-
1
-
-
33745604839
-
The Relationship of the Nucleolus to the Synthesis of Ribosomal Rna in Hela Cells
-
McConkey EH, Hopkins JW. The Relationship of the Nucleolus to the Synthesis of Ribosomal Rna in Hela Cells. Proc Natl Acad Sci U S A 1964, 51:1197-1204.
-
(1964)
Proc Natl Acad Sci U S A
, vol.51
, pp. 1197-1204
-
-
McConkey, E.H.1
Hopkins, J.W.2
-
2
-
-
38049082048
-
Genomic architecture and inheritance of human ribosomal RNA gene clusters
-
Stults DM, Killen MW, Pierce HH, Pierce AJ. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 2008, 18:13-18.
-
(2008)
Genome Res
, vol.18
, pp. 13-18
-
-
Stults, D.M.1
Killen, M.W.2
Pierce, H.H.3
Pierce, A.J.4
-
4
-
-
0014694175
-
Relationship between HeLa cell ribosomal RNA and its precursors studied by high resolution RNA-DNA hybridization
-
Jeanteur P, Attardi G. Relationship between HeLa cell ribosomal RNA and its precursors studied by high resolution RNA-DNA hybridization. J Mol Biol 1969, 45:305-324.
-
(1969)
J Mol Biol
, vol.45
, pp. 305-324
-
-
Jeanteur, P.1
Attardi, G.2
-
5
-
-
0015541221
-
Quantitation of human ribosomal DNA: hybridization of human DNA with ribosomal RNA for quantitation and fractionation
-
Schmickel RD. Quantitation of human ribosomal DNA: hybridization of human DNA with ribosomal RNA for quantitation and fractionation. Pediatr Res 1973, 7:5-12.
-
(1973)
Pediatr Res
, vol.7
, pp. 5-12
-
-
Schmickel, R.D.1
-
6
-
-
0035824818
-
Regulation of ribosome biogenesis within the nucleolus
-
Leary DJ, Huang S. Regulation of ribosome biogenesis within the nucleolus. FEBS Lett 2001, 509:145-150.
-
(2001)
FEBS Lett
, vol.509
, pp. 145-150
-
-
Leary, D.J.1
Huang, S.2
-
7
-
-
1942497859
-
Ribosomal DNA Transcription in Mammals
-
(Landes, Austin, TX): Kluwer Academic/Plenum Publishers, Olson MOJ
-
Cavanaugh AHH-L, Rothblum LI. Ribosomal DNA Transcription in Mammals. The Nucleolus 2004, (Landes, Austin, TX): Kluwer Academic/Plenum Publishers, Olson MOJ.
-
(2004)
The Nucleolus
-
-
Cavanaugh, A.H.H.-L.1
Rothblum, L.I.2
-
8
-
-
0037205270
-
At the center of eukaryotic life
-
Moss T, Stefanovsky VY. At the center of eukaryotic life. Cell 2002, 109:545-548.
-
(2002)
Cell
, vol.109
, pp. 545-548
-
-
Moss, T.1
Stefanovsky, V.Y.2
-
9
-
-
80052282364
-
AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer
-
Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS, Hung S, Astle MV, Bywater M, Wall M, Poortinga G, Jastrzebski K, Sheppard KE, Hemmings BA, Hall MN, Johnstone RW, McArthur GA, Hannan RD, Pearson RB. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal 2011, 4:ra56.
-
(2011)
Sci Signal
, vol.4
, pp. ra56
-
-
Chan, J.C.1
Hannan, K.M.2
Riddell, K.3
Ng, P.Y.4
Peck, A.5
Lee, R.S.6
Hung, S.7
Astle, M.V.8
Bywater, M.9
Wall, M.10
Poortinga, G.11
Jastrzebski, K.12
Sheppard, K.E.13
Hemmings, B.A.14
Hall, M.N.15
Johnstone, R.W.16
McArthur, G.A.17
Hannan, R.D.18
Pearson, R.B.19
-
10
-
-
0028849144
-
Regulation of ribosomal DNA transcription during neonatal cardiomyocyte hypertrophy
-
Hannan RD, Rothblum LI. Regulation of ribosomal DNA transcription during neonatal cardiomyocyte hypertrophy. Cardiovasc Res 1995, 30:501-510.
-
(1995)
Cardiovasc Res
, vol.30
, pp. 501-510
-
-
Hannan, R.D.1
Rothblum, L.I.2
-
11
-
-
84893775563
-
The Nucleolus and Ribosomal Genes in Aging and Senescence
-
InTech, Nagata T InTech
-
Hein N, Sanij E, Quin J, Hannan KM, Ganley ARD, Hannan RD. The Nucleolus and Ribosomal Genes in Aging and Senescence. Senescence 2012, InTech, Nagata T, ISBN: 978-953-51-0144-4, InTech, doi:10.5772/34581. Available from: http://www.intechopen.com/books/senescence/the-nucleolus-in-aging-and-senescence-
-
(2012)
Senescence
-
-
Hein, N.1
Sanij, E.2
Quin, J.3
Hannan, K.M.4
Ganley, A.R.D.5
Hannan, R.D.6
-
12
-
-
55849109584
-
The epigenetics of rRNA genes: from molecular to chromosome biology
-
McStay B, Grummt I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 2008, 24:131-157.
-
(2008)
Annu Rev Cell Dev Biol
, vol.24
, pp. 131-157
-
-
McStay, B.1
Grummt, I.2
-
13
-
-
33646847147
-
The RNA polymerase I transcription machinery
-
Russell J, Zomerdijk JC. The RNA polymerase I transcription machinery. Biochem Soc Symp 2006, 73:203-216.
-
(2006)
Biochem Soc Symp
, vol.73
, pp. 203-216
-
-
Russell, J.1
Zomerdijk, J.C.2
-
14
-
-
79951847459
-
Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth
-
Drygin D, Lin A, Bliesath J, Ho CB, O'Brien SE, Proffitt C, Omori M, Haddach M, Schwaebe MK, Siddiqui-Jain A, Streiner N, Quin JE, Sanij E, Bywater MJ, Hannan RD, Ryckman D, Anderes K, Rice WG. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res 2011, 71:1418-1430.
-
(2011)
Cancer Res
, vol.71
, pp. 1418-1430
-
-
Drygin, D.1
Lin, A.2
Bliesath, J.3
Ho, C.B.4
O'Brien, S.E.5
Proffitt, C.6
Omori, M.7
Haddach, M.8
Schwaebe, M.K.9
Siddiqui-Jain, A.10
Streiner, N.11
Quin, J.E.12
Sanij, E.13
Bywater, M.J.14
Hannan, R.D.15
Ryckman, D.16
Anderes, K.17
Rice, W.G.18
-
15
-
-
84896405456
-
Targeting the nucleolus for cancer-specific activation of p53
-
Drygin D, O'Brien SE, Hannan RD, McArthur GA, Von Hoff DD. Targeting the nucleolus for cancer-specific activation of p53. Drug Discov Today 2014, 19:259-265.
-
(2014)
Drug Discov Today
, vol.19
, pp. 259-265
-
-
Drygin, D.1
O'Brien, S.E.2
Hannan, R.D.3
McArthur, G.A.4
Von Hoff, D.D.5
-
16
-
-
77949495196
-
The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer
-
Drygin D, Rice WG, Grummt I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 2010, 50:131-156.
-
(2010)
Annu Rev Pharmacol Toxicol
, vol.50
, pp. 131-156
-
-
Drygin, D.1
Rice, W.G.2
Grummt, I.3
-
17
-
-
84897099801
-
Targeting the nucleolus for cancer intervention
-
Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD. Targeting the nucleolus for cancer intervention. Biochim Biophys Acta 1842, 2014:802-816.
-
(1842)
Biochim Biophys Acta
, vol.2014
, pp. 802-816
-
-
Quin, J.E.1
Devlin, J.R.2
Cameron, D.3
Hannan, K.M.4
Pearson, R.B.5
Hannan, R.D.6
-
18
-
-
84886952042
-
The nucleolus: an emerging target for cancer therapy
-
Hein N, Hannan KM, George AJ, Sanij E, Hannan RD. The nucleolus: an emerging target for cancer therapy. Trends Mol Med 2013, 19:643-654.
-
(2013)
Trends Mol Med
, vol.19
, pp. 643-654
-
-
Hein, N.1
Hannan, K.M.2
George, A.J.3
Sanij, E.4
Hannan, R.D.5
-
19
-
-
13244264948
-
RNA-polymerase-I-directed rDNA transcription, life and works
-
Russell J, Zomerdijk JC. RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem Sci 2005, 30:87-96.
-
(2005)
Trends Biochem Sci
, vol.30
, pp. 87-96
-
-
Russell, J.1
Zomerdijk, J.C.2
-
20
-
-
84875234347
-
Dysregulation of RNA polymerase I transcription during disease
-
Hannan KM, Sanij E, Rothblum LI, Hannan RD, Pearson RB. Dysregulation of RNA polymerase I transcription during disease. Biochim Biophys Acta 1829, 2013:342-360.
-
(1829)
Biochim Biophys Acta
, vol.2013
, pp. 342-360
-
-
Hannan, K.M.1
Sanij, E.2
Rothblum, L.I.3
Hannan, R.D.4
Pearson, R.B.5
-
22
-
-
34250836327
-
The multifunctional nucleolus
-
Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007, 8:574-585.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 574-585
-
-
Boisvert, F.M.1
van Koningsbruggen, S.2
Navascues, J.3
Lamond, A.I.4
-
23
-
-
64049119754
-
In search of nonribosomal nucleolar protein function and regulation
-
Pederson T, Tsai RY. In search of nonribosomal nucleolar protein function and regulation. J Cell Biol 2009, 184:771-776.
-
(2009)
J Cell Biol
, vol.184
, pp. 771-776
-
-
Pederson, T.1
Tsai, R.Y.2
-
24
-
-
38549138017
-
Nucleolus: the fascinating nuclear body
-
Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D. Nucleolus: the fascinating nuclear body. Histochem Cell Biol 2008, 129:13-31.
-
(2008)
Histochem Cell Biol
, vol.129
, pp. 13-31
-
-
Sirri, V.1
Urcuqui-Inchima, S.2
Roussel, P.3
Hernandez-Verdun, D.4
-
25
-
-
0032169650
-
The plurifunctional nucleolus
-
Pederson T. The plurifunctional nucleolus. Nucleic Acids Res 1998, 26:3871-3876.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 3871-3876
-
-
Pederson, T.1
-
26
-
-
11944274520
-
Nucleolar proteome dynamics
-
Andersen JS, Lam YW, Leung AKL, Ong SE, Lyon CE, Lamond AI, Mann M. Nucleolar proteome dynamics. Nature 2005, 433:77-83.
-
(2005)
Nature
, vol.433
, pp. 77-83
-
-
Andersen, J.S.1
Lam, Y.W.2
Leung, A.K.L.3
Ong, S.E.4
Lyon, C.E.5
Lamond, A.I.6
Mann, M.7
-
27
-
-
0037039159
-
Directed proteomic analysis of the human nucleolus
-
Andersen JS, Lyon CE, Fox AH, Leung AKL, Lam YW, Steen H, Mann M, Lamond AI. Directed proteomic analysis of the human nucleolus. Curr Biol 2002, 12:1-11.
-
(2002)
Curr Biol
, vol.12
, pp. 1-11
-
-
Andersen, J.S.1
Lyon, C.E.2
Fox, A.H.3
Leung, A.K.L.4
Lam, Y.W.5
Steen, H.6
Mann, M.7
Lamond, A.I.8
-
28
-
-
0036856312
-
Functional Proteomic Analysis of Human Nucleolus
-
Scherl A, Coute Y, Deon C, Calle A, Kindbeiter K, Sanchez J-C, Greco A, Hochstrasser D, Diaz J-J. Functional Proteomic Analysis of Human Nucleolus. Mol Biol Cell 2002, 13:4100-4109.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 4100-4109
-
-
Scherl, A.1
Coute, Y.2
Deon, C.3
Calle, A.4
Kindbeiter, K.5
Sanchez, J.-C.6
Greco, A.7
Hochstrasser, D.8
Diaz, J.-J.9
-
29
-
-
33644874178
-
NOPdb: nucleolar proteome database
-
Leung AKL, Trinkle-Mulcahy L, Lam YW, Andersen JS, Mann M, Lamond AI. NOPdb: nucleolar proteome database. Nucleic Acids Res 2006, 34:D218-D220.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. D218-D220
-
-
Leung, A.K.L.1
Trinkle-Mulcahy, L.2
Lam, Y.W.3
Andersen, J.S.4
Mann, M.5
Lamond, A.I.6
-
30
-
-
33644917973
-
Deciphering the human nucleolar proteome
-
Couté Y, Burgess JA, Diaz J-J, Chichester C, Lisacek F, Greco A, Sanchez J-C. Deciphering the human nucleolar proteome. Mass Spectrom Rev 2006, 25:215-234.
-
(2006)
Mass Spectrom Rev
, vol.25
, pp. 215-234
-
-
CoutÃ, Y.1
Burgess, J.A.2
Diaz, J.-J.3
Chichester, C.4
Lisacek, F.5
Greco, A.6
Sanchez, J.-C.7
-
31
-
-
58149197604
-
NOPdb: Nucleolar Proteome Database-2008 update
-
Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI. NOPdb: Nucleolar Proteome Database-2008 update. Nucleic Acids Res 2009, 37:D181-D184.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. D181-D184
-
-
Ahmad, Y.1
Boisvert, F.M.2
Gregor, P.3
Cobley, A.4
Lamond, A.I.5
-
32
-
-
84863012035
-
Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA
-
Audas TE, Jacob MD, Lee S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 2012, 45:147-157.
-
(2012)
Mol Cell
, vol.45
, pp. 147-157
-
-
Audas, T.E.1
Jacob, M.D.2
Lee, S.3
-
33
-
-
18744364184
-
The moving parts of the nucleolus
-
Olson MO, Dundr M. The moving parts of the nucleolus. Histochem Cell Biol 2005, 123:203-216.
-
(2005)
Histochem Cell Biol
, vol.123
, pp. 203-216
-
-
Olson, M.O.1
Dundr, M.2
-
34
-
-
79951919841
-
The DNA damage effector Chk1 kinase regulates Cdc14B nucleolar shuttling during cell cycle progression
-
Peddibhotla S, Wei Z, Papineni R, Lam MH, Rosen JM, Zhang P. The DNA damage effector Chk1 kinase regulates Cdc14B nucleolar shuttling during cell cycle progression. Cell Cycle 2011, 10:671-679.
-
(2011)
Cell Cycle
, vol.10
, pp. 671-679
-
-
Peddibhotla, S.1
Wei, Z.2
Papineni, R.3
Lam, M.H.4
Rosen, J.M.5
Zhang, P.6
-
35
-
-
79961145353
-
Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11
-
Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, Itoh B, Wang J, Komatsu Y, Yang YR, Hikasa H, Horie Y, Yamashita T, Kamijo T, Zhang Y, Zhu Y, Prives C, Nakano T, Mak TW, Sasaki T, Maehama T, Mori M, Suzuki A. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 2011, 17:944-951.
-
(2011)
Nat Med
, vol.17
, pp. 944-951
-
-
Sasaki, M.1
Kawahara, K.2
Nishio, M.3
Mimori, K.4
Kogo, R.5
Hamada, K.6
Itoh, B.7
Wang, J.8
Komatsu, Y.9
Yang, Y.R.10
Hikasa, H.11
Horie, Y.12
Yamashita, T.13
Kamijo, T.14
Zhang, Y.15
Zhu, Y.16
Prives, C.17
Nakano, T.18
Mak, T.W.19
Sasaki, T.20
Maehama, T.21
Mori, M.22
Suzuki, A.23
more..
-
36
-
-
84871902443
-
Fbw7alpha and Fbw7gamma collaborate to shuttle cyclin E1 into the nucleolus for multiubiquitylation
-
Bhaskaran N, van Drogen F, Ng HF, Kumar R, Ekholm-Reed S, Peter M, Sangfelt O, Reed SI. Fbw7alpha and Fbw7gamma collaborate to shuttle cyclin E1 into the nucleolus for multiubiquitylation. Mol Cell Biol 2013, 33:85-97.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 85-97
-
-
Bhaskaran, N.1
van Drogen, F.2
Ng, H.F.3
Kumar, R.4
Ekholm-Reed, S.5
Peter, M.6
Sangfelt, O.7
Reed, S.I.8
-
37
-
-
0036315747
-
Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation
-
Daniely Y, Dimitrova DD, Borowiec JA. Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol Cell Biol 2002, 22:6014-6022.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 6014-6022
-
-
Daniely, Y.1
Dimitrova, D.D.2
Borowiec, J.A.3
-
38
-
-
59349083787
-
Delocalization of nucleolar poly(ADP-ribose) polymerase-1 to the nucleoplasm and its novel link to cellular sensitivity to DNA damage
-
Rancourt A, Satoh MS. Delocalization of nucleolar poly(ADP-ribose) polymerase-1 to the nucleoplasm and its novel link to cellular sensitivity to DNA damage. DNA Repair 2009, 8:286-297.
-
(2009)
DNA Repair
, vol.8
, pp. 286-297
-
-
Rancourt, A.1
Satoh, M.S.2
-
39
-
-
77649159264
-
A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage
-
Boisvert FM, Lam YW, Lamont D, Lamond AI. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol Cell Proteomics 2010, 9:457-470.
-
(2010)
Mol Cell Proteomics
, vol.9
, pp. 457-470
-
-
Boisvert, F.M.1
Lam, Y.W.2
Lamont, D.3
Lamond, A.I.4
-
40
-
-
80054043851
-
Quantitative Proteomics and Dynamic Imaging of the Nucleolus Reveal Distinct Responses to UV and Ionizing Radiation
-
Moore HM, Bai BY, Boisvert FM, Latonen L, Rantanen V, Simpson JC, Pepperkok R, Lamond AI, Laiho M. Quantitative Proteomics and Dynamic Imaging of the Nucleolus Reveal Distinct Responses to UV and Ionizing Radiation. Mol Cell Proteomics 2011, 10:15.
-
(2011)
Mol Cell Proteomics
, vol.10
, pp. 15
-
-
Moore, H.M.1
Bai, B.Y.2
Boisvert, F.M.3
Latonen, L.4
Rantanen, V.5
Simpson, J.C.6
Pepperkok, R.7
Lamond, A.I.8
Laiho, M.9
-
41
-
-
84865305782
-
Nucleolar exit of RNF8 and BRCA1 in response to DNA damage
-
Guerra-Rebollo M, Mateo F, Franke K, Huen MSY, Lopitz-Otsoa F, Rodriguez MS, Plans V, Thomson TM. Nucleolar exit of RNF8 and BRCA1 in response to DNA damage. Exp Cell Res 2012, 318:2365-2376.
-
(2012)
Exp Cell Res
, vol.318
, pp. 2365-2376
-
-
Guerra-Rebollo, M.1
Mateo, F.2
Franke, K.3
Huen, M.S.Y.4
Lopitz-Otsoa, F.5
Rodriguez, M.S.6
Plans, V.7
Thomson, T.M.8
-
42
-
-
21244504900
-
Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis
-
Yuan X, Zhou Y, Casanova E, Chai M, Kiss E, Grone HJ, Schutz G, Grummt I. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Mol Cell 2005, 19:77-87.
-
(2005)
Mol Cell
, vol.19
, pp. 77-87
-
-
Yuan, X.1
Zhou, Y.2
Casanova, E.3
Chai, M.4
Kiss, E.5
Grone, H.J.6
Schutz, G.7
Grummt, I.8
-
43
-
-
0344011603
-
Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses
-
Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 2003, 22:6068-6077.
-
(2003)
EMBO J
, vol.22
, pp. 6068-6077
-
-
Rubbi, C.P.1
Milner, J.2
-
44
-
-
0034977001
-
Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: Effects of nucleolar protein bop1 on G(1)/S transition
-
Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: Effects of nucleolar protein bop1 on G(1)/S transition. Mol Cell Biol 2001, 21:4246-4255.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 4246-4255
-
-
Pestov, D.G.1
Strezoska, Z.2
Lau, L.F.3
-
45
-
-
12144288857
-
Sensing cellular stress: another new function for the nucleolus?
-
Olson MO. Sensing cellular stress: another new function for the nucleolus?. Sci STKE 2004, 2004:pe10.
-
(2004)
Sci STKE
, vol.2004
, pp. pe10
-
-
Olson, M.O.1
-
46
-
-
70350497397
-
Signaling to p53: ribosomal proteins find their way
-
Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009, 16:369-377.
-
(2009)
Cancer Cell
, vol.16
, pp. 369-377
-
-
Zhang, Y.1
Lu, H.2
-
47
-
-
77955177254
-
Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway
-
Deisenroth C, Zhang Y. Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway. Oncogene 2010, 29:4253-4260.
-
(2010)
Oncogene
, vol.29
, pp. 4253-4260
-
-
Deisenroth, C.1
Zhang, Y.2
-
48
-
-
78649336111
-
The nucleolus under stress
-
Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell 2010, 40:216-227.
-
(2010)
Mol Cell
, vol.40
, pp. 216-227
-
-
Boulon, S.1
Westman, B.J.2
Hutten, S.3
Boisvert, F.M.4
Lamond, A.I.5
-
49
-
-
80052063360
-
The RP-Mdm2-p53 Pathway and Tumorigenesis
-
de Marval PLM, Zhang YP. The RP-Mdm2-p53 Pathway and Tumorigenesis. Oncotarget 2011, 2:234-238.
-
(2011)
Oncotarget
, vol.2
, pp. 234-238
-
-
de Marval, P.L.M.1
Zhang, Y.P.2
-
50
-
-
84897077346
-
Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis
-
Bursac S, Brdovcak MC, Donati G, Volarevic S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta 1842, 2014:817-830.
-
(1842)
Biochim Biophys Acta
, vol.2014
, pp. 817-830
-
-
Bursac, S.1
Brdovcak, M.C.2
Donati, G.3
Volarevic, S.4
-
51
-
-
79953065005
-
Genome organization in and around the nucleolus
-
Nemeth A, Langst G. Genome organization in and around the nucleolus. Trends Genet 2011, 27:149-156.
-
(2011)
Trends Genet
, vol.27
, pp. 149-156
-
-
Nemeth, A.1
Langst, G.2
-
52
-
-
84864680102
-
Formation of nuclear heterochromatin The nucleolar point of view
-
Guetg C, Santoro R. Formation of nuclear heterochromatin The nucleolar point of view. Epigenetics 2012, 7:811-814.
-
(2012)
Epigenetics
, vol.7
, pp. 811-814
-
-
Guetg, C.1
Santoro, R.2
-
53
-
-
71549154379
-
Human rRNA gene clusters are recombinational hotspots in cancer
-
Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA, Pierce AJ. Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res 2009, 69:9096-9104.
-
(2009)
Cancer Res
, vol.69
, pp. 9096-9104
-
-
Stults, D.M.1
Killen, M.W.2
Williamson, E.P.3
Hourigan, J.S.4
Vargas, H.D.5
Arnold, S.M.6
Moscow, J.A.7
Pierce, A.J.8
-
54
-
-
79953707188
-
Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast
-
Kobayashi T. Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci 2011, 68:1395-1403.
-
(2011)
Cell Mol Life Sci
, vol.68
, pp. 1395-1403
-
-
Kobayashi, T.1
-
55
-
-
79955575444
-
Ribosomal DNA deletions modulate genome-wide gene expression: "rDNA-sensitive" genes and natural variation
-
Paredes S, Branco AT, Hartl DL, Maggert KA, Lemos B. Ribosomal DNA deletions modulate genome-wide gene expression: "rDNA-sensitive" genes and natural variation. PLoS Genet 2011, 7:e1001376.
-
(2011)
PLoS Genet
, vol.7
, pp. e1001376
-
-
Paredes, S.1
Branco, A.T.2
Hartl, D.L.3
Maggert, K.A.4
Lemos, B.5
-
56
-
-
76249101086
-
Abundance of ribosomal RNA gene copies maintains genome integrity
-
Ide S, Miyazaki T, Maki H, Kobayashi T. Abundance of ribosomal RNA gene copies maintains genome integrity. Science 2010, 327:693-696.
-
(2010)
Science
, vol.327
, pp. 693-696
-
-
Ide, S.1
Miyazaki, T.2
Maki, H.3
Kobayashi, T.4
-
57
-
-
77954954525
-
The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats
-
Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, Fussenegger M, Santoro R. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 2010, 29:2135-2146.
-
(2010)
EMBO J
, vol.29
, pp. 2135-2146
-
-
Guetg, C.1
Lienemann, P.2
Sirri, V.3
Grummt, I.4
Hernandez-Verdun, D.5
Hottiger, M.O.6
Fussenegger, M.7
Santoro, R.8
-
58
-
-
70449555139
-
Ribosomal DNA contributes to global chromatin regulation
-
Paredes S, Maggert KA. Ribosomal DNA contributes to global chromatin regulation. Proc Natl Acad Sci U S A 2009, 106:17829-17834.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 17829-17834
-
-
Paredes, S.1
Maggert, K.A.2
-
59
-
-
84875843747
-
Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes
-
Goodfellow SJ, Zomerdijk JC. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem 2013, 61:211-236.
-
(2013)
Subcell Biochem
, vol.61
, pp. 211-236
-
-
Goodfellow, S.J.1
Zomerdijk, J.C.2
-
60
-
-
84855839708
-
RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation
-
Schneider DA. RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 2012, 493:176-184.
-
(2012)
Gene
, vol.493
, pp. 176-184
-
-
Schneider, D.A.1
-
61
-
-
0028839872
-
Coactivator and promoter-selective properties of RNA polymerase I TAFs
-
Beckmann H, Chen JL, O'Brien T, Tjian R. Coactivator and promoter-selective properties of RNA polymerase I TAFs. Science 1995, 270:1506-1509.
-
(1995)
Science
, vol.270
, pp. 1506-1509
-
-
Beckmann, H.1
Chen, J.L.2
O'Brien, T.3
Tjian, R.4
-
62
-
-
23844444474
-
TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter
-
Friedrich JK, Panov KI, Cabart P, Russell J, Zomerdijk JC. TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter. J Biol Chem 2005, 280:29551-29558.
-
(2005)
J Biol Chem
, vol.280
, pp. 29551-29558
-
-
Friedrich, J.K.1
Panov, K.I.2
Cabart, P.3
Russell, J.4
Zomerdijk, J.C.5
-
63
-
-
0035869039
-
HRRN3 is essential in the SL1-mediated recruitment of RNA Polymerase I to rRNA gene promoters
-
Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC. hRRN3 is essential in the SL1-mediated recruitment of RNA Polymerase I to rRNA gene promoters. EMBO J 2001, 20:1373-1382.
-
(2001)
EMBO J
, vol.20
, pp. 1373-1382
-
-
Miller, G.1
Panov, K.I.2
Friedrich, J.K.3
Trinkle-Mulcahy, L.4
Lamond, A.I.5
Zomerdijk, J.C.6
-
64
-
-
0028168579
-
The conserved core domain of the human TATA binding protein is sufficient to assemble the multisubunit RNA polymerase I-specific transcription factor SL1
-
Rudloff U, Eberhard D, Grummt I. The conserved core domain of the human TATA binding protein is sufficient to assemble the multisubunit RNA polymerase I-specific transcription factor SL1. Proc Natl Acad Sci U S A 1994, 91:8229-8233.
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, pp. 8229-8233
-
-
Rudloff, U.1
Eberhard, D.2
Grummt, I.3
-
65
-
-
0028124497
-
The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA
-
Putnam CD, Copenhaver GP, Denton ML, Pikaard CS. The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA. Mol Cell Biol 1994, 14:6476-6488.
-
(1994)
Mol Cell Biol
, vol.14
, pp. 6476-6488
-
-
Putnam, C.D.1
Copenhaver, G.P.2
Denton, M.L.3
Pikaard, C.S.4
-
66
-
-
0028286488
-
Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF
-
Bazett-Jones DP, Leblanc B, Herfort M, Moss T. Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 1994, 264:1134-1137.
-
(1994)
Science
, vol.264
, pp. 1134-1137
-
-
Bazett-Jones, D.P.1
Leblanc, B.2
Herfort, M.3
Moss, T.4
-
67
-
-
0035419327
-
DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules
-
Stefanovsky VY, Pelletier G, Bazett-Jones DP, Crane-Robinson C, Moss T. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Nucleic Acids Res 2001, 29:3241-3247.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. 3241-3247
-
-
Stefanovsky, V.Y.1
Pelletier, G.2
Bazett-Jones, D.P.3
Crane-Robinson, C.4
Moss, T.5
-
68
-
-
0023805497
-
Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis
-
Bell SP, Learned RM, Jantzen HM, Tjian R. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 1988, 241:1192-1197.
-
(1988)
Science
, vol.241
, pp. 1192-1197
-
-
Bell, S.P.1
Learned, R.M.2
Jantzen, H.M.3
Tjian, R.4
-
69
-
-
0030061161
-
The species-specific RNA polymerase I transcription factor SL-1 binds to upstream binding factor
-
Hempel WM, Cavanaugh AH, Hannan RD, Taylor L, Rothblum LI. The species-specific RNA polymerase I transcription factor SL-1 binds to upstream binding factor. Mol Cell Biol 1996, 16:557-563.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 557-563
-
-
Hempel, W.M.1
Cavanaugh, A.H.2
Hannan, R.D.3
Taylor, L.4
Rothblum, L.I.5
-
70
-
-
0028556519
-
Assembly of transcriptionally active RNA polymerase I initiation factor SL1 from recombinant subunits
-
Zomerdijk JC, Beckmann H, Comai L, Tjian R. Assembly of transcriptionally active RNA polymerase I initiation factor SL1 from recombinant subunits. Science 1994, 266:2015-2018.
-
(1994)
Science
, vol.266
, pp. 2015-2018
-
-
Zomerdijk, J.C.1
Beckmann, H.2
Comai, L.3
Tjian, R.4
-
71
-
-
0031043015
-
Cloning of murine RNA polymerase I-specific TAF factors: conserved interactions between the subunits of the species-specific transcription initiation factor TIF-IB/SL1
-
Heix J, Zomerdijk JC, Ravanpay A, Tjian R, Grummt I. Cloning of murine RNA polymerase I-specific TAF factors: conserved interactions between the subunits of the species-specific transcription initiation factor TIF-IB/SL1. Proc Natl Acad Sci U S A 1997, 94:1733-1738.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 1733-1738
-
-
Heix, J.1
Zomerdijk, J.C.2
Ravanpay, A.3
Tjian, R.4
Grummt, I.5
-
72
-
-
0026531863
-
The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1
-
Comai L, Tanese N, Tjian R. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 1992, 68:965-976.
-
(1992)
Cell
, vol.68
, pp. 965-976
-
-
Comai, L.1
Tanese, N.2
Tjian, R.3
-
73
-
-
0036135638
-
UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat
-
O'Sullivan AC, Sullivan GJ, McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol Cell Biol 2002, 22:657-668.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 657-668
-
-
O'Sullivan, A.C.1
Sullivan, G.J.2
McStay, B.3
-
74
-
-
73449096759
-
The role of UBF in regulating the structure and dynamics of transcriptionally active rDNA chromatin
-
Sanij E, Hannan RD. The role of UBF in regulating the structure and dynamics of transcriptionally active rDNA chromatin. Epigenetics 2009, 4:374-382.
-
(2009)
Epigenetics
, vol.4
, pp. 374-382
-
-
Sanij, E.1
Hannan, R.D.2
-
75
-
-
79955603839
-
C-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation
-
Poortinga G, Wall M, Sanij E, Siwicki K, Ellul J, Brown D, Holloway TP, Hannan RD, McArthur GA. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res 2011, 39:3267-3281.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 3267-3281
-
-
Poortinga, G.1
Wall, M.2
Sanij, E.3
Siwicki, K.4
Ellul, J.5
Brown, D.6
Holloway, T.P.7
Hannan, R.D.8
McArthur, G.A.9
-
76
-
-
33746517313
-
UBF activates RNA polymerase I transcription by stimulating promoter escape
-
Panov KI, Friedrich JK, Russell J, Zomerdijk JC. UBF activates RNA polymerase I transcription by stimulating promoter escape. EMBO J 2006, 25:3310-3322.
-
(2006)
EMBO J
, vol.25
, pp. 3310-3322
-
-
Panov, K.I.1
Friedrich, J.K.2
Russell, J.3
Zomerdijk, J.C.4
-
77
-
-
33344474082
-
Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling
-
Stefanovsky V, Langlois F, Gagnon-Kugler T, Rothblum LI, Moss T. Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling. Mol Cell 2006, 21:629-639.
-
(2006)
Mol Cell
, vol.21
, pp. 629-639
-
-
Stefanovsky, V.1
Langlois, F.2
Gagnon-Kugler, T.3
Rothblum, L.I.4
Moss, T.5
-
78
-
-
84875251334
-
Chromatin states at ribosomal DNA loci
-
Hamperl S, Wittner M, Babl V, Perez-Fernandez J, Tschochner H, Griesenbeck J. Chromatin states at ribosomal DNA loci. Biochim Biophys Acta 1829, 2013:405-417.
-
(1829)
Biochim Biophys Acta
, vol.2013
, pp. 405-417
-
-
Hamperl, S.1
Wittner, M.2
Babl, V.3
Perez-Fernandez, J.4
Tschochner, H.5
Griesenbeck, J.6
-
79
-
-
85019240643
-
Targeting RNA polymerase I to treat MYC-driven cancer
-
Epub ahead of print
-
Poortinga G, Quinn LM, Hannan RD. Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 2014, Epub ahead of print.
-
(2014)
Oncogene
-
-
Poortinga, G.1
Quinn, L.M.2
Hannan, R.D.3
-
80
-
-
59449110517
-
UBF levels determine the number of active ribosomal RNA genes in mammals
-
Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J, Robb E, Wong LH, Thomas WG, Stefanovsky V, Moss T, Rothblum L, Hannan KM, McArthur GA, Pearson RB, Hannan RD. UBF levels determine the number of active ribosomal RNA genes in mammals. J Cell Biol 2008, 183:1259-1274.
-
(2008)
J Cell Biol
, vol.183
, pp. 1259-1274
-
-
Sanij, E.1
Poortinga, G.2
Sharkey, K.3
Hung, S.4
Holloway, T.P.5
Quin, J.6
Robb, E.7
Wong, L.H.8
Thomas, W.G.9
Stefanovsky, V.10
Moss, T.11
Rothblum, L.12
Hannan, K.M.13
McArthur, G.A.14
Pearson, R.B.15
Hannan, R.D.16
-
81
-
-
0036844024
-
The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription
-
Santoro R, Li J, Grummt I. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 2002, 32:393-396.
-
(2002)
Nat Genet
, vol.32
, pp. 393-396
-
-
Santoro, R.1
Li, J.2
Grummt, I.3
-
82
-
-
0035801407
-
NoRCâ€" a novel member of mammalian ISWI-containing chromatin remodeling machines
-
Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, Grummt I. NoRCâ€" a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 2001, 20:4892-4900.
-
(2001)
EMBO J
, vol.20
, pp. 4892-4900
-
-
Strohner, R.1
Nemeth, A.2
Jansa, P.3
Hofmann-Rohrer, U.4
Santoro, R.5
Langst, G.6
Grummt, I.7
-
83
-
-
84875263916
-
Epigenetic control of RNA polymerase I transcription in mammalian cells
-
Grummt I, Langst G. Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochim Biophys Acta 1829, 2013:393-404.
-
(1829)
Biochim Biophys Acta
, vol.2013
, pp. 393-404
-
-
Grummt, I.1
Langst, G.2
-
84
-
-
0032535115
-
Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation
-
Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J 1998, 17:7373-7381.
-
(1998)
EMBO J
, vol.17
, pp. 7373-7381
-
-
Heix, J.1
Vente, A.2
Voit, R.3
Budde, A.4
Michaelidis, T.M.5
Grummt, I.6
-
85
-
-
0032703098
-
The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery
-
Sirri V, Roussel P, Hernandez-Verdun D. The mitotically phosphorylated form of the transcription termination factor TTF-1 is associated with the repressed rDNA transcription machinery. J Cell Sci 1999, 112(Pt 19):3259-3268.
-
(1999)
J Cell Sci
, vol.112
, pp. 3259-3268
-
-
Sirri, V.1
Roussel, P.2
Hernandez-Verdun, D.3
-
86
-
-
0033118941
-
Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF
-
Voit R, Hoffmann M, Grummt I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J 1999, 18:1891-1899.
-
(1999)
EMBO J
, vol.18
, pp. 1891-1899
-
-
Voit, R.1
Hoffmann, M.2
Grummt, I.3
-
87
-
-
0038506040
-
Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus
-
Grummt I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 2003, 17:1691-1702.
-
(2003)
Genes Dev
, vol.17
, pp. 1691-1702
-
-
Grummt, I.1
-
88
-
-
0030006048
-
The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs
-
Roussel P, Andre C, Comai L, Hernandez-Verdun D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 1996, 133:235-246.
-
(1996)
J Cell Biol
, vol.133
, pp. 235-246
-
-
Roussel, P.1
Andre, C.2
Comai, L.3
Hernandez-Verdun, D.4
-
89
-
-
0027499795
-
Localization of the RNA polymerase I transcription factor hUBF during the cell cycle
-
Roussel P, Andre C, Masson C, Geraud G, Hernandez-Verdun D. Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 1993, 104(Pt 2):327-337.
-
(1993)
J Cell Sci
, vol.104
, pp. 327-337
-
-
Roussel, P.1
Andre, C.2
Masson, C.3
Geraud, G.4
Hernandez-Verdun, D.5
-
90
-
-
28844477891
-
Nucleolar biogenesis: the first small steps
-
Prieto JL, McStay B. Nucleolar biogenesis: the first small steps. Biochem Soc Trans 2005, 33:1441-1443.
-
(2005)
Biochem Soc Trans
, vol.33
, pp. 1441-1443
-
-
Prieto, J.L.1
McStay, B.2
-
91
-
-
34547936557
-
Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells
-
Prieto JL, McStay B. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev 2007, 21:2041-2054.
-
(2007)
Genes Dev
, vol.21
, pp. 2041-2054
-
-
Prieto, J.L.1
McStay, B.2
-
92
-
-
84893475588
-
Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division
-
Grob A, Colleran C, McStay B. Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev 2014, 28:220-230.
-
(2014)
Genes Dev
, vol.28
, pp. 220-230
-
-
Grob, A.1
Colleran, C.2
McStay, B.3
-
93
-
-
11844291918
-
UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery
-
Mais C, Wright JE, Prieto JL, Raggett SL, McStay B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 2005, 19:50-64.
-
(2005)
Genes Dev
, vol.19
, pp. 50-64
-
-
Mais, C.1
Wright, J.E.2
Prieto, J.L.3
Raggett, S.L.4
McStay, B.5
-
94
-
-
0343081680
-
Assembly and functional organization of the nucleolus: ultrastructural analysis of Saccharomyces cerevisiae mutants
-
Trumtel S, Leger-Silvestre I, Gleizes PE, Teulieres F, Gas N. Assembly and functional organization of the nucleolus: ultrastructural analysis of Saccharomyces cerevisiae mutants. Mol Biol Cell 2000, 11:2175-2189.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 2175-2189
-
-
Trumtel, S.1
Leger-Silvestre, I.2
Gleizes, P.E.3
Teulieres, F.4
Gas, N.5
-
95
-
-
79954417213
-
The nucleolus: structure/function relationship in RNA metabolism
-
Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DLJ. The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdisciplinary Reviews-RNA 2010, 1:415-431.
-
(2010)
Wiley Interdisciplinary Reviews-RNA
, vol.1
, pp. 415-431
-
-
Hernandez-Verdun, D.1
Roussel, P.2
Thiry, M.3
Sirri, V.4
Lafontaine, D.L.J.5
-
96
-
-
0037182588
-
Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of "Christmas trees" in situ
-
Koberna K, Malinsky J, Pliss A, Masata M, Vecerova J, Fialova M, Bednar J, Raska I. Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of "Christmas trees" in situ. J Cell Biol 2002, 157:743-748.
-
(2002)
J Cell Biol
, vol.157
, pp. 743-748
-
-
Koberna, K.1
Malinsky, J.2
Pliss, A.3
Masata, M.4
Vecerova, J.5
Fialova, M.6
Bednar, J.7
Raska, I.8
-
97
-
-
0038738334
-
Pre-ribosomes on the road from the nucleolus to the cytoplasm
-
Tschochner H, Hurt E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol 2003, 13:255-263.
-
(2003)
Trends Cell Biol
, vol.13
, pp. 255-263
-
-
Tschochner, H.1
Hurt, E.2
-
98
-
-
78449284676
-
P53-Dependent subcellular proteome localization following DNA damage
-
Boisvert FM, Lamond AI. p53-Dependent subcellular proteome localization following DNA damage. Proteomics 2010, 10:4087-4097.
-
(2010)
Proteomics
, vol.10
, pp. 4087-4097
-
-
Boisvert, F.M.1
Lamond, A.I.2
-
99
-
-
84864064041
-
Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast
-
Kar B, Liu BH, Zhou ZJ, Lam YW. Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast. BMC Cell Biol 2011, 12:13.
-
(2011)
BMC Cell Biol
, vol.12
, pp. 13
-
-
Kar, B.1
Liu, B.H.2
Zhou, Z.J.3
Lam, Y.W.4
-
100
-
-
4544330157
-
Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells
-
Leung AKL, Gerlich D, Miller G, Lyon C, Lam YW, Lleres D, Daigle N, Zomerdijk J, Ellenherg J, Lamond AI. Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J Cell Biol 2004, 166:787-800.
-
(2004)
J Cell Biol
, vol.166
, pp. 787-800
-
-
Leung, A.K.L.1
Gerlich, D.2
Miller, G.3
Lyon, C.4
Lam, Y.W.5
Lleres, D.6
Daigle, N.7
Zomerdijk, J.8
Ellenherg, J.9
Lamond, A.I.10
-
101
-
-
77956497028
-
Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus
-
Emmott E, Rodgers MA, Macdonald A, McCrory S, Ajuh P, Hiscox JA. Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics 2010, 9:1920-1936.
-
(2010)
Mol Cell Proteomics
, vol.9
, pp. 1920-1936
-
-
Emmott, E.1
Rodgers, M.A.2
Macdonald, A.3
McCrory, S.4
Ajuh, P.5
Hiscox, J.A.6
-
102
-
-
76649129549
-
Proteomics analysis of the nucleolus in adenovirus-infected cells
-
Lam YW, Evans VC, Heesom KJ, Lamond AI, Matthews DA. Proteomics analysis of the nucleolus in adenovirus-infected cells. Mol Cell Proteomics 2010, 9:117-130.
-
(2010)
Mol Cell Proteomics
, vol.9
, pp. 117-130
-
-
Lam, Y.W.1
Evans, V.C.2
Heesom, K.J.3
Lamond, A.I.4
Matthews, D.A.5
-
103
-
-
0034193778
-
The nucleolus: an old factory with unexpected capabilities
-
Olson MO, Dundr M, Szebeni A. The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol 2000, 10:189-196.
-
(2000)
Trends Cell Biol
, vol.10
, pp. 189-196
-
-
Olson, M.O.1
Dundr, M.2
Szebeni, A.3
-
104
-
-
84859393349
-
Ribosome Biogenesis and Control of Cell Proliferation: p53 Is Not Alone
-
Donati G, Montanaro L, Derenzini M. Ribosome Biogenesis and Control of Cell Proliferation: p53 Is Not Alone. Cancer Res 2012, 72:1602-1607.
-
(2012)
Cancer Res
, vol.72
, pp. 1602-1607
-
-
Donati, G.1
Montanaro, L.2
Derenzini, M.3
-
105
-
-
84910024602
-
Connecting the nucleolus to the cell cycle and human disease
-
Tsai RYL, Pederson T. Connecting the nucleolus to the cell cycle and human disease. FASEB J 2009, 6:771-776.
-
(2009)
FASEB J
, vol.6
, pp. 771-776
-
-
Tsai, R.Y.L.1
Pederson, T.2
-
106
-
-
84884482165
-
Environmental Cues Induce a Long Noncoding RNA-dependent Remodeling of the Nucleolus
-
Jacob MD, Audas TE, Uniacke J, Trinkle-Mulcahy L, Lee S. Environmental Cues Induce a Long Noncoding RNA-dependent Remodeling of the Nucleolus. Mol Biol Cell 2013, 18:2943-2953.
-
(2013)
Mol Biol Cell
, vol.18
, pp. 2943-2953
-
-
Jacob, M.D.1
Audas, T.E.2
Uniacke, J.3
Trinkle-Mulcahy, L.4
Lee, S.5
-
107
-
-
84861895048
-
The nucleolar detention pathway: A cellular strategy for regulating molecular networks
-
Audas TE, Jacob MD, Lee S. The nucleolar detention pathway: A cellular strategy for regulating molecular networks. Cell Cycle 2012, 11:2059-2062.
-
(2012)
Cell Cycle
, vol.11
, pp. 2059-2062
-
-
Audas, T.E.1
Jacob, M.D.2
Lee, S.3
-
108
-
-
61849119563
-
Nucleolar targeting: the hub of the matter
-
Emmott E, Hiscox JA. Nucleolar targeting: the hub of the matter. EMBO Rep 2009, 10:231-238.
-
(2009)
EMBO Rep
, vol.10
, pp. 231-238
-
-
Emmott, E.1
Hiscox, J.A.2
-
109
-
-
74949134152
-
Linking rDNA transcription to the cellular energy supply
-
Grummt I, Voit R. Linking rDNA transcription to the cellular energy supply. Cell Cycle 2010, 9:225-226.
-
(2010)
Cell Cycle
, vol.9
, pp. 225-226
-
-
Grummt, I.1
Voit, R.2
-
110
-
-
25444473870
-
Cellular stress and nucleolar function
-
Mayer C, Grummt I. Cellular stress and nucleolar function. Cell Cycle 2005, 4:1036-1038.
-
(2005)
Cell Cycle
, vol.4
, pp. 1036-1038
-
-
Mayer, C.1
Grummt, I.2
-
111
-
-
33846614928
-
Is ribosome synthesis controlled by Pol I transcription?
-
Chedin S, Laferte A, Hoang T, Lafontaine DLJ, Riva M, Carles C. Is ribosome synthesis controlled by Pol I transcription?. Cell Cycle 2007, 6:11-15.
-
(2007)
Cell Cycle
, vol.6
, pp. 11-15
-
-
Chedin, S.1
Laferte, A.2
Hoang, T.3
Lafontaine, D.L.J.4
Riva, M.5
Carles, C.6
-
112
-
-
43049169926
-
Epigenetic control of rDNA loci in response to intracellular energy status
-
Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie S, Daitoku H, Okuwaki M, Nagata K, Fukamizu A, Kimura K, Shimizu T, Yanagisawa J. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 2008, 133:627-639.
-
(2008)
Cell
, vol.133
, pp. 627-639
-
-
Murayama, A.1
Ohmori, K.2
Fujimura, A.3
Minami, H.4
Yasuzawa-Tanaka, K.5
Kuroda, T.6
Oie, S.7
Daitoku, H.8
Okuwaki, M.9
Nagata, K.10
Fukamizu, A.11
Kimura, K.12
Shimizu, T.13
Yanagisawa, J.14
-
113
-
-
78049261451
-
Wisely chosen paths - regulation of rRNA synthesis
-
Grummt I. Wisely chosen paths - regulation of rRNA synthesis. FEBS J 2010, 277:4626-4639.
-
(2010)
FEBS J
, vol.277
, pp. 4626-4639
-
-
Grummt, I.1
-
114
-
-
43149086590
-
A metabolic throttle regulates the epigenetic state of rDNA
-
Grummt I, Ladurner AG. A metabolic throttle regulates the epigenetic state of rDNA. Cell 2008, 133:577-580.
-
(2008)
Cell
, vol.133
, pp. 577-580
-
-
Grummt, I.1
Ladurner, A.G.2
-
115
-
-
84881532614
-
Functional ribosome biogenesis is a prerequisite for p53 destabilization: impact of chemotherapy on nucleolar functions and RNA metabolism
-
Burger K, Eick D. Functional ribosome biogenesis is a prerequisite for p53 destabilization: impact of chemotherapy on nucleolar functions and RNA metabolism. Biol Chem 2013, 9:1133-1143.
-
(2013)
Biol Chem
, vol.9
, pp. 1133-1143
-
-
Burger, K.1
Eick, D.2
-
116
-
-
0037363075
-
Does the ribosome translate cancer?
-
Ruggero D, Pandolfi PP. Does the ribosome translate cancer?. Nat Rev Cancer 2003, 3:179-192.
-
(2003)
Nat Rev Cancer
, vol.3
, pp. 179-192
-
-
Ruggero, D.1
Pandolfi, P.P.2
-
117
-
-
79952858979
-
Ubiquitin and ubiquitin-like proteins in the nucleolus: multitasking tools for a ribosome factory
-
Shcherbik N, Pestov DG. Ubiquitin and ubiquitin-like proteins in the nucleolus: multitasking tools for a ribosome factory. Genes Cancer 2010, 1:681-689.
-
(2010)
Genes Cancer
, vol.1
, pp. 681-689
-
-
Shcherbik, N.1
Pestov, D.G.2
-
118
-
-
84880365124
-
Targeting RNA polymerase I transcription and the nucleolus for cancer therapy
-
Hannan RD, Drygin D, Pearson RB. Targeting RNA polymerase I transcription and the nucleolus for cancer therapy. Expert Opin Ther Targets 2013, 8:873-878.
-
(2013)
Expert Opin Ther Targets
, vol.8
, pp. 873-878
-
-
Hannan, R.D.1
Drygin, D.2
Pearson, R.B.3
-
119
-
-
84875245214
-
RNA polymerase I termination: Where is the end?
-
Nemeth A, Perez-Fernandez J, Merkl P, Hamperl S, Gerber J, Griesenbeck J, Tschochner H. RNA polymerase I termination: Where is the end?. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2013, 1829:306-317.
-
(2013)
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
, vol.1829
, pp. 306-317
-
-
Nemeth, A.1
Perez-Fernandez, J.2
Merkl, P.3
Hamperl, S.4
Gerber, J.5
Griesenbeck, J.6
Tschochner, H.7
-
120
-
-
84885833107
-
The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress
-
Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Reports 2013, 5:237-247.
-
(2013)
Cell Reports
, vol.5
, pp. 237-247
-
-
Sloan, K.E.1
Bohnsack, M.T.2
Watkins, N.J.3
-
121
-
-
53249142431
-
Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway
-
Horn HF, Vousden KH. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene 2008, 27:5774-5784.
-
(2008)
Oncogene
, vol.27
, pp. 5774-5784
-
-
Horn, H.F.1
Vousden, K.H.2
-
122
-
-
0038724615
-
Regulation of HDM2 activity by the ribosomal protein L11
-
Lohrum MAE, Ludwig RL, Kubbutat MHG, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003, 3:577-587.
-
(2003)
Cancer Cell
, vol.3
, pp. 577-587
-
-
Lohrum, M.A.E.1
Ludwig, R.L.2
Kubbutat, M.H.G.3
Hanlon, M.4
Vousden, K.H.5
-
123
-
-
3242715867
-
Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation
-
Bhat KP, Itahana K, Jin AW, Zhang YP. Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J 2004, 23:2402-2412.
-
(2004)
EMBO J
, vol.23
, pp. 2402-2412
-
-
Bhat, K.P.1
Itahana, K.2
Jin, A.W.3
Zhang, Y.P.4
-
124
-
-
7244238177
-
Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5
-
Dai MS, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 2004, 279:44475-44482.
-
(2004)
J Biol Chem
, vol.279
, pp. 44475-44482
-
-
Dai, M.S.1
Lu, H.2
-
125
-
-
33747654496
-
Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism
-
Dai MS, Shi DD, Jin YT, Sun XX, Zhang YP, Grossman SR, Lu H. Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 2006, 281:24304-24313.
-
(2006)
J Biol Chem
, vol.281
, pp. 24304-24313
-
-
Dai, M.S.1
Shi, D.D.2
Jin, Y.T.3
Sun, X.X.4
Zhang, Y.P.5
Grossman, S.R.6
Lu, H.7
-
126
-
-
84870908454
-
Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress
-
Bursac S, Brdovcak MC, Pfannkuchen M, Orsolic I, Golomb L, Zhu Y, Katz C, Daftuar L, Grabusic K, Vukelic I, Filić V, Oren M, Prives C, Volarevic S. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc Natl Acad Sci U S A 2012, 109:20467-20472.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 20467-20472
-
-
Bursac, S.1
Brdovcak, M.C.2
Pfannkuchen, M.3
Orsolic, I.4
Golomb, L.5
Zhu, Y.6
Katz, C.7
Daftuar, L.8
Grabusic, K.9
Vukelic, I.10
FiliÄ, V.11
Oren, M.12
Prives, C.13
Volarevic, S.14
-
127
-
-
84861170072
-
Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint
-
Fumagalli S, Ivanenkov VV, Teng T, Thomas G. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev 2012, 26:1028-1040.
-
(2012)
Genes Dev
, vol.26
, pp. 1028-1040
-
-
Fumagalli, S.1
Ivanenkov, V.V.2
Teng, T.3
Thomas, G.4
-
128
-
-
77956518791
-
An ARF-Independent c-MYC-Activated Tumor Suppression Pathway Mediated by Ribosomal Protein-Mdm2 Interaction
-
Macias E, Jin AW, Deisenroth C, Bhat K, Mao H, Lindstrom MS, Zhang YP. An ARF-Independent c-MYC-Activated Tumor Suppression Pathway Mediated by Ribosomal Protein-Mdm2 Interaction. Cancer Cell 2010, 18:231-243.
-
(2010)
Cancer Cell
, vol.18
, pp. 231-243
-
-
Macias, E.1
Jin, A.W.2
Deisenroth, C.3
Bhat, K.4
Mao, H.5
Lindstrom, M.S.6
Zhang, Y.P.7
-
129
-
-
0242721592
-
Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway
-
Zhang YP, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 2003, 23:8902-8912.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 8902-8912
-
-
Zhang, Y.P.1
Wolf, G.W.2
Bhat, K.3
Jin, A.4
Allio, T.5
Burkhart, W.A.6
Xiong, Y.7
-
130
-
-
84877102329
-
The Nucleolus Stress Response is Coupled to an ATR-Chk1-Mediated G2 Arrest
-
Ma H, Pederson T. The Nucleolus Stress Response is Coupled to an ATR-Chk1-Mediated G2 Arrest. Mol Biol Cell 2013, 9:1334-1342.
-
(2013)
Mol Biol Cell
, vol.9
, pp. 1334-1342
-
-
Ma, H.1
Pederson, T.2
-
131
-
-
84885855213
-
P53 -Dependent and -Independent Nucleolar Stress Responses
-
Holmberg Olausson K, Nister M, Lindstrom MS. p53 -Dependent and -Independent Nucleolar Stress Responses. Cells 2012, 1:774-798.
-
(2012)
Cells
, vol.1
, pp. 774-798
-
-
Holmberg Olausson, K.1
Nister, M.2
Lindstrom, M.S.3
-
132
-
-
67649766870
-
Transcription factories: gene expression in unions?
-
Sutherland H, Bickmore WA. Transcription factories: gene expression in unions?. Nat Rev Genet 2009, 10:457-466.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 457-466
-
-
Sutherland, H.1
Bickmore, W.A.2
-
133
-
-
18744375181
-
Concepts in nuclear architecture
-
Misteli T. Concepts in nuclear architecture. Bioessays 2005, 27:477-487.
-
(2005)
Bioessays
, vol.27
, pp. 477-487
-
-
Misteli, T.1
-
134
-
-
5444260778
-
Spatial positioning; a new dimension in genome function
-
Misteli T. Spatial positioning; a new dimension in genome function. Cell 2004, 119:153-156.
-
(2004)
Cell
, vol.119
, pp. 153-156
-
-
Misteli, T.1
-
135
-
-
0036006293
-
Chromatin motion is constrained by association with nuclear compartments in human cells
-
Chubb JR, Boyle S, Perry P, Bickmore WA. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 2002, 12:439-445.
-
(2002)
Curr Biol
, vol.12
, pp. 439-445
-
-
Chubb, J.R.1
Boyle, S.2
Perry, P.3
Bickmore, W.A.4
-
136
-
-
0021235210
-
Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences
-
Manuelidis L. Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc Natl Acad Sci U S A 1984, 81:3123-3127.
-
(1984)
Proc Natl Acad Sci U S A
, vol.81
, pp. 3123-3127
-
-
Manuelidis, L.1
-
137
-
-
0034502958
-
Characterisation of transcriptionally active and inactive chromatin domains in neurons
-
Akhmanova A, Verkerk T, Langeveld A, Grosveld F, Galjart N. Characterisation of transcriptionally active and inactive chromatin domains in neurons. J Cell Sci 2000, 113(Pt 24):4463-4474.
-
(2000)
J Cell Sci
, vol.113
, pp. 4463-4474
-
-
Akhmanova, A.1
Verkerk, T.2
Langeveld, A.3
Grosveld, F.4
Galjart, N.5
-
138
-
-
0017052931
-
Chromosomal constitution of nucleolus-associated chromatin in man
-
Stahl A, Hartung M, Vagnercapodano AM, Fouet C. Chromosomal constitution of nucleolus-associated chromatin in man. Hum Genet 1976, 35:27-34.
-
(1976)
Hum Genet
, vol.35
, pp. 27-34
-
-
Stahl, A.1
Hartung, M.2
Vagnercapodano, A.M.3
Fouet, C.4
-
139
-
-
77950375276
-
Initial Genomics of the Human Nucleolus
-
Nemeth A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Peterfia B, Solovei I, Cremer T, Dopazo J, Langst G. Initial Genomics of the Human Nucleolus. PLoS Genet 2010, 6:11.
-
(2010)
PLoS Genet
, vol.6
, pp. 11
-
-
Nemeth, A.1
Conesa, A.2
Santoyo-Lopez, J.3
Medina, I.4
Montaner, D.5
Peterfia, B.6
Solovei, I.7
Cremer, T.8
Dopazo, J.9
Langst, G.10
-
140
-
-
84890510066
-
The shared genomic architecture of human nucleolar organizer regions
-
Floutsakou I, Agrawal S, Nguyen TT, Seoighe C, Ganley AR, McStay B. The shared genomic architecture of human nucleolar organizer regions. Genome Res 2013, 23:2003-2012.
-
(2013)
Genome Res
, vol.23
, pp. 2003-2012
-
-
Floutsakou, I.1
Agrawal, S.2
Nguyen, T.T.3
Seoighe, C.4
Ganley, A.R.5
McStay, B.6
-
141
-
-
78149295090
-
High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli
-
van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton GJ, Ariyurek Y, den Dunnen JT, Lamond AI. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 2010, 21:3735-3748.
-
(2010)
Mol Biol Cell
, vol.21
, pp. 3735-3748
-
-
van Koningsbruggen, S.1
Gierlinski, M.2
Schofield, P.3
Martin, D.4
Barton, G.J.5
Ariyurek, Y.6
den Dunnen, J.T.7
Lamond, A.I.8
-
142
-
-
34249006523
-
Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing
-
Zhang LF, Huynh KD, Lee JT. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 2007, 129:693-706.
-
(2007)
Cell
, vol.129
, pp. 693-706
-
-
Zhang, L.F.1
Huynh, K.D.2
Lee, J.T.3
-
143
-
-
84857473388
-
Nucleolar association and transcriptional inhibition through 5S rDNA in mammals
-
Fedoriw AM, Starmer J, Yee D, Magnuson T. Nucleolar association and transcriptional inhibition through 5S rDNA in mammals. PLoS Genet 2012, 8:e1002468.
-
(2012)
PLoS Genet
, vol.8
, pp. e1002468
-
-
Fedoriw, A.M.1
Starmer, J.2
Yee, D.3
Magnuson, T.4
-
144
-
-
0344012605
-
Nucleolar clustering of dispersed tRNA genes
-
Thompson M, Haeusler RA, Good PD, Engelke DR. Nucleolar clustering of dispersed tRNA genes. Science 2003, 302:1399-1401.
-
(2003)
Science
, vol.302
, pp. 1399-1401
-
-
Thompson, M.1
Haeusler, R.A.2
Good, P.D.3
Engelke, D.R.4
-
145
-
-
33750268390
-
Spatial organization of transcription by RNA polymerase III
-
Haeusler RA, Engelke DR. Spatial organization of transcription by RNA polymerase III. Nucleic Acids Res 2006, 34:4826-4836.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 4826-4836
-
-
Haeusler, R.A.1
Engelke, D.R.2
-
146
-
-
84899415536
-
CTCF: an architectural protein bridging genome topology and function
-
Ong CT, Corces VG. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014, 15:234-246.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 234-246
-
-
Ong, C.T.1
Corces, V.G.2
-
147
-
-
0842310349
-
CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species
-
Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 2004, 13:291-298.
-
(2004)
Mol Cell
, vol.13
, pp. 291-298
-
-
Yusufzai, T.M.1
Tagami, H.2
Nakatani, Y.3
Felsenfeld, G.4
-
148
-
-
78049456151
-
CTCF regulates the local epigenetic state of ribosomal DNA repeats
-
van de Nobelen S, Rosa-Garrido M, Leers J, Heath H, Soochit W, Joosen L, Jonkers I, Demmers J, van der Reijden M, Torrano V, Grosveld F, Delgado MD, Renkawitz R, Galjart N, Sleutels F. CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenetics Chromatin 2010, 3:19-40.
-
(2010)
Epigenetics Chromatin
, vol.3
, pp. 19-40
-
-
van de Nobelen, S.1
Rosa-Garrido, M.2
Leers, J.3
Heath, H.4
Soochit, W.5
Joosen, L.6
Jonkers, I.7
Demmers, J.8
van der Reijden, M.9
Torrano, V.10
Grosveld, F.11
Delgado, M.D.12
Renkawitz, R.13
Galjart, N.14
Sleutels, F.15
-
149
-
-
54049138948
-
Kcnq1ot1 Antisense Noncoding RNA Mediates Lineage-Specific Transcriptional Silencing through Chromatin-Level Regulation
-
Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-DiNardo D, Kanduri C. Kcnq1ot1 Antisense Noncoding RNA Mediates Lineage-Specific Transcriptional Silencing through Chromatin-Level Regulation. Mol Cell 2008, 32:232-246.
-
(2008)
Mol Cell
, vol.32
, pp. 232-246
-
-
Pandey, R.R.1
Mondal, T.2
Mohammad, F.3
Enroth, S.4
Redrup, L.5
Komorowski, J.6
Nagano, T.7
Mancini-DiNardo, D.8
Kanduri, C.9
-
150
-
-
44349115087
-
Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region
-
Mohammad F, Pandey RR, Nagano T, Chakalova L, Mondal T, Fraser P, Kanduri C. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol 2008, 28:3713-3728.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 3713-3728
-
-
Mohammad, F.1
Pandey, R.R.2
Nagano, T.3
Chakalova, L.4
Mondal, T.5
Fraser, P.6
Kanduri, C.7
-
151
-
-
34247899003
-
Finely orchestrated movements: evolution of the ribosomal RNA genes
-
Eickbush TH, Eickbush DG. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 2007, 175:477-485.
-
(2007)
Genetics
, vol.175
, pp. 477-485
-
-
Eickbush, T.H.1
Eickbush, D.G.2
-
152
-
-
33747156656
-
Strategies to maintain the stability of the ribosomal RNA gene repeatsâ€" collaboration of recombination, cohesion, and condensation
-
Kobayashi T. Strategies to maintain the stability of the ribosomal RNA gene repeatsâ€" collaboration of recombination, cohesion, and condensation. Genes Genet Syst 2006, 81:155-161.
-
(2006)
Genes Genet Syst
, vol.81
, pp. 155-161
-
-
Kobayashi, T.1
-
154
-
-
69449105017
-
Loss of Bloom syndrome protein destabilizes human gene cluster architecture
-
Killen MW, Stults DM, Adachi N, Hanakahi L, Pierce AJ. Loss of Bloom syndrome protein destabilizes human gene cluster architecture. Hum Mol Genet 2009, 18:3417-3428.
-
(2009)
Hum Mol Genet
, vol.18
, pp. 3417-3428
-
-
Killen, M.W.1
Stults, D.M.2
Adachi, N.3
Hanakahi, L.4
Pierce, A.J.5
-
155
-
-
0033815704
-
Karyotypic dissection of Hodgkin's disease cell lines reveals ectopic subtelomeres and ribosomal DNA at sites of multiple jumping translocations and genomic amplification
-
MacLeod RA, Spitzer D, Bar-Am I, Sylvester JE, Kaufmann M, Wernich A, Drexler HG. Karyotypic dissection of Hodgkin's disease cell lines reveals ectopic subtelomeres and ribosomal DNA at sites of multiple jumping translocations and genomic amplification. Leukemia 2000, 14:1803-1814.
-
(2000)
Leukemia
, vol.14
, pp. 1803-1814
-
-
MacLeod, R.A.1
Spitzer, D.2
Bar-Am, I.3
Sylvester, J.E.4
Kaufmann, M.5
Wernich, A.6
Drexler, H.G.7
-
156
-
-
84897045343
-
Neurodegeneration-associated instability of ribosomal DNA
-
Hallgren J, Pietrzak M, Rempala G, Nelson PT, Hetman M. Neurodegeneration-associated instability of ribosomal DNA. Biochim Biophys Acta 1842, 2014:860-868.
-
(1842)
Biochim Biophys Acta
, vol.2014
, pp. 860-868
-
-
Hallgren, J.1
Pietrzak, M.2
Rempala, G.3
Nelson, P.T.4
Hetman, M.5
-
157
-
-
79960688688
-
Epigenetic silencing of nucleolar rRNA genes in Alzheimer's disease
-
Pietrzak M, Rempala G, Nelson PT, Zheng JJ, Hetman M. Epigenetic silencing of nucleolar rRNA genes in Alzheimer's disease. PLoS One 2011, 6:e22585.
-
(2011)
PLoS One
, vol.6
, pp. e22585
-
-
Pietrzak, M.1
Rempala, G.2
Nelson, P.T.3
Zheng, J.J.4
Hetman, M.5
-
158
-
-
79956291352
-
How does genome instability affect lifespan?
-
Kobayashi T. How does genome instability affect lifespan?. Genes Cells 2011, 16:617-624.
-
(2011)
Genes Cells
, vol.16
, pp. 617-624
-
-
Kobayashi, T.1
-
159
-
-
0032535478
-
Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I
-
Kobayashi T, Heck DJ, Nomura M, Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 1998, 12:3821-3830.
-
(1998)
Genes Dev
, vol.12
, pp. 3821-3830
-
-
Kobayashi, T.1
Heck, D.J.2
Nomura, M.3
Horiuchi, T.4
-
160
-
-
52049125947
-
Replication fork arrest, recombination and the maintenance of ribosomal DNA stability
-
Tsang E, Carr AM. Replication fork arrest, recombination and the maintenance of ribosomal DNA stability. DNA Repair 2008, 7:1613-1623.
-
(2008)
DNA Repair
, vol.7
, pp. 1613-1623
-
-
Tsang, E.1
Carr, A.M.2
-
161
-
-
34547591933
-
The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus
-
Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, Reid R, Jentsch S, Rothstein R, Aragon L, Lisby M. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 2007, 9:923-931.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 923-931
-
-
Torres-Rosell, J.1
Sunjevaric, I.2
De Piccoli, G.3
Sacher, M.4
Eckert-Boulet, N.5
Reid, R.6
Jentsch, S.7
Rothstein, R.8
Aragon, L.9
Lisby, M.10
-
162
-
-
40349106009
-
A new role of the rDNA and nucleolus in the nucleus-rDNA instability maintains genome integrity
-
Kobayashi T. A new role of the rDNA and nucleolus in the nucleus-rDNA instability maintains genome integrity. Bioessays 2008, 30:267-272.
-
(2008)
Bioessays
, vol.30
, pp. 267-272
-
-
Kobayashi, T.1
-
163
-
-
84910037089
-
Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging
-
Epub ahead of print
-
Ganley AR, Kobayashi T. Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Res 2013, Epub ahead of print.
-
(2013)
FEMS Yeast Res
-
-
Ganley, A.R.1
Kobayashi, T.2
-
164
-
-
0037370054
-
In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes
-
French SL, Osheim YN, Cioci F, Nomura M, Beyer AL. In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 2003, 23:1558-1568.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 1558-1568
-
-
French, S.L.1
Osheim, Y.N.2
Cioci, F.3
Nomura, M.4
Beyer, A.L.5
-
165
-
-
62249110156
-
Cdc14 inhibits transcription by RNA polymerase I during anaphase
-
Clemente-Blanco A, Mayan-Santos M, Schneider DA, Machin F, Jarmuz A, Tschochner H, Aragon L. Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 2009, 458:219-222.
-
(2009)
Nature
, vol.458
, pp. 219-222
-
-
Clemente-Blanco, A.1
Mayan-Santos, M.2
Schneider, D.A.3
Machin, F.4
Jarmuz, A.5
Tschochner, H.6
Aragon, L.7
-
166
-
-
0034658675
-
The condensin complex governs chromosome condensation and mitotic transmission of rDNA
-
Freeman L, Aragon-Alcaide L, Strunnikov A. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 2000, 149:811-824.
-
(2000)
J Cell Biol
, vol.149
, pp. 811-824
-
-
Freeman, L.1
Aragon-Alcaide, L.2
Strunnikov, A.3
-
167
-
-
33751112515
-
Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer
-
Huang J, Brito IL, Villen J, Gygi SP, Amon A, Moazed D. Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes Dev 2006, 20:2887-2901.
-
(2006)
Genes Dev
, vol.20
, pp. 2887-2901
-
-
Huang, J.1
Brito, I.L.2
Villen, J.3
Gygi, S.P.4
Amon, A.5
Moazed, D.6
-
168
-
-
0345866873
-
In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding
-
Lavoie BD, Hogan E, Koshland D. In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev 2004, 18:76-87.
-
(2004)
Genes Dev
, vol.18
, pp. 76-87
-
-
Lavoie, B.D.1
Hogan, E.2
Koshland, D.3
-
169
-
-
84897071352
-
Stressing on the nucleolus in cardiovascular disease
-
Hariharan N, Sussman MA. Stressing on the nucleolus in cardiovascular disease. Biochim Biophys Acta 1842, 2014:798-801.
-
(1842)
Biochim Biophys Acta
, vol.2014
, pp. 798-801
-
-
Hariharan, N.1
Sussman, M.A.2
-
170
-
-
84866376082
-
Revisiting the Nucleolus: From Marker to Dynamic Integrator of Cancer Signaling
-
Ruggero D. Revisiting the Nucleolus: From Marker to Dynamic Integrator of Cancer Signaling. Sci Signal 2012, 5:pe38.
-
(2012)
Sci Signal
, vol.5
, pp. pe38
-
-
Ruggero, D.1
-
171
-
-
84876884110
-
Dysregulation of the basal RNA polymerase transcription apparatus in cancer
-
Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013, 13:299-314.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 299-314
-
-
Bywater, M.J.1
Pearson, R.B.2
McArthur, G.A.3
Hannan, R.D.4
-
172
-
-
0034114866
-
Nucleolar size indicates the rapidity of cell proliferation in cancer tissues
-
Derenzini M, Trere D, Pession A, Govoni M, Sirri V, Chieco P. Nucleolar size indicates the rapidity of cell proliferation in cancer tissues. J Pathol 2000, 191:181-186.
-
(2000)
J Pathol
, vol.191
, pp. 181-186
-
-
Derenzini, M.1
Trere, D.2
Pession, A.3
Govoni, M.4
Sirri, V.5
Chieco, P.6
-
173
-
-
65349143672
-
What the nucleolus says to a tumour pathologist
-
Derenzini M, Montanaro L, Trere D. What the nucleolus says to a tumour pathologist. Histopathology 2009, 54:753-762.
-
(2009)
Histopathology
, vol.54
, pp. 753-762
-
-
Derenzini, M.1
Montanaro, L.2
Trere, D.3
-
174
-
-
84863736613
-
Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53
-
Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, Wall M, Cluse L, Drygin D, Anderes K, Huser N, Proffitt C, Bliesath J, Haddach M, Schwaebe MK, Ryckman DM, Rice WG, Schmitt C, Lowe SW, Johnstone RW, Pearson RB, McArthur GA, Hannan RD. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 2012, 22:51-65.
-
(2012)
Cancer Cell
, vol.22
, pp. 51-65
-
-
Bywater, M.J.1
Poortinga, G.2
Sanij, E.3
Hein, N.4
Peck, A.5
Cullinane, C.6
Wall, M.7
Cluse, L.8
Drygin, D.9
Anderes, K.10
Huser, N.11
Proffitt, C.12
Bliesath, J.13
Haddach, M.14
Schwaebe, M.K.15
Ryckman, D.M.16
Rice, W.G.17
Schmitt, C.18
Lowe, S.W.19
Johnstone, R.W.20
Pearson, R.B.21
McArthur, G.A.22
Hannan, R.D.23
more..
-
175
-
-
84892409069
-
A targeting modality for destruction of RNA polymerase I that possesses anticancer activity
-
Peltonen K, Colis L, Liu H, Trivedi R, Moubarek MS, Moore HM, Bai B, Rudek MA, Bieberich CJ, Laiho M. A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 2014, 25:77-90.
-
(2014)
Cancer Cell
, vol.25
, pp. 77-90
-
-
Peltonen, K.1
Colis, L.2
Liu, H.3
Trivedi, R.4
Moubarek, M.S.5
Moore, H.M.6
Bai, B.7
Rudek, M.A.8
Bieberich, C.J.9
Laiho, M.10
-
176
-
-
77951431225
-
Ribosomopathies: human disorders of ribosome dysfunction
-
Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010, 115:3196-3205.
-
(2010)
Blood
, vol.115
, pp. 3196-3205
-
-
Narla, A.1
Ebert, B.L.2
-
177
-
-
84864051677
-
Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells
-
Bose T, Lee KK, Lu S, Xu B, Harris B, Slaughter B, Unruh J, Garrett A, McDowell W, Box A, Li H, Peak A, Ramachandran S, Seidel C, Gerton JL. Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells. PLoS Genet 2012, 8:e1002749.
-
(2012)
PLoS Genet
, vol.8
, pp. e1002749
-
-
Bose, T.1
Lee, K.K.2
Lu, S.3
Xu, B.4
Harris, B.5
Slaughter, B.6
Unruh, J.7
Garrett, A.8
McDowell, W.9
Box, A.10
Li, H.11
Peak, A.12
Ramachandran, S.13
Seidel, C.14
Gerton, J.L.15
-
178
-
-
84893459333
-
Cohesion promotes nucleolar structure and function
-
Harris B, Bose T, Lee KK, Wang F, Lu S, Ross RT, Zhang Y, French SL, Beyer AL, Slaughter BD, Unruh JR, Gerton JL. Cohesion promotes nucleolar structure and function. Mol Biol Cell 2014, 25:337-346.
-
(2014)
Mol Biol Cell
, vol.25
, pp. 337-346
-
-
Harris, B.1
Bose, T.2
Lee, K.K.3
Wang, F.4
Lu, S.5
Ross, R.T.6
Zhang, Y.7
French, S.L.8
Beyer, A.L.9
Slaughter, B.D.10
Unruh, J.R.11
Gerton, J.L.12
-
179
-
-
84892564905
-
Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage
-
Zhang Q, Shalaby NA, Buszczak M. Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage. Science 2014, 343:298-301.
-
(2014)
Science
, vol.343
, pp. 298-301
-
-
Zhang, Q.1
Shalaby, N.A.2
Buszczak, M.3
-
180
-
-
84902350417
-
Downregulation of rRNA Transcription Triggers Cell Differentiation
-
Hayashi Y, Kuroda T, Kishimoto H, Wang C, Iwama A, Kimura K. Downregulation of rRNA Transcription Triggers Cell Differentiation. PLoS One 2014, 9:e98586.
-
(2014)
PLoS One
, vol.9
, pp. e98586
-
-
Hayashi, Y.1
Kuroda, T.2
Kishimoto, H.3
Wang, C.4
Iwama, A.5
Kimura, K.6
-
181
-
-
0343923469
-
NOR activity in hippocampal areas during the postnatal development and ageing
-
Garcia Moreno LM, Cimadevilla JM, Gonzalez Pardo H, Zahonero MC, Arias JL. NOR activity in hippocampal areas during the postnatal development and ageing. Mech Ageing Dev 1997, 97:173-181.
-
(1997)
Mech Ageing Dev
, vol.97
, pp. 173-181
-
-
Garcia Moreno, L.M.1
Cimadevilla, J.M.2
Gonzalez Pardo, H.3
Zahonero, M.C.4
Arias, J.L.5
-
182
-
-
84879119329
-
Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle?
-
Parlato R, Kreiner G. Nucleolar activity in neurodegenerative diseases: a missing piece of the puzzle?. J Mol Med 2013, 91:541-547.
-
(2013)
J Mol Med
, vol.91
, pp. 541-547
-
-
Parlato, R.1
Kreiner, G.2
-
183
-
-
80053947681
-
Dysregulation of upstream binding factor-1 acetylation at K352 is linked to impaired ribosomal DNA transcription in Huntington's disease
-
Lee J, Hwang YJ, Boo JH, Han D, Kwon OK, Todorova K, Kowall NW, Kim Y, Ryu H. Dysregulation of upstream binding factor-1 acetylation at K352 is linked to impaired ribosomal DNA transcription in Huntington's disease. Cell Death Differ 2011, 18:1726-1735.
-
(2011)
Cell Death Differ
, vol.18
, pp. 1726-1735
-
-
Lee, J.1
Hwang, Y.J.2
Boo, J.H.3
Han, D.4
Kwon, O.K.5
Todorova, K.6
Kowall, N.W.7
Kim, Y.8
Ryu, H.9
-
184
-
-
84897043536
-
Roles of the nucleolus in the CAG RNA-mediated toxicity
-
Tsoi H, Chan HY. Roles of the nucleolus in the CAG RNA-mediated toxicity. Biochim Biophys Acta 1842, 2014:779-784.
-
(1842)
Biochim Biophys Acta
, vol.2014
, pp. 779-784
-
-
Tsoi, H.1
Chan, H.Y.2
-
185
-
-
78651486982
-
Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling
-
Rieker C, Engblom D, Kreiner G, Domanskyi A, Schober A, Stotz S, Neumann M, Yuan X, Grummt I, Schutz G, Parlato R. Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling. J Neurosci 2011, 31:453-460.
-
(2011)
J Neurosci
, vol.31
, pp. 453-460
-
-
Rieker, C.1
Engblom, D.2
Kreiner, G.3
Domanskyi, A.4
Schober, A.5
Stotz, S.6
Neumann, M.7
Yuan, X.8
Grummt, I.9
Schutz, G.10
Parlato, R.11
-
186
-
-
79958793069
-
Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells
-
Baltanas FC, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells. Brain Pathol 2011, 21:374-388.
-
(2011)
Brain Pathol
, vol.21
, pp. 374-388
-
-
Baltanas, F.C.1
Casafont, I.2
Weruaga, E.3
Alonso, J.R.4
Berciano, M.T.5
Lafarga, M.6
|