeta regulation of mitogen-activated protein kinases in human breast cancer cells. Cancer Lett 117: 41-50, 1997.
    • (1997) Cancer Lett , vol.117 , pp. 41-50
    • Frey, R.S.1    Mulder, K.M.2
  • 60
    • 79551605347 scopus 로고    scopus 로고
    • Smad4 inactivation promotes malignancy and drug resistance of colon cancer
    • Papageorgis P, Cheng K, Ozturk S, et al: Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res 71: 998-1008, 2011.
    • (2011) Cancer Res , vol.71 , pp. 998-1008
    • Papageorgis, P.1    Cheng, K.2    Ozturk, S.3
  • 61
    • 0034623147 scopus 로고    scopus 로고
    • Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor
    • Finlay GA, Thannickal VJ, Fanburg BL and Paulson KE: Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor. J Biol Chem 275: 27650-27656, 2000.
    • (2000) J Biol Chem , vol.275 , pp. 27650-27656
    • Finlay, G.A.1    Thannickal, V.J.2    Fanburg, B.L.3    Paulson, K.E.4
  • 62
    • 0034791087 scopus 로고    scopus 로고
    • Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling
    • Vinals F andPouysségur J: Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol 21: 7218-7230, 2001.
    • (2001) Mol Cell Biol , vol.21 , pp. 7218-7230
    • Vinals, F.1    Pouysségur, J.2
  • 63
    • 0035872426 scopus 로고    scopus 로고
    • Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation
    • Ellenrieder V, Hendler SF, Boeck W, et al: Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 61: 4222-4228, 2001.
    • (2001) Cancer Res , vol.61 , pp. 4222-4228
    • Ellenrieder, V.1    Hendler, S.F.2    Boeck, W.3
  • 64
    • 6944248910 scopus 로고    scopus 로고
    • Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro
    • Xie L, Law BK, Chytil AM, Brown KA, Aakre ME and Moses HL: Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia 6: 603-610, 2004.
    • (2004) Neoplasia , vol.6 , pp. 603-610
    • Xie, L.1    Law, B.K.2    Chytil, A.M.3    Brown, K.A.4    Aakre, M.E.5    Moses, H.L.6
  • 65
    • 34548386720 scopus 로고    scopus 로고
    • TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA
    • Lee MK, Pardoux C, Hall MC, et al: TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMJO J 26: 3957-3967, 2007.
    • (2007) EMJO J , vol.26 , pp. 3957-3967
    • Lee, M.K.1    Pardoux, C.2    Hall, M.C.3
  • 66
    • 0035378992 scopus 로고    scopus 로고
    • The involvement of p38 MAPK in transforming growth factor beta1-induced apoptosis in murine hepatocytes
    • Liao JH, Chen JS, Chai MQ, Zhao S and Song JG: The involvement of p38 MAPK in transforming growth factor beta1-induced apoptosis in murine hepatocytes. Cell Res 11: 89-94, 2001.
    • (2001) Cell Res , vol.11 , pp. 89-94
    • Liao, J.H.1    Chen, J.S.2    Chai, M.Q.3    Zhao, S.4    Song, J.G.5
  • 67
    • 0034625342 scopus 로고    scopus 로고
    • BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6
    • Kimura N, Matsuo R, Shibuya H, Nakashima K and Taga T: BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem 275: 17647-17652, 2000.
    • (2000) J Biol Chem , vol.275 , pp. 17647-17652
    • Kimura, N.1    Matsuo, R.2    Shibuya, H.3    Nakashima, K.4    Taga, T.5
  • 68
    • 0036674213 scopus 로고    scopus 로고
    • p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration
    • Bakin AV, Rinehart C, Tomlinson AK and Arteaga CL: p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115: 3193-3206, 2002.
    • (2002) J Cell Sci , vol.115 , pp. 3193-3206
    • Bakin, A.V.1    Rinehart, C.2    Tomlinson, A.K.3    Arteaga, C.L.4
  • 69
    • 0033104505 scopus 로고    scopus 로고
    • TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway
    • Hocevar BA, Brown TL and Howe PH: TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMJO J 18: 1345-1356, 1999.
    • (1999) EMJO J , vol.18 , pp. 1345-1356
    • Hocevar, B.A.1    Brown, T.L.2    Howe, P.H.3
  • 70
    • 0037099745 scopus 로고    scopus 로고
    • TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses
    • Yu L, Hébert MC and Zhang YE: TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMJO J 21: 3749-3759, 2002.
    • (2002) EMJO J , vol.21 , pp. 3749-3759
    • Yu, L.1    Hébert, M.C.2    Zhang, Y.E.3
  • 71
    • 0029551805 scopus 로고
    • Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction
    • Yamaguchi K, Shirakabe K, Shibuya H, et al: Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270: 2008-2011, 1995.
    • (1995) Science , vol.270 , pp. 2008-2011
    • Yamaguchi, K.1    Shirakabe, K.2    Shibuya, H.3
  • 72
    • 27744577296 scopus 로고    scopus 로고
    • TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo
    • Shim JH, Xiao C, Paschal AE, et al: TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19: 2668-2681, 2005.
    • (2005) Genes Dev , vol.19 , pp. 2668-2681
    • Shim, J.H.1    Xiao, C.2    Paschal, A.E.3
  • 73
    • 53349164136 scopus 로고    scopus 로고
    • The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
    • Sorrentino A, Thakur N, Grimsby S, et al: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10: 1199-1207, 2008.
    • (2008) Nat Cell Biol , vol.10 , pp. 1199-1207
    • Sorrentino, A.1    Thakur, N.2    Grimsby, S.3
  • 74
    • 52049111663 scopus 로고    scopus 로고
    • TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta
    • Yamashita M, Fatyol K, Jin C, Wang X, Liu Z and Zhang YE: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31: 918-924, 2008.
    • (2008) Mol Cell , vol.31 , pp. 918-924
    • Yamashita, M.1    Fatyol, K.2    Jin, C.3    Wang, X.4    Liu, Z.5    Zhang, Y.E.6
  • 75
    • 0042237016 scopus 로고    scopus 로고
    • A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure
    • Zhang L, Wang W, Hayashi Y, et al: A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure. EMJO J 22: 4443-4454, 2003.
    • (2003) EMJO J , vol.22 , pp. 4443-4454
    • Zhang, L.1    Wang, W.2    Hayashi, Y.3
  • 76
    • 3142741044 scopus 로고    scopus 로고
    • Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells
    • Kim KY, Kim BC, Xu Z and Kim SJ: Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J Biol Chem 279: 29478-29484, 2004.
    • (2004) J Biol Chem , vol.279 , pp. 29478-29484
    • Kim, K.Y.1    Kim, B.C.2    Xu, Z.3    Kim, S.J.4
  • 77
    • 27944479854 scopus 로고    scopus 로고
    • Rho GTPases: Biochemistry and biology
    • Jaffe AB and Hall A: Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247-269, 2005.
    • (2005) Annu Rev Cell Dev Biol , vol.21 , pp. 247-269
    • Jaffe, A.B.1    Hall, A.2
  • 78
    • 0035185853 scopus 로고    scopus 로고
    • Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism
    • Bhowmick NA, Ghiassi M, Bakin A, et al: Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12: 27-36, 2001.
    • (2001) Mol Biol Cell , vol.12 , pp. 27-36
    • Bhowmick, N.A.1    Ghiassi, M.2    Bakin, A.3
  • 79
    • 0036197606 scopus 로고    scopus 로고
    • Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA
    • Edlund S, Landström M, Heldin CH and Aspenström P: Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13: 902-914, 2002.
    • (2002) Mol Biol Cell , vol.13 , pp. 902-914
    • Edlund, S.1    Landström, M.2    Heldin, C.H.3    Aspenström, P.4
  • 80
    • 14844364701 scopus 로고    scopus 로고
    • Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity
    • Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y and Wrana JL: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science307: 1603-1609, 2005.
    • (2005) Science , vol.307 , pp. 1603-1609
    • Ozdamar, B.1    Bose, R.2    Barrios-Rodiles, M.3    Wang, H.R.4    Zhang, Y.5    Wrana, J.L.6
  • 81
    • 0034711307 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration
    • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL and Arteaga CL: Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275: 36803-36810, 2000.
    • (2000) J Biol Chem , vol.275 , pp. 36803-36810
    • Bakin, A.V.1    Tomlinson, A.K.2    Bhowmick, N.A.3    Moses, H.L.4    Arteaga, C.L.5
  • 82
    • 0035196587 scopus 로고    scopus 로고
    • Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1
    • Shin I, Bakin AV, Rodeck U, Brunet A and Arteaga CL: Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1. Mol Biol Cell 12: 3328-3339, 2001.
    • (2001) Mol Biol Cell , vol.12 , pp. 3328-3339
    • Shin, I.1    Bakin, A.V.2    Rodeck, U.3    Brunet, A.4    Arteaga, C.L.5
  • 83
    • 0034722888 scopus 로고    scopus 로고
    • The rapamycin-sensitive signal transduction pathway as a target for cancer therapy
    • Hidalgo M and Rowinsky EK: The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19: 6680-6686, 2000.
    • (2000) Oncogene , vol.19 , pp. 6680-6686
    • Hidalgo, M.1    Rowinsky, E.K.2
  • 84
    • 34547587877 scopus 로고    scopus 로고
    • Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway
    • Lamouille S and Derynck R: Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 178: 437-451, 2007.
    • (2007) J Cell Biol , vol.178 , pp. 437-451
    • Lamouille, S.1    Derynck, R.2
  • 85
    • 0042307513 scopus 로고    scopus 로고
    • The two faces of transforming growth factor beta in carcinogenesis
    • Roberts AB and Wakefield LM: The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100: 8621-8623, 2003.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 8621-8623
    • Roberts, A.B.1    Wakefield, L.M.2
  • 86
    • 0242285692 scopus 로고    scopus 로고
    • TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression
    • Tang B, Vu M, Booker T, et al: TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112: 1116-1124, 2003.
    • (2003) J Clin Invest , vol.112 , pp. 1116-1124
    • Tang, B.1    Vu, M.2    Booker, T.3
  • 87
    • 0036467496 scopus 로고    scopus 로고
    • TGF-beta signaling: Positive and negative effects on tumorigenesis
    • Wakefield LM and Roberts AB: TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12: 22-29, 2002.
    • (2002) Curr Opin Genet Dev , vol.12 , pp. 22-29
    • Wakefield, L.M.1    Roberts, A.B.2
  • 88
    • 0037816160 scopus 로고    scopus 로고
    • Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis
    • Siegel PM, Shu W, Cardiff RD, Muller WJ and Massagué J: Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100: 8430-8435, 2003.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 8430-8435
    • Siegel, P.M.1    Shu, W.2    Cardiff, R.D.3    Muller, W.J.4    Massagué, J.5
  • 89
    • 0242499448 scopus 로고    scopus 로고
    • Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer
    • Siegel PM and Massagué J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3: 807-821, 2003.
    • (2003) Nat Rev Cancer , vol.3 , pp. 807-821
    • Siegel, P.M.1    Massagué, J.2
  • 90
    • 0029098259 scopus 로고
    • Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors
    • Choi ME and Ballermann BJ: Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors. J Biol Chem 270: 21144-21150, 1995.
    • (1995) J Biol Chem , vol.270 , pp. 21144-21150
    • Choi, M.E.1    Ballermann, B.J.2
  • 91
    • 0036674283 scopus 로고    scopus 로고
    • Transforming growth factor-beta1 induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein kinase
    • Hyman KM, Seghezzi G, Pintucci G, et al: Transforming growth factor-beta1 induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein kinase. Surgery 132: 173-179, 2002.
    • (2002) Surgery , vol.132 , pp. 173-179
    • Hyman, K.M.1    Seghezzi, G.2    Pintucci, G.3
  • 92
    • 0033521118 scopus 로고    scopus 로고
    • Transforming growth factor-beta-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines
    • Rich JN, Zhang M, Datto MB, Bigner DD and Wang XF: Transforming growth factor-beta-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem 274: 35053-35058, 1999.
    • (1999) J Biol Chem , vol.274 , pp. 35053-35058
    • Rich, J.N.1    Zhang, M.2    Datto, M.B.3    Bigner, D.D.4    Wang, X.F.5
  • 93
    • 0033104503 scopus 로고    scopus 로고
    • Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta
    • Yang X, Letterio JJ, Lechleider RJ, et al: Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMJO J 18: 1280-1291, 1999.
    • (1999) EMJO J , vol.18 , pp. 1280-1291
    • Yang, X.1    Letterio, J.J.2    Lechleider, R.J.3
  • 94
    • 0025326725 scopus 로고
    • Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation
    • Laiho M, DeCaprio JA, Ludlow JW, Livingston DM and Massagué J: Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 62: 175-185, 1990.
    • (1990) Cell , vol.62 , pp. 175-185
    • Laiho, M.1    DeCaprio, J.A.2    Ludlow, J.W.3    Livingston, D.M.4    Massagué, J.5
  • 95
    • 0028168242 scopus 로고
    • p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest
    • Hannon GJ and Beach D: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371: 257-261, 1994.
    • (1994) Nature , vol.371 , pp. 257-261
    • Hannon, G.J.1    Beach, D.2
  • 96
    • 0029073142 scopus 로고
    • Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism
    • Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y and Wang XF: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92: 5545-5549, 1995.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 5545-5549
    • Datto, M.B.1    Li, Y.2    Panus, J.F.3    Howe, D.J.4    Xiong, Y.5    Wang, X.F.6
  • 97
    • 0028179669 scopus 로고
    • p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest
    • Polyak K, Kato JY, Solomon MJ, et al: p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8: 9-22, 1994.
    • (1994) Genes Dev , vol.8 , pp. 9-22
    • Polyak, K.1    Kato, J.Y.2    Solomon, M.J.3
  • 98
    • 0025348820 scopus 로고
    • TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains
    • Pietenpol JA, Stein RW, Moran E, et al: TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61: 777-785, 1990.
    • (1990) Cell , vol.61 , pp. 777-785
    • Pietenpol, J.A.1    Stein, R.W.2    Moran, E.3
  • 99
    • 0034471262 scopus 로고    scopus 로고
    • ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis
    • Norton JD: ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113: 3897-3905, 2000.
    • (2000) J Cell Sci , vol.113 , pp. 3897-3905
    • Norton, J.D.1
  • 100
    • 0031225015 scopus 로고    scopus 로고
    • Connective tissue growth factor: A mediator of TGF-beta action on fibroblasts
    • Grotendorst GR: Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 8: 171-179, 1997.
    • (1997) Cytokine Growth Factor Rev , vol.8 , pp. 171-179
    • Grotendorst, G.R.1
  • 101
    • 0028556486 scopus 로고
    • Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: Correlation with sensitivity to growth inhibition by TGF-beta
    • Park K, Kim SJ, Bang YJ, et al: Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci USA 91: 8772-8776, 1994.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 8772-8776
    • Park, K.1    Kim, S.J.2    Bang, Y.J.3
  • 102
    • 0030048263 scopus 로고    scopus 로고
    • Genetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells
    • Kim IY, Ahn HJ, Zelner DJ, et al: Genetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells. Cancer Res 56: 44-48, 1996.
    • (1996) Cancer Res , vol.56 , pp. 44-48
    • Kim, I.Y.1    Ahn, H.J.2    Zelner, D.J.3
  • 103
    • 0029066689 scopus 로고
    • Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability
    • Markowitz S, Wang J, Myeroff L, et al: Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268: 1336-1338, 1995.
    • (1995) Science , vol.268 , pp. 1336-1338
    • Markowitz, S.1    Wang, J.2    Myeroff, L.3
  • 105
    • 9344223357 scopus 로고    scopus 로고
    • DPC4 gene in various tumor types
    • Schutte M, Hruban RH, Hedrick L, et al: DPC4 gene in various tumor types. Cancer Res 56: 2527-2530, 1996.
    • (1996) Cancer Res , vol.56 , pp. 2527-2530
    • Schutte, M.1    Hruban, R.H.2    Hedrick, L.3
  • 106
    • 16044369574 scopus 로고    scopus 로고
    • MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma
    • Eppert K, Scherer SW, Ozcelik H, et al: MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86: 543-552, 1996.
    • (1996) Cell , vol.86 , pp. 543-552
    • Eppert, K.1    Scherer, S.W.2    Ozcelik, H.3
  • 107
    • 9044243025 scopus 로고    scopus 로고
    • Homozygous deletion map at 18q21.1 in pancreatic cancer
    • Hahn SA, Hoque AT, Moskaluk CA, et al: Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res 56: 490-494, 1996.
    • (1996) Cancer Res , vol.56 , pp. 490-494
    • Hahn, S.A.1    Hoque, A.T.2    Moskaluk, C.A.3
  • 108
    • 0030593038 scopus 로고    scopus 로고
    • DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1
    • Hahn SA, Schutte M, Hoque AT, et al: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350-353, 1996.
    • (1996) Science , vol.271 , pp. 350-353
    • Hahn, S.A.1    Schutte, M.2    Hoque, A.T.3
  • 109
    • 15844390729 scopus 로고    scopus 로고
    • Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers
    • Thiagalingam S, Lengauer C, Leach FS, et al: Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet 13: 343-346, 1996.
    • (1996) Nat Genet , vol.13 , pp. 343-346
    • Thiagalingam, S.1    Lengauer, C.2    Leach, F.S.3
  • 110
    • 12944315074 scopus 로고    scopus 로고
    • Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis
    • Schwarte-Waldhoff I, Volpert OV, Bouck NP, et al: Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA 97: 9624-9629, 2000.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 9624-9629
    • Schwarte-Waldhoff, I.1    Volpert, O.V.2    Bouck, N.P.3
  • 111
    • 0033106484 scopus 로고    scopus 로고
    • A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras
    • Kretzschmar M, Doody J, Timokhina I and Massagué J: A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev 13: 804-816, 1999.
    • (1999) Genes Dev , vol.13 , pp. 804-816
    • Kretzschmar, M.1    Doody, J.2    Timokhina, I.3    Massagué, J.4
  • 112
    • 0030773834 scopus 로고    scopus 로고
    • Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1
    • Kretzschmar M, Doody J and Massagué J: Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389: 618-622, 1997.
    • (1997) Nature , vol.389 , pp. 618-622
    • Kretzschmar, M.1    Doody, J.2    Massagué, J.3
  • 113
    • 0347991862 scopus 로고    scopus 로고
    • Integration of Smad and MAPK pathways: A link and a linker revisited
    • Massagué J: Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev 17: 2993-2997, 2003.
    • (2003) Genes Dev , vol.17 , pp. 2993-2997
    • Massagué, J.1
  • 114
    • 33748208668 scopus 로고    scopus 로고
    • C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells
    • Gomis RR, Alarcón C, Nadal C, Van Poznak C and Massagué J: C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10: 203-214, 2006.
    • (2006) Cancer Cell , vol.10 , pp. 203-214
    • Gomis, R.R.1    Alarcón, C.2    Nadal, C.3    Van Poznak, C.4    Massagué, J.5
  • 115
    • 41149157649 scopus 로고    scopus 로고
    • TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4
    • Padua D, Zhang XH, Wang Q, et al: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133: 66-77, 2008.
    • (2008) Cell , vol.133 , pp. 66-77
    • Padua, D.1    Zhang, X.H.2    Wang, Q.3
  • 116
    • 0036595629 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transitions in tumour progression
    • Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442-454, 2002.
    • (2002) Nat Rev Cancer , vol.2 , pp. 442-454
    • Thiery, J.P.1
  • 117
    • 2942707848 scopus 로고    scopus 로고
    • Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis
    • Yang J, Mani SA, Donaher JL, et al: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927-939, 2004.
    • (2004) Cell , vol.117 , pp. 927-939
    • Yang, J.1    Mani, S.A.2    Donaher, J.L.3
  • 118
    • 59449090107 scopus 로고    scopus 로고
    • TGF-beta-induced epithelial to mesenchymal transition
    • Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19: 156-172, 2009.
    • (2009) Cell Res , vol.19 , pp. 156-172
    • Xu, J.1    Lamouille, S.2    Derynck, R.3
  • 119
    • 0033784843 scopus 로고    scopus 로고
    • The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression
    • Cano A, Pérez-Moreno MA, Rodrigo I, et al: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76-83, 2000.
    • (2000) Nat Cell Biol , vol.2 , pp. 76-83
    • Cano, A.1    Pérez-Moreno, M.A.2    Rodrigo, I.3
  • 120
    • 0031005659 scopus 로고    scopus 로고
    • The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition
    • Savagner P, Yamada KM and Thiery JP: The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 137: 1403-1419, 1997.
    • (1997) J Cell Biol , vol.137 , pp. 1403-1419
    • Savagner, P.1    Yamada, K.M.2    Thiery, J.P.3
  • 121
    • 20144388095 scopus 로고    scopus 로고
    • DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells
    • Eger A, Aigner K, Sonderegger S, et al: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24: 2375-2385, 2005.
    • (2005) Oncogene , vol.24 , pp. 2375-2385
    • Eger, A.1    Aigner, K.2    Sonderegger, S.3
  • 122
    • 0034964418 scopus 로고    scopus 로고
    • The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion
    • Comijn J, Berx G, Vermassen P, et al: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7: 1267-1278, 2001.
    • (2001) Mol Cell , vol.7 , pp. 1267-1278
    • Comijn, J.1    Berx, G.2    Vermassen, P.3
  • 124
    • 34547141894 scopus 로고    scopus 로고
    • Mesenchyme forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers
    • Mani SA, Yang J, Brooks M, et al: Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104: 10069-10074, 2007.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 10069-10074
    • Mani, S.A.1    Yang, J.2    Brooks, M.3
  • 125
    • 0034785348 scopus 로고    scopus 로고
    • TGF-beta signaling in tumor suppression and cancer progression
    • Derynck R, Akhurst RJ and Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29: 117-129, 2001.
    • (2001) Nat Genet , vol.29 , pp. 117-129
    • Derynck, R.1    Akhurst, R.J.2    Balmain, A.3
  • 126
    • 44449144396 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis
    • Yang J and Weinberg RA: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14: 818-829, 2008.
    • (2008) Dev Cell , vol.14 , pp. 818-829
    • Yang, J.1    Weinberg, R.A.2
  • 127
    • 33749017960 scopus 로고    scopus 로고
    • Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells
    • Zhu B, Fukada K, Zhu H and Kyprianou N: Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells. Cancer Res 66: 8640-8647, 2006.
    • (2006) Cancer Res , vol.66 , pp. 8640-8647
    • Zhu, B.1    Fukada, K.2    Zhu, H.3    Kyprianou, N.4
  • 128
    • 33644534795 scopus 로고    scopus 로고
    • The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells
    • Deckers M, van Dinther M, Buijs J, et al: The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66: 2202-2209, 2006.
    • (2006) Cancer Res , vol.66 , pp. 2202-2209
    • Deckers, M.1    Van Dinther, M.2    Buijs, J.3
  • 129
    • 4043052971 scopus 로고    scopus 로고
    • Epithelial-mesenchymal transitions: Twist in development and metastasis
    • Kang Y and Massagué J: Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118: 277-279, 2004.
    • (2004) Cell , vol.118 , pp. 277-279
    • Kang, Y.1    Massagué, J.2
  • 130
    • 0031031976 scopus 로고    scopus 로고
    • Role of transforming growth factor-beta in tissue injury and repair
    • Grande JP: Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med 214: 27-40, 1997.
    • (1997) Proc Soc Exp Biol Med , vol.214 , pp. 27-40
    • Grande, J.P.1
  • 131
    • 0033517356 scopus 로고    scopus 로고
    • Cutaneous wound healing
    • Singer AJ and Clark RA: Cutaneous wound healing. N Engl J Med 341: 738-746, 1999.
    • (1999) N Engl J Med , vol.341 , pp. 738-746
    • Singer, A.J.1    Clark, R.A.2
  • 132
    • 84888639681 scopus 로고    scopus 로고
    • The roles of TGFβ in the tumour microenvironment
    • Pickup M, Novitskiy S and Moses HL: The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 13: 788-799, 2013.
    • (2013) Nat Rev Cancer , vol.13 , pp. 788-799
    • Pickup, M.1    Novitskiy, S.2    Moses, H.L.3
  • 133
    • 0027742864 scopus 로고
    • Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma
    • Dalal BI, Keown PA and Greenberg AH: Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143: 381-389, 1993.
    • (1993) Am J Pathol , vol.143 , pp. 381-389
    • Dalal, B.I.1    Keown, P.A.2    Greenberg, A.H.3
  • 135
    • 35348940144 scopus 로고    scopus 로고
    • Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations
    • Prud'homme GJ: Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 87: 1077-1091, 2007.
    • (2007) Lab Invest , vol.87 , pp. 1077-1091
    • Prud'Homme, G.J.1
  • 136
    • 34848857434 scopus 로고    scopus 로고
    • Transforming growth factor-beta and the immune response: Implications for anti-cancer therapy
    • Wrzesinski SH, Wan YY and Flavell RA: Transforming growth factor-beta and the immune response: implications for anti-cancer therapy. Clin Cancer Res 13: 5262-5270, 2007.
    • (2007) Clin Cancer Res , vol.13 , pp. 5262-5270
    • Wrzesinski, S.H.1    Wan, Y.Y.2    Flavell, R.A.3
  • 137
    • 84866985855 scopus 로고    scopus 로고
    • Targeting the TGFβ signalling pathway in disease
    • Akhurst RJ and Hata A: Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 11: 790-811, 2012.
    • (2012) Nat Rev Drug Discov , vol.11 , pp. 790-811
    • Akhurst, R.J.1    Hata, A.2
  • 139
    • 20644472421 scopus 로고    scopus 로고
    • Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma
    • Laouar Y, Sutterwala FS, Gorelik L and Flavell RA: Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6: 600-607, 2005.
    • (2005) Nat Immunol , vol.6 , pp. 600-607
    • Laouar, Y.1    Sutterwala, F.S.2    Gorelik, L.3    Flavell, R.A.4
  • 140
    • 34249678653 scopus 로고    scopus 로고
    • TGFbeta signalling in control of T-cell-mediated self-reactivity
    • Rubtsov YP and Rudensky AY: TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 7: 443-453, 2007.
    • (2007) Nat Rev Immunol , vol.7 , pp. 443-453
    • Rubtsov, Y.P.1    Rudensky, A.Y.2
  • 141
    • 0036839143 scopus 로고    scopus 로고
    • Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
    • Mantovani A, Sozzani S, Locati M, Allavena P and Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23: 549-555, 2002.
    • (2002) Trends Immunol , vol.23 , pp. 549-555
    • Mantovani, A.1    Sozzani, S.2    Locati, M.3    Allavena, P.4    Sica, A.5
  • 142
    • 84862180623 scopus 로고    scopus 로고
    • TGFβ signaling plays a critical role in promoting alternative macrophage activation
    • Gong D, Shi W, Yi SJ, Chen H, Groffen J and Heisterkamp N: TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 13: 31, 2012.
    • (2012) BMC Immunol , vol.13 , pp. 31
    • Gong, D.1    Shi, W.2    Yi, S.J.3    Chen, H.4    Groffen, J.5    Heisterkamp, N.6
  • 143
    • 69249222379 scopus 로고    scopus 로고
    • Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN
    • Fridlender ZG, Sun J, Kim S, et al: Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 16: 183-194, 2009.
    • (2009) Cancer Cell , vol.16 , pp. 183-194
    • Fridlender, Z.G.1    Sun, J.2    Kim, S.3
  • 144
    • 0030893704 scopus 로고    scopus 로고
    • Contrasting effects of TGF-beta 1 and TNF-alpha on the development of dendritic cells from progenitors in mouse bone marrow
    • Yamaguchi Y, Tsumura H, Miwa M and Inaba K: Contrasting effects of TGF-beta 1 and TNF-alpha on the development of dendritic cells from progenitors in mouse bone marrow. Stem Cells 15: 144-153, 1997.
    • (1997) Stem Cells , vol.15 , pp. 144-153
    • Yamaguchi, Y.1    Tsumura, H.2    Miwa, M.3    Inaba, K.4
  • 145
    • 60749137393 scopus 로고    scopus 로고
    • Transforming growth factor beta (TGFbeta)-induced apoptosis: The rise & fall of bim
    • Ramesh S, Wildey GM and Howe PH: Transforming growth factor beta (TGFbeta)-induced apoptosis: the rise & fall of Bim. Cell Cycle 8: 11-17, 2009.
    • (2009) Cell Cycle , vol.8 , pp. 11-17
    • Ramesh, S.1    Wildey, G.M.2    Howe, P.H.3
  • 146
    • 84865407523 scopus 로고    scopus 로고
    • TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy
    • Marcoe JP, Lim JR, Schaubert KL, et al: TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy. Nat Immunol 13: 843-850, 2012.
    • (2012) Nat Immunol , vol.13 , pp. 843-850
    • Marcoe, J.P.1    Lim, J.R.2    Schaubert, K.L.3
  • 147
    • 37249044357 scopus 로고    scopus 로고
    • Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix
    • Wipff PJ, Rifkin DB, Meister JJ and Hinz B: Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179: 1311-1323, 2007.
    • (2007) J Cell Biol , vol.179 , pp. 1311-1323
    • Wipff, P.J.1    Rifkin, D.B.2    Meister, J.J.3    Hinz, B.4
  • 148
    • 62949238352 scopus 로고    scopus 로고
    • Myofibroblasts work best under stress
    • Wipff PJ and Hinz B: Myofibroblasts work best under stress. J Bodyw Mov Ther 13: 121-127, 2009.
    • (2009) J Bodyw Mov Ther , vol.13 , pp. 121-127
    • Wipff, P.J.1    Hinz, B.2
  • 150
    • 84869225491 scopus 로고    scopus 로고
    • Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue
    • Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH and Diamandis EP: Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 10: 1403-1418, 2012.
    • (2012) Mol Cancer Res , vol.10 , pp. 1403-1418
    • Karagiannis, G.S.1    Poutahidis, T.2    Erdman, S.E.3    Kirsch, R.4    Riddell, R.H.5    Diamandis, E.P.6
  • 151
    • 24944547482 scopus 로고    scopus 로고
    • Tensional homeostasis and the malignant phenotype
    • Paszek MJ, Zahir N, Johnson KR, et al: Tensional homeostasis and the malignant phenotype. Cancer Cell 8: 241-254, 2005.
    • (2005) Cancer Cell , vol.8 , pp. 241-254
    • Paszek, M.J.1    Zahir, N.2    Johnson, K.R.3
  • 152
    • 79958735965 scopus 로고    scopus 로고
    • Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth
    • Samuel MS, Lopez JI, McGhee EJ, et al: Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19: 776-791, 2011.
    • (2011) Cancer Cell , vol.19 , pp. 776-791
    • Samuel, M.S.1    Lopez, J.I.2    McGhee, E.J.3
  • 154
    • 77957221459 scopus 로고    scopus 로고
    • Dynamic interplay between the collagen scaffold and tumor evolution
    • Egeblad M, Rasch MG and Weaver VM: Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 22: 697-706, 2010.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 697-706
    • Egeblad, M.1    Rasch, M.G.2    Weaver, V.M.3
  • 155
    • 84890697696 scopus 로고    scopus 로고
    • Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy
    • Smith NR, Baker D, Farren M, et al: Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res 19: 6943-6956, 2013.
    • (2013) Clin Cancer Res , vol.19 , pp. 6943-6956
    • Smith, N.R.1    Baker, D.2    Farren, M.3
  • 156
    • 84887478772 scopus 로고    scopus 로고
    • Combining two strategies to improve perfusion and drug delivery in solid tumors
    • Stylianopoulos T and Jain RK: Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci USA 110: 18632-18637, 2013.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 18632-18637
    • Stylianopoulos, T.1    Jain, R.K.2
  • 157
    • 84866557942 scopus 로고    scopus 로고
    • Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors
    • Stylianopoulos T, Martin JD, Chauhan VP,et al : Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci USA 109: 15101-15108, 2012.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 15101-15108
    • Stylianopoulos, T.1    Martin, J.D.2    Chauhan, V.P.3
  • 158
    • 78149282625 scopus 로고    scopus 로고
    • Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential
    • Demou ZN: Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential. Ann Biomed Eng 38: 3509-3520, 2010.
    • (2010) Ann Biomed Eng , vol.38 , pp. 3509-3520
    • Demou, Z.N.1
  • 159
    • 84856403028 scopus 로고    scopus 로고
    • Mechanical compression drives cancer cells toward invasive phenotype
    • Tse JM, Cheng G, Tyrrell JA, et al: Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA 109: 911-916, 2012.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 911-916
    • Tse, J.M.1    Cheng, G.2    Tyrrell, J.A.3
  • 160
    • 84885129359 scopus 로고    scopus 로고
    • Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumor blood vessels
    • Chauhan VP, Martin JD, Liu H, et al: Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumor blood vessels. Nat Commun 4: 2516, 2013.
    • (2013) Nat Commun , vol.4 , pp. 2516
    • Chauhan, V.P.1    Martin, J.D.2    Liu, H.3
  • 161
    • 79960393113 scopus 로고    scopus 로고
    • Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells
    • Facciabene A, Peng X, Hagemann IS, et al: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475: 226-230, 2011.
    • (2011) Nature , vol.475 , pp. 226-230
    • Facciabene, A.1    Peng, X.2    Hagemann, I.S.3
  • 162
    • 79957534572 scopus 로고    scopus 로고
    • Targeting hypoxia in cancer therapy
    • Wilson WR and Hay MP: Targeting hypoxia in cancer therapy. Nat Rev Cancer 11: 393-410, 2011.
    • (2011) Nat Rev Cancer , vol.11 , pp. 393-410
    • Wilson, W.R.1    Hay, M.P.2
  • 163
    • 84904323068 scopus 로고    scopus 로고
    • The role of mechanical forces in tumor growth and therapy
    • Jain RK, Martin JD and Stylianopoulos T: The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16: 321-346, 2014.
    • (2014) Annu Rev Biomed Eng , vol.16 , pp. 321-346
    • Jain, R.K.1    Martin, J.D.2    Stylianopoulos, T.3
  • 164
    • 78049452610 scopus 로고    scopus 로고
    • Delivering nanomedicine to solid tumors
    • Jain RK and Stylianopoulos T: Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7: 653-664, 2010.
    • (2010) Nat Rev Clin Oncol , vol.7 , pp. 653-664
    • Jain, R.K.1    Stylianopoulos, T.2
  • 165
    • 84886310583 scopus 로고    scopus 로고
    • Strategies for advancing cancer nanomedicine
    • Chauhan VP and Jain RK: Strategies for advancing cancer nanomedicine. Nat Mater 12: 958-962, 2013.
    • (2013) Nat Mater , vol.12 , pp. 958-962
    • Chauhan, V.P.1    Jain, R.K.2
  • 166
    • 78149420535 scopus 로고    scopus 로고
    • A nanoparticle size series for in vivo fluorescence imaging
    • Popović Z, Liu W, Chauhan VP, et al: A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl 49: 8649-8652, 2010.
    • (2010) Angew Chem Int Ed Engl , vol.49 , pp. 8649-8652
    • Popović, Z.1    Liu, W.2    Chauhan, V.P.3
  • 167
    • 77956562428 scopus 로고    scopus 로고
    • Diffusion of particles in the extracellular matrix: The effect of repulsive electrostatic interactions
    • Stylianopoulos T, Poh MZ, Insin N, et al: Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 99: 1342-1349, 2010.
    • (2010) Biophys J , vol.99 , pp. 1342-1349
    • Stylianopoulos, T.1    Poh, M.Z.2    Insin, N.3
  • 168
    • 76749102053 scopus 로고    scopus 로고
    • Anti-transforming growth factor beta receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells
    • Zhong Z, Carroll KD, Policarpio D, et al: Anti-transforming growth factor beta receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin Cancer Res 16: 1191-1205, 2010.
    • (2010) Clin Cancer Res , vol.16 , pp. 1191-1205
    • Zhong, Z.1    Carroll, K.D.2    Policarpio, D.3
  • 169
    • 7444226411 scopus 로고    scopus 로고
    • SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo
    • Uhl M, Aulwurm S, Wischhusen J, et al: SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64: 7954-7961, 2004.
    • (2004) Cancer Res , vol.64 , pp. 7954-7961
    • Uhl, M.1    Aulwurm, S.2    Wischhusen, J.3
  • 170
    • 57749107585 scopus 로고    scopus 로고
    • Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy
    • Kim S, Buchlis G, Fridlender ZG, et al: Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res 68: 10247-10256, 2008.
    • (2008) Cancer Res , vol.68 , pp. 10247-10256
    • Kim, S.1    Buchlis, G.2    Fridlender, Z.G.3
  • 172
    • 84874760851 scopus 로고    scopus 로고
    • Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling
    • Achyut BR, Bader DA, Robles AI, et al: Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet 9: e1003251, 2013.
    • (2013) PLoS Genet , vol.9
    • Achyut, B.R.1    Bader, D.A.2    Robles, A.I.3
  • 173
    • 84887219089 scopus 로고    scopus 로고
    • TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling
    • Bragado P, Estrada Y, Parikh F, et al: TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat Cell Biol 15: 1351-1361, 2013.
    • (2013) Nat Cell Biol , vol.15 , pp. 1351-1361
    • Bragado, P.1    Estrada, Y.2    Parikh, F.3
  • 174
    • 84896708967 scopus 로고    scopus 로고
    • Attenuation of TGF-β signaling supports tumor progression of a mesenchymal-like mammary tumor cell line in a syngeneic murine model
    • Biswas T, Gu X, Yang J, Ellies LG and Sun LZ: Attenuation of TGF-β signaling supports tumor progression of a mesenchymal-like mammary tumor cell line in a syngeneic murine model. Cancer Lett 346: 129-138, 2014.
    • (2014) Cancer Lett , vol.346 , pp. 129-138
    • Biswas, T.1    Gu, X.2    Yang, J.3    Ellies, L.G.4    Sun, L.Z.5
  • 175
    • 57649112725 scopus 로고    scopus 로고
    • Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis
    • Stockmann C, Doedens A, Weidemann A, et al: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456: 814-818, 2008.
    • (2008) Nature , vol.456 , pp. 814-818
    • Stockmann, C.1    Doedens, A.2    Weidemann, A.3
  • 176
    • 84856088337 scopus 로고    scopus 로고
    • EMT and dissemination precede pancreatic tumor formation
    • Rhim AD, Mirek ET, Aiello NM, et al: EMT and dissemination precede pancreatic tumor formation. Cell 148: 349-361, 2012.
    • (2012) Cell , vol.148 , pp. 349-361
    • Rhim, A.D.1    Mirek, E.T.2    Aiello, N.M.3
  • 177
    • 79952594233 scopus 로고    scopus 로고
    • Losartan inhibits collagen I Synthesis and improves the distribution and efficacy of nanotherapeutics in tumors
    • Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y and Jain RK: Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci USA 108: 2909-2914, 2011.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 2909-2914
    • Diop-Frimpong, B.1    Chauhan, V.P.2    Krane, S.3    Boucher, Y.4    Jain, R.K.5
  • 178
    • 69049113864 scopus 로고    scopus 로고
    • Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy
    • Wilop S, von Hobe S, Crysandt M, Esser A, Osieka R and Jost E: Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J Cancer Res Clin Oncol 135: 1429-1435, 2009.
    • (2009) J Cancer Res Clin Oncol , vol.135 , pp. 1429-1435
    • Wilop, S.1    Von Hobe, S.2    Crysandt, M.3    Esser, A.4    Osieka, R.5    Jost, E.6
  • 179
    • 80051889719 scopus 로고    scopus 로고
    • Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: A retrospective examination
    • Keizman D, Huang P, Eisenberger MA, et al: Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: a retrospective examination. Eur J Cancer 47: 1955-1961, 2011.
    • (2011) Eur J Cancer , vol.47 , pp. 1955-1961
    • Keizman, D.1    Huang, P.2    Eisenberger, M.A.3
  • 180
    • 84864310711 scopus 로고    scopus 로고
    • Phase I trial of gemcitabine and candesartan combination therapy in normotensive patients with advanced pancreatic cancer: GECA1
    • Nakai Y, Isayama H, Ijichi H, et al: Phase I trial of gemcitabine and candesartan combination therapy in normotensive patients with advanced pancreatic cancer: GECA1. Cancer Sci 103: 1489-1492, 2012.
    • (2012) Cancer Sci , vol.103 , pp. 1489-1492
    • Nakai, Y.1    Isayama, H.2    Ijichi, H.3
  • 181
    • 84867362497 scopus 로고    scopus 로고
    • TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma
    • Liu J, Liao S, Diop-Frimpong B, et al: TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci USA 109: 16618-16623, 2012.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 16618-16623
    • Liu, J.1    Liao, S.2    Diop-Frimpong, B.3
  • 182
    • 84875992738 scopus 로고    scopus 로고
    • Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells
    • Kozono S, Ohuchida K, Eguchi D, et al: Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res 73: 2345-2356, 2013.
    • (2013) Cancer Res , vol.73 , pp. 2345-2356
    • Kozono, S.1    Ohuchida, K.2    Eguchi, D.3
  • 183
    • 80455144497 scopus 로고    scopus 로고
    • TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo
    • Bouquet F, Pal A, Pilones KA, et al: TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17: 6754-6765, 2011.
    • (2011) Clin Cancer Res , vol.17 , pp. 6754-6765
    • Bouquet, F.1    Pal, A.2    Pilones, K.A.3
  • 184
    • 82655181475 scopus 로고    scopus 로고
    • Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma
    • Zhang M, Kleber S, Röhrich M, et al: Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71: 7155-7167, 2011.
    • (2011) Cancer Res , vol.71 , pp. 7155-7167
    • Zhang, M.1    Kleber, S.2    Röhrich, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.