메뉴 건너뛰기




Volumn 13, Issue 5, 2013, Pages 299-314

Dysregulation of the basal RNA polymerase transcription apparatus in cancer

Author keywords

[No Author keywords available]

Indexed keywords

5 AZA 2' DEOXYCYTIDINE; AZACITIDINE; BICALUTAMIDE; CISPLATIN; DACTINOMYCIN; DOXORUBICIN; EPIDERMAL GROWTH FACTOR RECEPTOR 2; ETOPOSIDE; FLUOROURACIL; FLUTAMIDE; IRINOTECAN; MEDIATOR COMPLEX; MITOMYCIN; RETINOIC ACID; RNA POLYMERASE; TAMOXIFEN; TEMOZOLOMIDE; TOPOTECAN; VORINOSTAT;

EID: 84876884110     PISSN: 1474175X     EISSN: 14741768     Source Type: Journal    
DOI: 10.1038/nrc3496     Document Type: Review
Times cited : (186)

References (190)
  • 1
    • 0014683539 scopus 로고
    • Multiple Forms of DNA-Dependent Rna Polymerase in Eukaryotic Organisms
    • Roeder, R. G. & Rutter, W. J. Multiple Forms of DNA-Dependent Rna Polymerase in Eukaryotic Organisms. Nature 224, 234-237 (1969).
    • (1969) Nature , vol.224 , pp. 234-237
    • Roeder, R.G.1    Rutter, W.J.2
  • 2
    • 0016271044 scopus 로고
    • Role of DNA-Dependent Rna Polymerase-Ii and Polymerase-Iii in Transcription of Adenovirus Genome Late in Productive Infection
    • Weinmann, R., Raskas, H. J. & Roeder, R. G. Role of DNA-Dependent Rna Polymerase-Ii and Polymerase-Iii in Transcription of Adenovirus Genome Late in Productive Infection. Proc. Natl Acad. Sci. USA 71, 3426-3430 (1974).
    • (1974) Proc. Natl Acad. Sci. USA , vol.71 , pp. 3426-3430
    • Weinmann, R.1    Raskas, H.J.2    Roeder, R.G.3
  • 3
    • 0016253562 scopus 로고
    • Role of DNA-Dependent Rna-Polymerase Iii in Transcription of Transfer-Rna and 5s Rna Genes
    • Weinmann, R. & Roeder, R. G. Role of DNA-Dependent Rna-Polymerase Iii in Transcription of Transfer-Rna and 5s Rna Genes. Proc. Natl Acad. Sci. USA 71, 1790-1794 (1974).
    • (1974) Proc. Natl Acad. Sci. USA , vol.71 , pp. 1790-1794
    • Weinmann, R.1    Roeder, R.G.2
  • 4
    • 84857066786 scopus 로고    scopus 로고
    • Modular regulatory principles of large non-coding RNAs
    • Guttman, M. & Rinn, J. L. Modular regulatory principles of large non-coding RNAs. Nature 482, 339-346 (2012).
    • (2012) Nature , vol.482 , pp. 339-346
    • Guttman, M.1    Rinn, J.L.2
  • 5
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • Esteller, M. Non-coding RNAs in human disease. Nature Rev. Genet. 12, 861-874 (2011).
    • (2011) Nature Rev. Genet , vol.12 , pp. 861-874
    • Esteller, M.1
  • 7
    • 60349120914 scopus 로고    scopus 로고
    • Long non-coding RNAs: Insights into functions
    • Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature Rev. Genet. 10, 155-159 (2009).
    • (2009) Nature Rev. Genet , vol.10 , pp. 155-159
    • Mercer, T.R.1    Dinger, M.E.2    Mattick, J.S.3
  • 8
    • 3042767202 scopus 로고    scopus 로고
    • MicroRNAs: Small RNAs with a big role in gene regulation
    • He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522-531 (2004).
    • (2004) Nature Rev. Genet , vol.5 , pp. 522-531
    • He, L.1    Hannon, G.J.2
  • 9
    • 79959373574 scopus 로고    scopus 로고
    • Transcription by RNA polymerase III: More complex than we thought
    • White, R. J. Transcription by RNA polymerase III: more complex than we thought. Nature Rev. Genet. 12, 459-463 (2011).
    • (2011) Nature Rev. Genet , vol.12 , pp. 459-463
    • White, R.J.1
  • 10
    • 77951947995 scopus 로고    scopus 로고
    • The human Pol III transcriptome and gene information flow
    • Noma, K. & Kamakaka, R. T. The human Pol III transcriptome and gene information flow. Nature Struct. Mol. Biol. 17, 539-541 (2010).
    • (2010) Nature Struct. Mol. Biol , vol.17 , pp. 539-541
    • Noma, K.1    Kamakaka, R.T.2
  • 12
    • 79953854816 scopus 로고    scopus 로고
    • Recent insights into regulation of transcription by RNA polymerase III and the cellular functions of its transcripts
    • Nikitina, T. V., Tischenko, L. I. & Schulz, W. A. Recent insights into regulation of transcription by RNA polymerase III and the cellular functions of its transcripts. Biol. Chem. 392, 395-404 (2011).
    • (2011) Biol. Chem , vol.392 , pp. 395-404
    • Nikitina, T.V.1    Tischenko, L.I.2    Schulz, W.A.3
  • 13
    • 0016430609 scopus 로고
    • Distinct molecular-structures of nuclear class I, Ii, and Iii DNA-dependent Rna polymerases
    • Sklar, V. E. F., Schwartz, L. B. & Roeder, R. G. Distinct Molecular-Structures of Nuclear Class I, Ii, and Iii DNA-Dependent Rna Polymerases. Proc. Natl Acad. Sci. USA 72, 348-352 (1975).
    • (1975) Proc. Natl Acad. Sci. USA , vol.72 , pp. 348-352
    • Sklar, V.E.F.1    Schwartz, L.B.2    Roeder, R.G.3
  • 14
    • 80052954724 scopus 로고    scopus 로고
    • TAF1B is a TFIIB-like component of the basal transcription machinery for RNA polymerase i
    • Naidu, S., Friedrich, J. K., Russell, J. & Zomerdijk, J. C. TAF1B is a TFIIB-like component of the basal transcription machinery for RNA polymerase I. Science 333, 1640-1642 (2011).
    • (2011) Science , vol.333 , pp. 1640-1642
    • Naidu, S.1    Friedrich, J.K.2    Russell, J.3    Zomerdijk, J.C.4
  • 15
    • 84857423235 scopus 로고    scopus 로고
    • Conservation between the RNA Polymerase I, II, and III Transcription Initiation Machineries
    • Vannini, A. & Cramer, P. Conservation between the RNA Polymerase I, II, and III Transcription Initiation Machineries. Mol. Cell 45, 439-446 (2012).
    • (2012) Mol. Cell , vol.45 , pp. 439-446
    • Vannini, A.1    Cramer, P.2
  • 16
    • 48249103199 scopus 로고    scopus 로고
    • Structure of eukaryotic RNA polymerases
    • Cramer, P., et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37, 337-352 (2008).
    • (2008) Annu. Rev. Biophys , vol.37 , pp. 337-352
    • Cramer, P.1
  • 17
    • 84857031357 scopus 로고    scopus 로고
    • Structural basis of transcription by bacterial and eukaryotic RNA polymerases
    • Sekine, S., Tagami, S. & Yokoyama, S. Structural basis of transcription by bacterial and eukaryotic RNA polymerases. Curr. Opin. Struct. Biol. 22, 110-118 (2012).
    • (2012) Curr. Opin. Struct. Biol , vol.22 , pp. 110-118
    • Sekine, S.1    Tagami, S.2    Yokoyama, S.3
  • 18
    • 70549090264 scopus 로고    scopus 로고
    • Structure-function analysis of RNA polymerases i and III
    • Werner, M., Thuriaux, P. & Soutourina, J. Structure-function analysis of RNA polymerases I and III. Curr. Opin. Struct. Biol. 19, 740-745 (2009).
    • (2009) Curr. Opin. Struct. Biol , vol.19 , pp. 740-745
    • Werner, M.1    Thuriaux, P.2    Soutourina, J.3
  • 19
    • 84863736613 scopus 로고    scopus 로고
    • Inhibition of RNA Polymerase i as a Therapeutic Strategy to Promote Cancer-Specific Activation of p53
    • Bywater, M. J., et al. Inhibition of RNA Polymerase I as a Therapeutic Strategy to Promote Cancer-Specific Activation of p53. Cancer Cell 22, 51-65 (2012).
    • (2012) Cancer Cell , vol.22 , pp. 51-65
    • Bywater, M.J.1
  • 20
    • 0142137250 scopus 로고    scopus 로고
    • The eukaryotic transcriptional machinery: Complexities and mechanisms unforeseen
    • Roeder, R. G. The eukaryotic transcriptional machinery: complexities and mechanisms unforeseen. Nature Med. 9, 1239-1244 (2003).
    • (2003) Nature Med , vol.9 , pp. 1239-1244
    • Roeder, R.G.1
  • 21
    • 59849090498 scopus 로고    scopus 로고
    • TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation
    • Schmitz, K. M., et al. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol. Cell 33, 344-353 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 344-353
    • Schmitz, K.M.1
  • 22
    • 79951847459 scopus 로고    scopus 로고
    • Targeting RNA polymerase i with an oral small molecule CX5461 inhibits ribosomal RNA synthesis and solid tumor growth
    • Drygin, D., et al. Targeting RNA polymerase I with an oral small molecule CX5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 71, 1418-1430 (2011).
    • (2011) Cancer Res , vol.71 , pp. 1418-1430
    • Drygin, D.1
  • 23
    • 84861457511 scopus 로고    scopus 로고
    • TFIIH: When transcription met DNA repair
    • Compe, E. & Egly, J. M. TFIIH: when transcription met DNA repair. Nature Rev. Mol. Cell Biol. 13, 343-354 (2012).
    • (2012) Nature Rev. Mol. Cell Biol , vol.13 , pp. 343-354
    • Compe, E.1    Egly, J.M.2
  • 24
    • 0037013144 scopus 로고    scopus 로고
    • TFIIH plays an essential role in RNA polymerase i transcription
    • Iben, S., et al. TFIIH plays an essential role in RNA polymerase I transcription. Cell 109, 297-306 (2002).
    • (2002) Cell , vol.109 , pp. 297-306
    • Iben, S.1
  • 25
    • 0036809114 scopus 로고    scopus 로고
    • CSB is a component of RNA pol i transcription
    • Bradsher, J., et al. CSB is a component of RNA pol I transcription. Mol. Cell 10, 819-829 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 819-829
    • Bradsher, J.1
  • 26
    • 84855897301 scopus 로고    scopus 로고
    • TFIIH is an elongation factor of RNA polymerase i
    • Assfalg, R., et al. TFIIH is an elongation factor of RNA polymerase I. Nucleic Acids Res. 40, 650-659 (2012).
    • (2012) Nucleic Acids Res , vol.40 , pp. 650-659
    • Assfalg, R.1
  • 27
    • 79960377780 scopus 로고    scopus 로고
    • A history of TFIIH: Two decades of molecular biology on a pivotal transcription/repair factor
    • Egly, J. M. & Coin, F. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst.) 10, 714-721 (2011).
    • (2011) DNA Repair (Amst.) , vol.10 , pp. 714-721
    • Egly, J.M.1    Coin, F.2
  • 28
    • 41549142137 scopus 로고    scopus 로고
    • DNA repair gene XPD polymorphisms and cancer risk: A meta-analysis based on 56 case-control studies
    • Wang, F., et al. DNA repair gene XPD polymorphisms and cancer risk: a meta-analysis based on 56 case-control studies. Cancer Epidemiol. Biomarkers Prev. 17, 507-517 (2008).
    • (2008) Cancer Epidemiol. Biomarkers Prev , vol.17 , pp. 507-517
    • Wang, F.1
  • 29
    • 33748041436 scopus 로고    scopus 로고
    • XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: A HuGE review
    • Manuguerra, M., et al. XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: a HuGE review. Am. J. Epidemiol. 164, 297-302 (2006).
    • (2006) Am. J. Epidemiol , vol.164 , pp. 297-302
    • Manuguerra, M.1
  • 30
    • 84866366648 scopus 로고    scopus 로고
    • The effect of XPD/ERCC2 polymorphisms on gastric cancer risk among different ethnicities: A systematic review and meta-analysis
    • Xue, H., et al. The effect of XPD/ERCC2 polymorphisms on gastric cancer risk among different ethnicities: a systematic review and meta-analysis. PLoS ONE 7, e43431 (2012).
    • (2012) PLoS ONE , vol.7
    • Xue, H.1
  • 31
    • 0344921331 scopus 로고    scopus 로고
    • Increased expression of TATA-binding protein, the central transcription factor, can contribute to oncogenesis
    • Johnson, S. A., et al. Increased expression of TATA-binding protein, the central transcription factor, can contribute to oncogenesis. Mol. Cell. Biol. 23, 3043-3051 (2003).
    • (2003) Mol. Cell. Biol , vol.23 , pp. 3043-3051
    • Johnson, S.A.1
  • 32
    • 84859298511 scopus 로고    scopus 로고
    • Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network
    • Li, B. Q., Huang, T., Liu, L., Cai, Y. D. & Chou, K. C. Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. PLoS ONE 7, e33393 (2012).
    • (2012) PLoS ONE , vol.7
    • Li, B.Q.1    Huang, T.2    Liu, L.3    Cai, Y.D.4    Chou, K.C.5
  • 33
    • 13444287805 scopus 로고    scopus 로고
    • Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus
    • Daly, N. L., et al. Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus. Oncogene 24, 880-888 (2005).
    • (2005) Oncogene , vol.24 , pp. 880-888
    • Daly, N.L.1
  • 34
    • 77955034636 scopus 로고    scopus 로고
    • Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma
    • Lockwood, W. W., et al. Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma. PLoS Med. 7, e1000315 (2010).
    • (2010) PLoS Med. , vol.7
    • Lockwood, W.W.1
  • 35
    • 2942568540 scopus 로고    scopus 로고
    • Epidermal growth factor enhances cellular TATA binding protein levels and induces RNA polymerase I-and III-dependent gene activity
    • Zhong, S., Zhang, C. & Johnson, D. L. Epidermal growth factor enhances cellular TATA binding protein levels and induces RNA polymerase I-and III-dependent gene activity. Mol. Cell. Biol. 24, 5119-5129 (2004).
    • (2004) Mol. Cell. Biol , vol.24 , pp. 5119-5129
    • Zhong, S.1    Zhang, C.2    Johnson, D.L.3
  • 36
    • 0026513699 scopus 로고
    • TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters
    • Colgan, J. & Manley, J. L. TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters. Genes Dev. 6, 304-315 (1992).
    • (1992) Genes Dev , vol.6 , pp. 304-315
    • Colgan, J.1    Manley, J.L.2
  • 37
    • 0032568933 scopus 로고    scopus 로고
    • Recruitment of human TBP selectively activates RNA polymerase II TATA-dependent promoters
    • Majello, B., Napolitano, G., De Luca, P. & Lania, L. Recruitment of human TBP selectively activates RNA polymerase II TATA-dependent promoters. J. Biol. Chem. 273, 16509-16516 (1998).
    • (1998) J. Biol. Chem , vol.273 , pp. 16509-16516
    • Majello, B.1    Napolitano, G.2    De Luca, P.3    Lania, L.4
  • 38
    • 50349091830 scopus 로고    scopus 로고
    • Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation
    • Johnson, S. A., Dubeau, L. & Johnson, D. L. Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation. J. Biol. Chem. 283, 19184-19191 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 19184-19191
    • Johnson, S.A.1    Dubeau, L.2    Johnson, D.L.3
  • 39
    • 0029910781 scopus 로고    scopus 로고
    • TATA-binding protein is limiting for both TATA-containing and TATA-lacking RNA polymerase III promoters in Drosophila cells
    • Trivedi, A., Vilalta, A., Gopalan, S. & Johnson, D. L. TATA-binding protein is limiting for both TATA-containing and TATA-lacking RNA polymerase III promoters in Drosophila cells. Mol. Cell. Biol. 16, 6909-6916 (1996).
    • (1996) Mol. Cell. Biol , vol.16 , pp. 6909-6916
    • Trivedi, A.1    Vilalta, A.2    Gopalan, S.3    Johnson, D.L.4
  • 40
    • 0031753448 scopus 로고    scopus 로고
    • Regulation of RNA polymerase I-dependent promoters by the hepatitis B virus X protein via activated Ras and TATA-binding protein
    • Wang, H. D., Trivedi, A. & Johnson, D. L. Regulation of RNA polymerase I-dependent promoters by the hepatitis B virus X protein via activated Ras and TATA-binding protein. Mol. Cell. Biol. 18, 7086-7094 (1998).
    • (1998) Mol. Cell. Biol , vol.18 , pp. 7086-7094
    • Wang, H.D.1    Trivedi, A.2    Johnson, D.L.3
  • 41
    • 0028883263 scopus 로고
    • Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein
    • Sadovsky, Y., et al. Transcriptional activators differ in their responses to overexpression of TATA-box-binding protein. Mol. Cell. Biol. 15, 1554-1563 (1995).
    • (1995) Mol. Cell. Biol , vol.15 , pp. 1554-1563
    • Sadovsky, Y.1
  • 42
    • 78651238814 scopus 로고    scopus 로고
    • Mutations in genes encoding subunits of RNA polymerases i and III cause Treacher Collins syndrome
    • Dauwerse, J. G., et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nature Genet. 43, 20-22 (2011).
    • (2011) Nature Genet , vol.43 , pp. 20-22
    • Dauwerse, J.G.1
  • 43
    • 79955603839 scopus 로고    scopus 로고
    • C-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol i availability during granulocyte differentiation
    • Poortinga, G., et al. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res. 39, 3267-3281 (2011).
    • (2011) Nucleic Acids Res , vol.39 , pp. 3267-3281
    • Poortinga, G.1
  • 44
    • 0033741191 scopus 로고    scopus 로고
    • RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumors
    • Winter, A. G., et al. RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumors. Proc. Natl Acad. Sci. USA 97, 12619-12624 (2000).
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 12619-12624
    • Winter, A.G.1
  • 45
    • 23444453060 scopus 로고    scopus 로고
    • A 1 Mb minimal amplicon at 8p1112 in breast cancer identifies new candidate oncogenes
    • Garcia, M. J., et al. A 1 Mb minimal amplicon at 8p1112 in breast cancer identifies new candidate oncogenes. Oncogene 24, 5235-5245 (2005).
    • (2005) Oncogene , vol.24 , pp. 5235-5245
    • Garcia, M.J.1
  • 46
    • 33845686170 scopus 로고    scopus 로고
    • Genomic analysis of the 8p1112 amplicon in familial breast cancer
    • Melchor, L., et al. Genomic analysis of the 8p1112 amplicon in familial breast cancer. Int. J. Cancer 120, 714-717 (2007).
    • (2007) Int. J. Cancer , vol.120 , pp. 714-717
    • Melchor, L.1
  • 47
    • 77953182923 scopus 로고    scopus 로고
    • High-resolution analysis of genomic alteration on chromosome arm 8p in urothelial carcinoma
    • Williams, S. V., et al. High-resolution analysis of genomic alteration on chromosome arm 8p in urothelial carcinoma. Genes Chromosomes Cancer 49, 642-659 (2010).
    • (2010) Genes Chromosomes Cancer , vol.49 , pp. 642-659
    • Williams, S.V.1
  • 48
    • 79955035405 scopus 로고    scopus 로고
    • RNA polymerase III transcription in cancer: The BRF2 connection
    • Cabarcas, S. & Schramm, L. RNA polymerase III transcription in cancer: the BRF2 connection. Mol. Cancer 10, 47 (2011).
    • (2011) Mol. Cancer , vol.10 , pp. 47
    • Cabarcas, S.1    Schramm, L.2
  • 49
    • 0037108150 scopus 로고    scopus 로고
    • Recruitment of RNA polymerase III to its target promoters
    • Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593-2620 (2002).
    • (2002) Genes Dev , vol.16 , pp. 2593-2620
    • Schramm, L.1    Hernandez, N.2
  • 50
    • 0035394633 scopus 로고    scopus 로고
    • Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human
    • Huang, Y. & Maraia, R. J. Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res. 29, 2675-2690 (2001).
    • (2001) Nucleic Acids Res. , vol.29 , pp. 2675-2690
    • Huang, Y.1    Maraia, R.J.2
  • 51
    • 0035967858 scopus 로고    scopus 로고
    • The RNA polymerase III transcription apparatus
    • Geiduschek, E. P. & Kassavetis, G. A. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310, 1-26 (2001).
    • (2001) J. Mol. Biol , vol.310 , pp. 1-26
    • Geiduschek, E.P.1    Kassavetis, G.A.2
  • 52
    • 14544293651 scopus 로고    scopus 로고
    • Structural basis of eukaryotic gene transcription
    • Boeger, H., et al. Structural basis of eukaryotic gene transcription. FEBS Lett. 579, 899-903 (2005).
    • (2005) FEBS Lett , vol.579 , pp. 899-903
    • Boeger, H.1
  • 53
    • 56649105133 scopus 로고    scopus 로고
    • RNA polymerases i and III, non-coding RNAs and cancer
    • White, R. J. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet. 24, 622-629 (2008).
    • (2008) Trends Genet , vol.24 , pp. 622-629
    • White, R.J.1
  • 54
    • 0025286261 scopus 로고
    • A novel mediator between activator proteins and the RNA polymerase II transcription apparatus
    • Kelleher, R. J., 3rd, Flanagan, P. M. & Kornberg, R. D. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61, 1209-1215 (1990).
    • (1990) Cell , vol.61 , pp. 1209-1215
    • Kelleher, R.J.1    Flanagan III, P.M.2    Kornberg, R.D.3
  • 55
    • 0028282551 scopus 로고
    • A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II
    • Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599-608 (1994).
    • (1994) Cell , vol.77 , pp. 599-608
    • Kim, Y.J.1    Bjorklund, S.2    Li, Y.3    Sayre, M.H.4    Kornberg, R.D.5
  • 56
    • 0029867265 scopus 로고    scopus 로고
    • A mammalian SRB protein associated with an RNA polymerase II holoenzyme
    • Chao, D. M., et al. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 380, 82-85 (1996).
    • (1996) Nature , vol.380 , pp. 82-85
    • Chao, D.M.1
  • 57
    • 18844394569 scopus 로고    scopus 로고
    • Dynamic regulation of pol II transcription by the mammalian Mediator complex
    • Malik, S. & Roeder, R. G. Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30, 256-263 (2005).
    • (2005) Trends Biochem. Sci , vol.30 , pp. 256-263
    • Malik, S.1    Roeder, R.G.2
  • 58
  • 59
    • 18844451820 scopus 로고    scopus 로고
    • Mediator and the mechanism of transcriptional activation
    • Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235-239 (2005).
    • (2005) Trends Biochem. Sci , vol.30 , pp. 235-239
    • Kornberg, R.D.1
  • 60
    • 0034507632 scopus 로고    scopus 로고
    • Transcription of eukaryotic protein-coding genes
    • Lee, T. I. & Young, R. A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77-137 (2000).
    • (2000) Annu. Rev. Genet , vol.34 , pp. 77-137
    • Lee, T.I.1    Young, R.A.2
  • 61
    • 0037178788 scopus 로고    scopus 로고
    • Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man
    • Boube, M., Joulia, L., Cribbs, D. L. & Bourbon, H. M. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110, 143-151 (2002).
    • (2002) Cell , vol.110 , pp. 143-151
    • Boube, M.1    Joulia, L.2    Cribbs, D.L.3    Bourbon, H.M.4
  • 62
    • 2942575993 scopus 로고    scopus 로고
    • A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology
    • Sato, S., et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol. Cell 14, 685-691 (2004).
    • (2004) Mol. Cell , vol.14 , pp. 685-691
    • Sato, S.1
  • 63
    • 47249134314 scopus 로고    scopus 로고
    • Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex
    • Bourbon, H. M. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res. 36, 3993-4008 (2008).
    • (2008) Nucleic Acids Res , vol.36 , pp. 3993-4008
    • Bourbon, H.M.1
  • 64
    • 77958111633 scopus 로고    scopus 로고
    • The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation
    • Malik, S. & Roeder, R. G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nature Rev. Genet. 11, 761-772 (2010).
    • (2010) Nature Rev. Genet , vol.11 , pp. 761-772
    • Malik, S.1    Roeder, R.G.2
  • 65
    • 79959939884 scopus 로고    scopus 로고
    • Human mediator subunit MED26 functions as a docking site for transcription elongation factors
    • Takahashi, H., et al. Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146, 92-104 (2011).
    • (2011) Cell , vol.146 , pp. 92-104
    • Takahashi, H.1
  • 66
    • 84861857476 scopus 로고    scopus 로고
    • RNA polymerase II elongation control
    • Zhou, Q., Li, T. & Price, D. H. RNA Polymerase II Elongation Control. Annu Rev. Biochem. 81, 119-143 (2012).
    • (2012) Annu Rev. Biochem , vol.81 , pp. 119-143
    • Zhou, Q.1    Li, T.2    Price, D.H.3
  • 67
    • 84872376792 scopus 로고    scopus 로고
    • The Mediator complex and transcription elongation
    • Conaway, R. C. & Conaway, J. W. The Mediator complex and transcription elongation. Biochim. Biophys. Acta 1829, 69-75 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 69-75
    • Conaway, R.C.1    Conaway, J.W.2
  • 68
    • 84857060369 scopus 로고    scopus 로고
    • Unraveling framework of the ancestral Mediator complex in human diseases
    • Napoli, C., Sessa, M., Infante, T. & Casamassimi, A. Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 94, 579-587 (2012).
    • (2012) Biochimie , vol.94 , pp. 579-587
    • Napoli, C.1    Sessa, M.2    Infante, T.3    Casamassimi, A.4
  • 69
    • 52949111487 scopus 로고    scopus 로고
    • CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity
    • Firestein, R., et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455, 547-551 (2008).
    • (2008) Nature , vol.455 , pp. 547-551
    • Firestein, R.1
  • 70
    • 70350234735 scopus 로고    scopus 로고
    • Revving the Throttle on an oncogene: CDK8 takes the driver seat
    • Firestein, R. & Hahn, W. C. Revving the Throttle on an oncogene: CDK8 takes the driver seat. Cancer Res. 69, 7899-7901 (2009).
    • (2009) Cancer Res , vol.69 , pp. 7899-7901
    • Firestein, R.1    Hahn, W.C.2
  • 71
    • 80455164549 scopus 로고    scopus 로고
    • Mediator-dependent nuclear receptor function
    • Chen, W. & Roeder, R. G. Mediator-dependent nuclear receptor function. Semin. Cell Dev. Biol. 22, 749-758 (2011).
    • (2011) Semin. Cell Dev. Biol , vol.22 , pp. 749-758
    • Chen, W.1    Roeder, R.G.2
  • 72
    • 0033105821 scopus 로고    scopus 로고
    • Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators
    • Ito, M., et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361-370 (1999).
    • (1999) Mol. Cell , vol.3 , pp. 361-370
    • Ito, M.1
  • 73
    • 0033010438 scopus 로고    scopus 로고
    • A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation
    • Gu, W., et al. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol. Cell 3, 97-108 (1999).
    • (1999) Mol. Cell , vol.3 , pp. 97-108
    • Gu, W.1
  • 74
    • 0032525781 scopus 로고    scopus 로고
    • A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system
    • Rachez, C., et al. A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev. 12, 1787-1800 (1998).
    • (1998) Genes Dev , vol.12 , pp. 1787-1800
    • Rachez, C.1
  • 75
    • 0032493455 scopus 로고    scopus 로고
    • The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion
    • Yuan, C. X., Ito, M., Fondell, J. D., Fu, Z. Y. & Roeder, R. G. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl Acad. Sci. USA 95, 7939-7944 (1998).
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 7939-7944
    • Yuan, C.X.1    Ito, M.2    Fondell, J.D.3    Fu, Z.Y.4    Roeder, R.G.5
  • 76
    • 0037022631 scopus 로고    scopus 로고
    • The TRAP/mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro
    • Kang, Y. K., Guermah, M., Yuan, C. X. & Roeder, R. G. The TRAP/mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc. Natl Acad. Sci. USA 99, 2642-2647 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 2642-2647
    • Kang, Y.K.1    Guermah, M.2    Yuan, C.X.3    Roeder, R.G.4
  • 77
    • 2442696086 scopus 로고    scopus 로고
    • Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARalpha-regulated gene expression in liver
    • Jia, Y., et al. Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARalpha-regulated gene expression in liver. J. Biol. Chem. 279, 24427-24434 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 24427-24434
    • Jia, Y.1
  • 78
    • 21244466640 scopus 로고    scopus 로고
    • MED1/TRAP220 exists predominantly in a TRAP/mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription
    • Zhang, X. T., et al. MED1/TRAP220 exists predominantly in a TRAP/mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription. Mol. Cell 19, 89-100 (2005).
    • (2005) Mol. Cell , vol.19 , pp. 89-100
    • Zhang, X.T.1
  • 79
    • 34249327738 scopus 로고    scopus 로고
    • A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression
    • Vijayvargia, R., May, M. S. & Fondell, J. D. A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res. 67, 4034-4041 (2007).
    • (2007) Cancer Res , vol.67 , pp. 4034-4041
    • Vijayvargia, R.1    May, M.S.2    Fondell, J.D.3
  • 80
    • 84860389595 scopus 로고    scopus 로고
    • Quantification and clinical relevance of gene amplification at chromosome 17q12q21 in human epidermal growth factor receptor 2amplified breast cancers
    • Lamy, P. J., et al. Quantification and clinical relevance of gene amplification at chromosome 17q12q21 in human epidermal growth factor receptor 2amplified breast cancers. Breast Cancer Res. 13, R15 (2011).
    • (2011) Breast Cancer Res. , vol.13
    • Lamy, P.J.1
  • 81
    • 84859592969 scopus 로고    scopus 로고
    • Med1 plays a critical role in the development of tamoxifen resistance
    • Nagalingam, A., et al. Med1 plays a critical role in the development of tamoxifen resistance. Carcinogenesis 33, 918-930 (2012).
    • (2012) Carcinogenesis , vol.33 , pp. 918-930
    • Nagalingam, A.1
  • 82
    • 84868228009 scopus 로고    scopus 로고
    • Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells
    • Cui, J., et al. Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells. Cancer Res. 72, 5625-5634 (2012).
    • (2012) Cancer Res , vol.72 , pp. 5625-5634
    • Cui, J.1
  • 83
    • 84862811748 scopus 로고    scopus 로고
    • Loss of Med1/TRAP220 promotes the invasion and metastasis of human non-small-cell lung cancer cells by modulating the expression of metastasis-related genes
    • Kim, H. J., et al. Loss of Med1/TRAP220 promotes the invasion and metastasis of human non-small-cell lung cancer cells by modulating the expression of metastasis-related genes. Cancer Lett. 321, 195-202 (2012).
    • (2012) Cancer Lett , vol.321 , pp. 195-202
    • Kim, H.J.1
  • 84
    • 84861581164 scopus 로고    scopus 로고
    • Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer
    • Barbieri, C. E., et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genet. 44, 685-689 (2012).
    • (2012) Nature Genet. , vol.44 , pp. 685-689
    • Barbieri, C.E.1
  • 85
    • 79959601916 scopus 로고    scopus 로고
    • Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro
    • Li, L. H., He, J., Hua, D., Guo, Z. J. & Gao, Q. Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother. Pharmacol. 68, 207-215 (2011).
    • (2011) Cancer Chemother. Pharmacol , vol.68 , pp. 207-215
    • Li, L.H.1    He, J.2    Hua, D.3    Guo, Z.J.4    Gao, Q.5
  • 86
    • 80051548239 scopus 로고    scopus 로고
    • MED19 promotes proliferation and tumorigenesis of lung cancer
    • Sun, M., et al. MED19 promotes proliferation and tumorigenesis of lung cancer. Mol. Cell Biochem. 355, 27-33 (2011).
    • (2011) Mol. Cell Biochem , vol.355 , pp. 27-33
    • Sun, M.1
  • 87
    • 79952403533 scopus 로고    scopus 로고
    • The role of Med19 in the proliferation and tumorigenesis of human hepatocellular carcinoma cells
    • Zou, S. W., et al. The role of Med19 in the proliferation and tumorigenesis of human hepatocellular carcinoma cells. Acta Pharmacol. Sin. 32, 354-360 (2011).
    • (2011) Acta Pharmacol. Sin , vol.32 , pp. 354-360
    • Zou, S.W.1
  • 88
    • 84870487687 scopus 로고    scopus 로고
    • Expression of Med19 in bladder cancer tissues and its role on bladder cancer cell growth
    • Zhang, H., et al. Expression of Med19 in bladder cancer tissues and its role on bladder cancer cell growth. Urol. Oncol. 30, 920-927 (2012).
    • (2012) Urol. Oncol , vol.30 , pp. 920-927
    • Zhang, H.1
  • 89
    • 33947257925 scopus 로고    scopus 로고
    • Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification
    • Kuuselo, R., et al. Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. Cancer Res. 67, 1943-1949 (2007).
    • (2007) Cancer Res , vol.67 , pp. 1943-1949
    • Kuuselo, R.1
  • 90
    • 56449113671 scopus 로고    scopus 로고
    • Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification
    • Chen, S., et al. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol. Ther. 7, 1793-1802 (2008).
    • (2008) Cancer Biol. Ther , vol.7 , pp. 1793-1802
    • Chen, S.1
  • 91
    • 80053309555 scopus 로고    scopus 로고
    • MED29, a component of the mediator complex, possesses both oncogenic and tumor suppressive characteristics in pancreatic cancer
    • Kuuselo, R., Savinainen, K., Sandstrom, S., Autio, R. & Kallioniemi, A. MED29, a component of the mediator complex, possesses both oncogenic and tumor suppressive characteristics in pancreatic cancer. Int. J. Cancer 129, 2553-2565 (2011).
    • (2011) Int. J. Cancer , vol.129 , pp. 2553-2565
    • Kuuselo, R.1    Savinainen, K.2    Sandstrom, S.3    Autio, R.4    Kallioniemi, A.5
  • 92
    • 0033587187 scopus 로고    scopus 로고
    • Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein
    • Boyer, T. G., Martin, M. E., Lees, E., Ricciardi, R. P. & Berk, A. J. Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein. Nature 399, 276-279 (1999).
    • (1999) Nature , vol.399 , pp. 276-279
    • Boyer, T.G.1    Martin, M.E.2    Lees, E.3    Ricciardi, R.P.4    Berk, A.J.5
  • 93
    • 80053647025 scopus 로고    scopus 로고
    • Molecular basis of Rrn3regulated RNA polymerase i initiation and cell growth
    • Blattner, C., et al. Molecular basis of Rrn3regulated RNA polymerase I initiation and cell growth. Genes Dev. 25, 2093-2105 (2011).
    • (2011) Genes Dev , vol.25 , pp. 2093-2105
    • Blattner, C.1
  • 94
    • 79952803747 scopus 로고    scopus 로고
    • Direct interaction of RNA polymerase II and mediator required for transcription in vivo
    • Soutourina, J., Wydau, S., Ambroise, Y., Boschiero, C. & Werner, M. Direct interaction of RNA polymerase II and mediator required for transcription in vivo. Science 331, 1451-1454 (2011).
    • (2011) Science , vol.331 , pp. 1451-1454
    • Soutourina, J.1    Wydau, S.2    Ambroise, Y.3    Boschiero, C.4    Werner, M.5
  • 95
    • 33746408090 scopus 로고    scopus 로고
    • Head module control of mediator interactions
    • Takagi, Y., et al. Head module control of mediator interactions. Mol. Cell 23, 355-364 (2006).
    • (2006) Mol. Cell , vol.23 , pp. 355-364
    • Takagi, Y.1
  • 96
    • 0037291736 scopus 로고    scopus 로고
    • ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase i transcription and cell growth
    • Zhao, J., Yuan, X., Frodin, M. & Grummt, I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol. Cell 11, 405-413 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 405-413
    • Zhao, J.1    Yuan, X.2    Frodin, M.3    Grummt, I.4
  • 97
    • 1542343973 scopus 로고    scopus 로고
    • MTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability
    • Mayer, C. Zhao, J., Yuan, X. & Grummt, I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 18, 423-434 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 423-434
    • Mayer Zhao, C.J.1    Yuan, X.2    Grummt, I.3
  • 98
    • 70449584566 scopus 로고    scopus 로고
    • AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply
    • Hoppe, S., et al. AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc. Natl Acad. Sci. USA 106, 17781-17786 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 17781-17786
    • Hoppe, S.1
  • 99
    • 49449101955 scopus 로고    scopus 로고
    • Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase i
    • Bierhoff, H., Dundr, M., Michels, A. A. & Grummt, I. Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I. Mol. Cell. Biol. 28, 4988-4998 (2008).
    • (2008) Mol. Cell. Biol , vol.28 , pp. 4988-4998
    • Bierhoff, H.1    Dundr, M.2    Michels, A.A.3    Grummt, I.4
  • 100
    • 34247553679 scopus 로고    scopus 로고
    • Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases
    • Johnson, S. S., Zhang, C., Fromm, J., Willis, I. M. & Johnson, D. L. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Mol. Cell 26, 367-379 (2007).
    • (2007) Mol. Cell , vol.26 , pp. 367-379
    • Johnson, S.S.1    Zhang, C.2    Fromm, J.3    Willis, I.M.4    Johnson, D.L.5
  • 101
    • 33846659385 scopus 로고    scopus 로고
    • Integration of nutritional and stress signaling pathways by Maf1
    • Willis, I. M. & Moir, R. D. Integration of nutritional and stress signaling pathways by Maf1. Trends Biochem. Sci. 32, 51-53 (2007).
    • (2007) Trends Biochem. Sci , vol.32 , pp. 51-53
    • Willis, I.M.1    Moir, R.D.2
  • 102
    • 77957658806 scopus 로고    scopus 로고
    • Maf1 regulation: A model of signal transduction inside the nucleus
    • Wei, Y. & Zheng, X. S. Maf1 regulation: a model of signal transduction inside the nucleus. Nucleus 1, 162-165 (2010).
    • (2010) Nucleus , vol.1 , pp. 162-165
    • Wei, Y.1    Zheng, X.S.2
  • 103
    • 78149477660 scopus 로고    scopus 로고
    • Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation
    • Gilchrist, D. A., et al. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 143, 540-551 (2010).
    • (2010) Cell , vol.143 , pp. 540-551
    • Gilchrist, D.A.1
  • 104
    • 33751090746 scopus 로고    scopus 로고
    • Phosphorylation & functions of the R. N. A. polymerase I.I. C. T. D.
    • Phatnani, H. P. & Greenleaf, A. L. Phosphorylation & functions of the R. N. A. polymerase I. I. C. T. D. Genes Dev. 20, 2922-2936 (2006).
    • (2006) Genes Dev , vol.20 , pp. 2922-2936
    • Phatnani, H.P.1    Greenleaf, A.L.2
  • 105
    • 30744449491 scopus 로고    scopus 로고
    • P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation
    • Yamada, T., et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell 21, 227-237 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 227-237
    • Yamada, T.1
  • 106
    • 0022817308 scopus 로고
    • RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells
    • Gilmour, D. S. & Lis, J. T. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell. Biol. 6, 3984-3989 (1986).
    • (1986) Mol. Cell. Biol , vol.6 , pp. 3984-3989
    • Gilmour, D.S.1    Lis, J.T.2
  • 107
    • 0024282827 scopus 로고
    • The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged
    • Rougvie, A. E. & Lis, J. T. The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795-804 (1988).
    • (1988) Cell , vol.54 , pp. 795-804
    • Rougvie, A.E.1    Lis, J.T.2
  • 108
    • 0026440185 scopus 로고
    • The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region
    • Krumm, A., Meulia, T., Brunvand, M. & Groudine, M. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev. 6, 2201-2213 (1992).
    • (1992) Genes Dev , vol.6 , pp. 2201-2213
    • Krumm, A.1    Meulia, T.2    Brunvand, M.3    Groudine, M.4
  • 109
    • 0028893897 scopus 로고
    • Elongation and premature termination of transcripts initiated from c-fos and c-myc promoters show dissimilar patterns
    • Plet, A., Eick, D. & Blanchard, J. M. Elongation and premature termination of transcripts initiated from c-fos and c-myc promoters show dissimilar patterns. Oncogene 10, 319-328 (1995).
    • (1995) Oncogene , vol.10 , pp. 319-328
    • Plet, A.1    Eick, D.2    Blanchard, J.M.3
  • 110
    • 36549013619 scopus 로고    scopus 로고
    • RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo
    • Zeitlinger, J., et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genet. 39, 1512-1516 (2007).
    • (2007) Nature Genet , vol.39 , pp. 1512-1516
    • Zeitlinger, J.1
  • 111
    • 36549061004 scopus 로고    scopus 로고
    • RNA polymerase is poised for activation across the genome
    • Muse, G. W., et al. RNA polymerase is poised for activation across the genome. Nature Genet. 39, 1507-1511 (2007).
    • (2007) Nature Genet , vol.39 , pp. 1507-1511
    • Muse, G.W.1
  • 112
    • 47549090254 scopus 로고    scopus 로고
    • NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly
    • Gilchrist, D. A., et al. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 22, 1921-1933 (2008).
    • (2008) Genes Dev , vol.22 , pp. 1921-1933
    • Gilchrist, D.A.1
  • 113
    • 74549132843 scopus 로고    scopus 로고
    • Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila
    • Nechaev, S., et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335-338 (2010).
    • (2010) Science , vol.327 , pp. 335-338
    • Nechaev, S.1
  • 114
    • 70350754211 scopus 로고    scopus 로고
    • Rates of in situ transcription and splicing in large human genes
    • Singh, J. & Padgett, R. A. Rates of in situ transcription and splicing in large human genes. Nature Struct. Mol. Biol. 16, 1128-1133 (2009).
    • (2009) Nature Struct. Mol. Biol , vol.16 , pp. 1128-1133
    • Singh, J.1    Padgett, R.A.2
  • 115
    • 0032498273 scopus 로고    scopus 로고
    • FACT a factor that facilitates transcript elongation through nucleosomes
    • Orphanides, G., LeRoy, G., Chang, C. H., Luse, D. S. & Reinberg, D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105-116 (1998).
    • (1998) Cell , vol.92 , pp. 105-116
    • Orphanides, G.1    Leroy, G.2    Chang, C.H.3    Luse, D.S.4    Reinberg, D.5
  • 116
    • 0041828954 scopus 로고    scopus 로고
    • FACT facilitates transcription-dependent nucleosome alteration
    • Belotserkovskaya, R., et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090-1093 (2003).
    • (2003) Science , vol.301 , pp. 1090-1093
    • Belotserkovskaya, R.1
  • 117
    • 0033566129 scopus 로고    scopus 로고
    • The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins
    • Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284-288 (1999).
    • (1999) Nature , vol.400 , pp. 284-288
    • Orphanides, G.1    Wu, W.H.2    Lane, W.S.3    Hampsey, M.4    Reinberg, D.5
  • 118
    • 79954552505 scopus 로고    scopus 로고
    • The super elongation complex (SEC) and MLL in development and disease
    • Smith, E., Lin, C. & Shilatifard, A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 25, 661-672 (2011).
    • (2011) Genes Dev , vol.25 , pp. 661-672
    • Smith, E.1    Lin, C.2    Shilatifard, A.3
  • 119
    • 17044413548 scopus 로고    scopus 로고
    • The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis
    • Daser, A. & Rabbitts, T. H. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin. Cancer Biol. 15, 175-188 (2005).
    • (2005) Semin. Cancer Biol , vol.15 , pp. 175-188
    • Daser, A.1    Rabbitts, T.H.2
  • 120
    • 84865419994 scopus 로고    scopus 로고
    • The super elongation complex (SEC) family in transcriptional control
    • Luo, Z., Lin, C. & Shilatifard, A. The super elongation complex (SEC) family in transcriptional control. Nature Rev. Mol. Cell Biol. 13, 543-547 (2012).
    • (2012) Nature Rev. Mol. Cell Biol , vol.13 , pp. 543-547
    • Luo, Z.1    Lin, C.2    Shilatifard, A.3
  • 121
    • 0028086471 scopus 로고
    • Cloning and identification of testis-specific transcription elongation factor S-II
    • Xu, Q., Nakanishi, T., Sekimizu, K. & Natori, S. Cloning and identification of testis-specific transcription elongation factor S-II. J. Biol. Chem. 269, 3100-3103 (1994).
    • (1994) J. Biol. Chem , vol.269 , pp. 3100-3103
    • Xu, Q.1    Nakanishi, T.2    Sekimizu, K.3    Natori, S.4
  • 122
    • 0032531257 scopus 로고    scopus 로고
    • Identification of novel genes encoding transcription elongation factor TFIIS (TCEA) in vertebrates: Conservation of three distinct TFIIS isoforms in frog, mouse, and human
    • Labhart, P. & Morgan, G. T. Identification of novel genes encoding transcription elongation factor TFIIS (TCEA) in vertebrates: conservation of three distinct TFIIS isoforms in frog, mouse, and human. Genomics 52, 278-288 (1998).
    • (1998) Genomics , vol.52 , pp. 278-288
    • Labhart, P.1    Morgan, G.T.2
  • 123
    • 79955946995 scopus 로고    scopus 로고
    • RNF20 inhibits TFIIS-facilitated transcriptional elongation to suppress pro-oncogenic gene expression
    • Shema, E., Kim, J., Roeder, R. G. & Oren, M. RNF20 inhibits TFIIS-facilitated transcriptional elongation to suppress pro-oncogenic gene expression. Mol. Cell 42, 477-488 (2011).
    • (2011) Mol. Cell , vol.42 , pp. 477-488
    • Shema, E.1    Kim, J.2    Roeder, R.G.3    Oren, M.4
  • 124
    • 48249143703 scopus 로고    scopus 로고
    • Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: Potential role in progression
    • Scotto, L., et al. Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer 47, 755-765 (2008).
    • (2008) Genes Chromosomes Cancer , vol.47 , pp. 755-765
    • Scotto, L.1
  • 125
    • 44249101108 scopus 로고    scopus 로고
    • Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis
    • Hubbard, K., Catalano, J., Puri, R. K. & Gnatt, A. Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis. BMC Cancer 8, 133 (2008).
    • (2008) BMC Cancer , vol.8 , pp. 133
    • Hubbard, K.1    Catalano, J.2    Puri, R.K.3    Gnatt, A.4
  • 126
    • 80053900941 scopus 로고    scopus 로고
    • Frequent pathway mutations of splicing machinery in myelodysplasia
    • Yoshida, K., et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64-69 (2011).
    • (2011) Nature , vol.478 , pp. 64-69
    • Yoshida, K.1
  • 127
    • 84871236747 scopus 로고    scopus 로고
    • Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders
    • Visconte, V., Makishima, H., Maciejewski, J. P. & Tiu, R. V. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 26, 2447-2454 (2012).
    • (2012) Leukemia , vol.26 , pp. 2447-2454
    • Visconte, V.1    Makishima, H.2    Maciejewski, J.P.3    Tiu, R.V.4
  • 128
    • 84866945388 scopus 로고    scopus 로고
    • Alternative cleavage and polyadenylation during colorectal cancer development
    • Morris, A. R., et al. Alternative cleavage and polyadenylation during colorectal cancer development. Clin. Cancer Res. 18, 5256-5266 (2012).
    • (2012) Clin. Cancer Res , vol.18 , pp. 5256-5266
    • Morris, A.R.1
  • 129
    • 68749113985 scopus 로고    scopus 로고
    • Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells
    • Mayr, C. & Bartel, D. P. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673-684 (2009).
    • (2009) Cell , vol.138 , pp. 673-684
    • Mayr, C.1    Bartel, D.P.2
  • 130
    • 73649139638 scopus 로고    scopus 로고
    • Global changes in processing of mRNA 3' untranslated regions characterize clinically distinct cancer subtypes
    • Singh, P., et al. Global changes in processing of mRNA 3' untranslated regions characterize clinically distinct cancer subtypes. Cancer Res. 69, 9422-9430 (2009).
    • (2009) Cancer Res , vol.69 , pp. 9422-9430
    • Singh, P.1
  • 131
    • 84865769799 scopus 로고    scopus 로고
    • Splicing in oncogenesis and tumor suppression
    • Kaida, D., Schneider-Poetsch, T. & Yoshida, M. Splicing in oncogenesis and tumor suppression. Cancer Sci. 103, 1611-1616 (2012).
    • (2012) Cancer Sci , vol.103 , pp. 1611-1616
    • Kaida, D.1    Schneider-Poetsch, T.2    Yoshida, M.3
  • 132
    • 47549116548 scopus 로고    scopus 로고
    • Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription
    • Ghavi-Helm, Y., et al. Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription. Genes Dev. 22, 1934-1947 (2008).
    • (2008) Genes Dev , vol.22 , pp. 1934-1947
    • Ghavi-Helm, Y.1
  • 133
    • 65449135496 scopus 로고    scopus 로고
    • FACT facilitates chromatin transcription by RNA polymerases i and III
    • Birch, J. L., et al. FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J. 28, 854-865 (2009).
    • (2009) EMBO J , vol.28 , pp. 854-865
    • Birch, J.L.1
  • 134
    • 33344474082 scopus 로고    scopus 로고
    • Growth factor signaling regulates elongation of RNA polymerase i transcription in mammals via UBF phosphorylation and r-chromatin remodeling
    • Stefanovsky, V., Langlois, F., Gagnon-Kugler, T., Rothblum, L. I. & Moss, T. Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling. Mol. Cell 21, 629-639 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 629-639
    • Stefanovsky, V.1    Langlois, F.2    Gagnon-Kugler, T.3    Rothblum, L.I.4    Moss, T.5
  • 135
    • 80052282364 scopus 로고    scopus 로고
    • AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer
    • Chan, J. C., et al. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal 4, ra56 (2011).
    • (2011) Sci Signal , vol.4 , pp. 56
    • Chan, J.C.1
  • 136
    • 0030898417 scopus 로고    scopus 로고
    • Mitogen-activated protein kinase pathways
    • Robinson, M. J. & Cobb, M. H. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9, 180-186 (1997).
    • (1997) Curr. Opin. Cell Biol , vol.9 , pp. 180-186
    • Robinson, M.J.1    Cobb, M.H.2
  • 137
    • 20844440353 scopus 로고    scopus 로고
    • MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation
    • Poortinga, G., et al. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J. 23, 3325-3335 (2004).
    • (2004) EMBO J , vol.23 , pp. 3325-3335
    • Poortinga, G.1
  • 138
    • 0036187179 scopus 로고    scopus 로고
    • Upstream binding factor up-regulated in hepatocellular carcinoma is related to the survival and cisplatin-sensitivity of cancer cells
    • Huang, R., et al. Upstream binding factor up-regulated in hepatocellular carcinoma is related to the survival and cisplatin-sensitivity of cancer cells. FASEB J. 16, 293-301 (2002).
    • (2002) FASEB J , vol.16 , pp. 293-301
    • Huang, R.1
  • 139
    • 0242637318 scopus 로고    scopus 로고
    • MTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF
    • Hannan, K. M., et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 23, 8862-8877 (2003).
    • (2003) Mol. Cell. Biol , vol.23 , pp. 8862-8877
    • Hannan, K.M.1
  • 140
    • 84855839708 scopus 로고    scopus 로고
    • RNA polymerase i activity is regulated at multiple steps in the transcription cycle: Recent insights into factors that influence transcription elongation
    • Schneider, D. A. RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 493, 176-184 (2012).
    • (2012) Gene , vol.493 , pp. 176-184
    • Schneider, D.A.1
  • 141
    • 79956316198 scopus 로고    scopus 로고
    • The transcription elongation factor Spt5 influences transcription by RNA polymerase i positively and negatively
    • Anderson, S. J., et al. The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively. J. Biol. Chem. 286, 18816-18824 (2011).
    • (2011) J. Biol. Chem , vol.286 , pp. 18816-18824
    • Anderson, S.J.1
  • 142
    • 79956319539 scopus 로고    scopus 로고
    • Yeast transcription elongation factor Spt5 associates with RNA polymerase i and RNA polymerase II directly
    • Viktorovskaya, O. V., Appling, F. D. & Schneider, D. A. Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly. J. Biol. Chem. 286, 18825-18833 (2011).
    • (2011) J. Biol. Chem , vol.286 , pp. 18825-18833
    • Viktorovskaya, O.V.1    Appling, F.D.2    Schneider, D.A.3
  • 143
    • 60549089376 scopus 로고    scopus 로고
    • The Paf1 complex is required for efficient transcription elongation by RNA polymerase i
    • Zhang, Y., Sikes, M. L., Beyer, A. L. & Schneider, D. A. The Paf1 complex is required for efficient transcription elongation by RNA polymerase I. Proc. Natl Acad. Sci. USA 106, 2153-2158 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 2153-2158
    • Zhang, Y.1    Sikes, M.L.2    Beyer, A.L.3    Schneider, D.A.4
  • 144
    • 77949495196 scopus 로고    scopus 로고
    • The RNA polymerase i transcription machinery: An emerging target for the treatment of cancer
    • Drygin, D., Rice, W. G. & Grummt, I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu. Rev. Pharmacol. Toxicol. 50, 131-156 (2010).
    • (2010) Annu. Rev. Pharmacol. Toxicol , vol.50 , pp. 131-156
    • Drygin, D.1    Rice, W.G.2    Grummt, I.3
  • 145
    • 0036782706 scopus 로고    scopus 로고
    • Transcription factors as targets for cancer therapy
    • Darnell, J. E. Jr. Transcription factors as targets for cancer therapy. Nature Rev. Cancer 2, 740-749 (2002).
    • (2002) Nature Rev. Cancer , vol.2 , pp. 740-749
    • Darnell Jr., J.E.1
  • 146
    • 77952545553 scopus 로고    scopus 로고
    • A complex task? Direct modulation of transcription factors with small molecules
    • Koehler, A. N. A complex task? Direct modulation of transcription factors with small molecules. Curr. Opin. Chem. Biol. 14, 331-340 (2010).
    • (2010) Curr. Opin. Chem. Biol , vol.14 , pp. 331-340
    • Koehler, A.N.1
  • 147
    • 0030855813 scopus 로고    scopus 로고
    • In vivo transfection of cis element "decoy" against nuclear factor-kappaB binding site prevents myocardial infarction
    • Morishita, R., et al. In vivo transfection of cis element "decoy" against nuclear factor-kappaB binding site prevents myocardial infarction. Nature Med. 3, 894-899 (1997).
    • (1997) Nature Med. , vol.3 , pp. 894-899
    • Morishita, R.1
  • 149
    • 3042592436 scopus 로고    scopus 로고
    • New trends in the development of transcription factor decoy (TFD) pharmacotherapy
    • Gambari, R. New trends in the development of transcription factor decoy (TFD) pharmacotherapy. Curr. Drug Targets 5, 419-430 (2004).
    • (2004) Curr. Drug Targets , vol.5 , pp. 419-430
    • Gambari, R.1
  • 150
    • 85120150416 scopus 로고    scopus 로고
    • Oligonucleotides decoy to NF-kappaB: Becoming a reality?
    • De Stefano, D. Oligonucleotides decoy to NF-kappaB: becoming a reality? Discov. Med. 12, 97-105 (2011).
    • (2011) Discov. Med , vol.12 , pp. 97-105
    • De Stefano, D.1
  • 151
    • 35649012471 scopus 로고    scopus 로고
    • The new biomimetic chemistry: Artificial transcription factors
    • Koh, J. T. & Zheng, J. The new biomimetic chemistry: artificial transcription factors. ACS Chem. Biol. 2, 599-601 (2007).
    • (2007) ACS Chem. Biol , vol.2 , pp. 599-601
    • Koh, J.T.1    Zheng, J.2
  • 152
  • 153
    • 80053343092 scopus 로고    scopus 로고
    • TAL effectors: Customizable proteins for DNA targeting
    • Bogdanove, A. J. & Voytas, D. F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843-1846 (2011).
    • (2011) Science , vol.333 , pp. 1843-1846
    • Bogdanove, A.J.1    Voytas, D.F.2
  • 154
    • 79751487297 scopus 로고    scopus 로고
    • Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription
    • Zhang, F., et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnol. 29, 149-153 (2011).
    • (2011) Nature Biotechnol , vol.29 , pp. 149-153
    • Zhang, F.1
  • 155
    • 72149110399 scopus 로고    scopus 로고
    • Breaking the code of DNA binding specificity of TAL-type III effectors
    • Boch, J., et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512 (2009).
    • (2009) Science , vol.326 , pp. 1509-1512
    • Boch, J.1
  • 156
    • 84861728358 scopus 로고    scopus 로고
    • Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target
    • Krystof, V., Baumli, S. & Furst, R. Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target. Curr. Pharm. Des. 18, 2883-2890 (2012).
    • (2012) Curr. Pharm. des , vol.18 , pp. 2883-2890
    • Krystof, V.1    Baumli, S.2    Furst, R.3
  • 157
    • 48749090278 scopus 로고    scopus 로고
    • Therapy-related myeloid leukemia
    • Godley, L. A. & Larson, R. A. Therapy-related myeloid leukemia. Semin. Oncol. 35, 418-429 (2008).
    • (2008) Semin. Oncol , vol.35 , pp. 418-429
    • Godley, L.A.1    Larson, R.A.2
  • 158
    • 58949092542 scopus 로고    scopus 로고
    • Acute leukemia as a secondary malignancy in children and adolescents: Current findings and issues
    • Hijiya, N., Ness, K. K., Ribeiro, R. C. & Hudson, M. M. Acute leukemia as a secondary malignancy in children and adolescents: current findings and issues. Cancer 115, 23-35 (2009).
    • (2009) Cancer , vol.115 , pp. 23-35
    • Hijiya, N.1    Ness, K.K.2    Ribeiro, R.C.3    Hudson, M.M.4
  • 159
    • 84864004802 scopus 로고    scopus 로고
    • High-resolution protein structure determination by serial femtosecond crystallography
    • Boutet, S., et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362-364 (2012).
    • (2012) Science , vol.337 , pp. 362-364
    • Boutet, S.1
  • 160
    • 0033867975 scopus 로고    scopus 로고
    • Repression of RNA polymerase i transcription by the tumor suppressor p53
    • Zhai, W. & Comai, L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol. Cell. Biol. 20, 5930-5938 (2000).
    • (2000) Mol. Cell. Biol , vol.20 , pp. 5930-5938
    • Zhai, W.1    Comai, L.2
  • 161
    • 0038521256 scopus 로고    scopus 로고
    • P53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB
    • Crighton, D., et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810-2820 (2003).
    • (2003) EMBO J , vol.22 , pp. 2810-2820
    • Crighton, D.1
  • 162
    • 0033611568 scopus 로고    scopus 로고
    • P53 represses ribosomal gene transcription
    • Budde, A. & Grummt, I. p53 represses ribosomal gene transcription. Oncogene 18, 1119-1124 (1999).
    • (1999) Oncogene , vol.18 , pp. 1119-1124
    • Budde, A.1    Grummt, I.2
  • 163
    • 85047697488 scopus 로고    scopus 로고
    • RNA polymerase III transcription can be derepressed by oncogenes or mutations that compromise p53 function in tumours and Li-Fraumeni syndrome
    • Stein, T., Crighton, D., Boyle, J. M., Varley, J. M. & White, R. J. RNA polymerase III transcription can be derepressed by oncogenes or mutations that compromise p53 function in tumours and Li-Fraumeni syndrome. Oncogene 21, 2961-2970 (2002).
    • (2002) Oncogene , vol.21 , pp. 2961-2970
    • Stein, T.1    Crighton, D.2    Boyle, J.M.3    Varley, J.M.4    White, R.J.5
  • 164
    • 14744297005 scopus 로고    scopus 로고
    • Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development
    • Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biol. 7, 295-302 (2005).
    • (2005) Nature Cell Biol , vol.7 , pp. 295-302
    • Grewal, S.S.1    Li, L.2    Orian, A.3    Eisenman, R.N.4    Edgar, B.A.5
  • 165
    • 20044375377 scopus 로고    scopus 로고
    • C-Myc associates with ribosomal DNA and activates RNA polymerase i transcription
    • Arabi, A., et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303-310 (2005).
    • (2005) Nature Cell Biol , vol.7 , pp. 303-310
    • Arabi, A.1
  • 166
    • 14744284578 scopus 로고    scopus 로고
    • C-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase i
    • Grandori, C., et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311-318 (2005).
    • (2005) Nature Cell Biol , vol.7 , pp. 311-318
    • Grandori, C.1
  • 167
    • 67349121053 scopus 로고    scopus 로고
    • C-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells
    • Shiue, C. N., Berkson, R. G. & Wright, A. P. c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 28, 1833-1842 (2009).
    • (2009) Oncogene , vol.28 , pp. 1833-1842
    • Shiue, C.N.1    Berkson, R.G.2    Wright, A.P.3
  • 168
    • 35448990859 scopus 로고    scopus 로고
    • TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription
    • Kenneth, N. S., et al. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc. Natl Acad. Sci. USA 104, 14917-14922 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 14917-14922
    • Kenneth, N.S.1
  • 169
    • 0033841622 scopus 로고    scopus 로고
    • Molecular mechanisms involved in cisplatin cytotoxicity
    • Jordan, P. & Carmo-Fonseca, M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell. Mol. Life Sci. 57, 1229-1235 (2000).
    • (2000) Cell. Mol. Life Sci , vol.57 , pp. 1229-1235
    • Jordan, P.1    Carmo-Fonseca, M.2
  • 170
    • 0345256652 scopus 로고    scopus 로고
    • Cisplatin: Mode of cytotoxic action and molecular basis of resistance
    • Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265-7279 (2003).
    • (2003) Oncogene , vol.22 , pp. 7265-7279
    • Siddik, Z.H.1
  • 171
    • 0037648966 scopus 로고    scopus 로고
    • Transcription factors as targets for DNA-interacting drugs
    • Gniazdowski, M., Denny, W. A., Nelson, S. M. & Czyz, M. Transcription factors as targets for DNA-interacting drugs. Curr. Med. Chem. 10, 909-924 (2003).
    • (2003) Curr. Med. Chem , vol.10 , pp. 909-924
    • Gniazdowski, M.1    Denny, W.A.2    Nelson, S.M.3    Czyz, M.4
  • 172
    • 0038387494 scopus 로고    scopus 로고
    • 5fluorouracil: Mechanisms of action and clinical strategies
    • Longley, D. B., Harkin, D. P. & Johnston, P. G. 5fluorouracil: mechanisms of action and clinical strategies. Nature Rev. Cancer 3, 330-338 (2003).
    • (2003) Nature Rev. Cancer , vol.3 , pp. 330-338
    • Longley, D.B.1    Harkin, D.P.2    Johnston, P.G.3
  • 173
    • 0028063847 scopus 로고
    • Specific inhibition of pre-ribosomal RNA processing in extracts from the lymphosarcoma cells treated with 5fluorouracil
    • Ghoshal, K. & Jacob, S. T. Specific inhibition of pre-ribosomal RNA processing in extracts from the lymphosarcoma cells treated with 5fluorouracil. Cancer Res. 54, 632-636 (1994).
    • (1994) Cancer Res , vol.54 , pp. 632-636
    • Ghoshal, K.1    Jacob, S.T.2
  • 174
    • 0018569231 scopus 로고
    • Effect of protein synthesis inhibitors and low concentrations of actinomycin D on ribosomal RNA synthesis
    • Iapalucci-Espinoza, S. & Franze-Fernandez, M. T. Effect of protein synthesis inhibitors and low concentrations of actinomycin D on ribosomal RNA synthesis. FEBS Lett. 107, 281-284 (1979).
    • (1979) FEBS Lett , vol.107 , pp. 281-284
    • Iapalucci-Espinoza, S.1    Franze-Fernandez, M.T.2
  • 175
    • 70549086622 scopus 로고    scopus 로고
    • Growth control and ribosome biogenesis
    • Lempiainen, H. & Shore, D. Growth control and ribosome biogenesis. Curr. Opin. Cell Biol. 21, 855-863 (2009).
    • (2009) Curr. Opin. Cell Biol , vol.21 , pp. 855-863
    • Lempiainen, H.1    Shore, D.2
  • 176
    • 2142754126 scopus 로고    scopus 로고
    • Ribosome biogenesis: Of knobs and RNA processing
    • Granneman, S. & Baserga, S. J. Ribosome biogenesis: of knobs and RNA processing. Exp. Cell Res. 296, 43-50 (2004).
    • (2004) Exp. Cell Res , vol.296 , pp. 43-50
    • Granneman, S.1    Baserga, S.J.2
  • 177
    • 33846549173 scopus 로고    scopus 로고
    • A housekeeper with power of attorney: The rRNA genes in ribosome biogenesis
    • Moss, T., Langlois, F., Gagnon-Kugler, T. & Stefanovsky, V. A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell. Mol. Life Sci. 64, 29-49 (2007).
    • (2007) Cell. Mol. Life Sci , vol.64 , pp. 29-49
    • Moss, T.1    Langlois, F.2    Gagnon-Kugler, T.3    Stefanovsky, V.4
  • 178
    • 13244264948 scopus 로고    scopus 로고
    • RNA-polymerase-I-directed rDNA transcription, life and works
    • Russell, J. & Zomerdijk, J. C. RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem. Sci. 30, 87-96 (2005).
    • (2005) Trends Biochem. Sci , vol.30 , pp. 87-96
    • Russell, J.1    Zomerdijk, J.C.2
  • 179
    • 79960214365 scopus 로고    scopus 로고
    • Assembly and disassembly of the nucleolus during the cell cycle
    • Hernandez-Verdun, D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2, 189-194 (2011).
    • (2011) Nucleus , vol.2 , pp. 189-194
    • Hernandez-Verdun, D.1
  • 180
    • 55849109584 scopus 로고    scopus 로고
    • The epigenetics of rRNA genes: From molecular to chromosome biology
    • McStay, B. & Grummt, I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu. Rev. Cell Dev. Biol. 24, 131-157 (2008).
    • (2008) Annu. Rev. Cell Dev. Biol , vol.24 , pp. 131-157
    • McStay, B.1    Grummt, I.2
  • 181
    • 0037363075 scopus 로고    scopus 로고
    • Does the ribosome translate cancer? Nature Rev
    • Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179-192 (2003).
    • (2003) Cancer , vol.3 , pp. 179-192
    • Ruggero, D.1    Pandolfi, P.P.2
  • 182
    • 65349143672 scopus 로고    scopus 로고
    • What the nucleolus says to a tumour pathologist
    • Derenzini, M., Montanaro, L. & Trere, D. What the nucleolus says to a tumour pathologist. Histopathology 54, 753-762 (2009).
    • (2009) Histopathology , vol.54 , pp. 753-762
    • Derenzini, M.1    Montanaro, L.2    Trere, D.3
  • 184
    • 84863899000 scopus 로고    scopus 로고
    • The nucleolus
    • Mar doi:10.1101/cshperspect.a000638
    • Pederson, T. The nucleolus. Cold Spring Harb. Perspect. Biol. 1 Mar 2011 (doi:10.1101/cshperspect. a000638).
    • (2011) Cold Spring Harb. Perspect. Biol. , vol.1
    • Pederson, T.1
  • 185
    • 84866376082 scopus 로고    scopus 로고
    • Revisiting the nucleolus: From marker to dynamic integrator of cancer signaling
    • Ruggero, D. Revisiting the nucleolus: from marker to dynamic integrator of cancer signaling. Sci Signal 5, pe38 (2012).
    • (2012) Sci Signal , vol.5 , pp. 38
    • Ruggero, D.1
  • 187
    • 77955177254 scopus 로고    scopus 로고
    • Ribosome biogenesis surveillance: Probing the ribosomal proteinMdm2p53 pathway
    • Deisenroth, C. & Zhang, Y. Ribosome biogenesis surveillance: probing the ribosomal proteinMdm2p53 pathway. Oncogene 29, 4253-4260 (2010).
    • (2010) Oncogene , vol.29 , pp. 4253-4260
    • Deisenroth, C.1    Zhang, Y.2
  • 188
    • 64049107857 scopus 로고    scopus 로고
    • Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11translation-dependent mechanism of p53 induction
    • Fumagalli, S., et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11translation-dependent mechanism of p53 induction. Nature Cell Biol. 11, 501-508 (2009).
    • (2009) Nature Cell Biol , vol.11 , pp. 501-508
    • Fumagalli, S.1
  • 189
    • 33646847147 scopus 로고    scopus 로고
    • The RNA polymerase i transcription machinery
    • Russell, J. & Zomerdijk, J. C. The RNA polymerase I transcription machinery. Biochem. Soc. symp. 203-216 (2006).
    • (2006) Biochem. Soc. Symp. , pp. 203-216
    • Russell, J.1    Zomerdijk, J.C.2
  • 190
    • 0142137250 scopus 로고    scopus 로고
    • Lasker Basic Medical Research Award. the eukaryotic transcriptional machinery: Complexities and mechanisms unforeseen
    • Roeder, R. G. Lasker Basic Medical Research Award. The eukaryotic transcriptional machinery: complexities and mechanisms unforeseen. Nature Med. 9, 1239-1244 (2003).
    • (2003) Nature Med. , vol.9 , pp. 1239-1244
    • Roeder, R.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.