메뉴 건너뛰기




Volumn 15, Issue 4, 2014, Pages 234-246

CTCF: An architectural protein bridging genome topology and function

Author keywords

[No Author keywords available]

Indexed keywords

ALTERNATIVE SPLICING; ANIMALS; BASE SEQUENCE; CHROMATIN; CONSENSUS SEQUENCE; EPIGENESIS, GENETIC; GENOME; HUMANS; MODELS, MOLECULAR; MULTIGENE FAMILY; NUCLEIC ACID CONFORMATION; PROMOTER REGIONS, GENETIC; PROTEIN BINDING; RECOMBINATION, GENETIC; REPRESSOR PROTEINS; TRANSCRIPTION, GENETIC;

EID: 84899415536     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg3663     Document Type: Review
Times cited : (768)

References (102)
  • 2
    • 84870317191 scopus 로고    scopus 로고
    • 3C based technologies to study the shape of the genome
    • de Laat, W. & Dekker, J. 3C based technologies to study the shape of the genome. Methods 58, 189-191 (2012
    • (2012) Methods , vol.58 , pp. 189-191
    • De Laat, W.1    Dekker, J.2
  • 3
    • 0025336820 scopus 로고
    • Modular structure of a chicken lysozyme silencer: Involvement of an unusual thyroid hormone receptor binding site
    • Baniahmad, A., Steiner, C., Kohne, A. C. & Renkawitz, R. Modular structure of a chicken lysozyme silencer: Involvement of an unusual thyroid hormone receptor binding site. Cell 61, 505-514 (1990
    • (1990) Cell , vol.61 , pp. 505-514
    • Baniahmad, A.1    Steiner, C.2    Kohne, A.C.3    Renkawitz, R.4
  • 4
    • 0025675441 scopus 로고
    • A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5Ŷ flanking sequence of the chicken c myc gene
    • Lobanenkov, V. V. et al. A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5Ŷ flanking sequence of the chicken c myc gene. Oncogene 5, 1743-1753 (1990
    • (1990) Oncogene , vol.5 , pp. 1743-1753
    • Lobanenkov, V.V.1
  • 6
    • 0035451090 scopus 로고    scopus 로고
    • CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease
    • Ohlsson, R., Renkawitz, R. & Lobanenkov, V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet. 17, 520-527 (2001
    • (2001) Trends Genet , vol.17 , pp. 520-527
    • Ohlsson, R.1    Renkawitz, R.2    Lobanenkov, V.3
  • 7
    • 84864063907 scopus 로고    scopus 로고
    • Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome
    • Chen, H., Tian, Y., Shu, W., Bo, X. & Wang, S. Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PLoS ONE 7, e41374 (2012
    • (2012) PLoS ONE , vol.7
    • Chen, H.1    Tian, Y.2    Shu, W.3    Bo, X.4    Wang, S.5
  • 8
    • 60149095014 scopus 로고    scopus 로고
    • Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains
    • Cuddapah, S. et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19, 24-32 (2009
    • (2009) Genome Res , vol.19 , pp. 24-32
    • Cuddapah, S.1
  • 9
    • 84863393570 scopus 로고    scopus 로고
    • Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages
    • Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335-348 (2012
    • (2012) Cell , vol.148 , pp. 335-348
    • Schmidt, D.1
  • 10
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837 (2007
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1
  • 11
    • 33947201809 scopus 로고    scopus 로고
    • Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome
    • Kim, T. H. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231-1245 (2007
    • (2007) Cell , vol.128 , pp. 1231-1245
    • Kim, T.H.1
  • 12
    • 44649117905 scopus 로고    scopus 로고
    • Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
    • Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106-1117 (2008
    • (2008) Cell , vol.133 , pp. 1106-1117
    • Chen, X.1
  • 13
    • 84881119091 scopus 로고    scopus 로고
    • The genomic landscape of cohesin-Associated chromatin interactions
    • DeMare, L. E. et al. The genomic landscape of cohesin-Associated chromatin interactions. Genome Res. 23, 1224-1234 (2013
    • (2013) Genome Res , vol.23 , pp. 1224-1234
    • DeMare, L.E.1
  • 14
    • 80053539409 scopus 로고    scopus 로고
    • Open chromatin defined by dnasei and faire identifies regulatory elements that shape cell-Type identity
    • Song, L. et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-Type identity. Genome Res. 21, 1757-1767 (2011
    • (2011) Genome Res , vol.21 , pp. 1757-1767
    • Song, L.1
  • 15
    • 83255164884 scopus 로고    scopus 로고
    • Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution
    • Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147, 1408-1419 (2011
    • (2011) Cell , vol.147 , pp. 1408-1419
    • Rhee, H.S.1    Pugh, B.F.2
  • 16
    • 84878590595 scopus 로고    scopus 로고
    • A genome-wide map of CTCF multivalency redefines the CTCF code
    • Nakahashi, H. et al. A genome-wide map of CTCF multivalency redefines the CTCF code. Cell Rep. 3, 1678-1689 (2013
    • (2013) Cell Rep , vol.3 , pp. 1678-1689
    • Nakahashi, H.1
  • 17
    • 3543010196 scopus 로고    scopus 로고
    • Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations
    • Engel, N., West, A. G., Felsenfeld, G. & Bartolomei, M. S. Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations. Nature Genet. 36, 883-888 (2004
    • (2004) Nature Genet , vol.36 , pp. 883-888
    • Engel, N.1    West, A.G.2    Felsenfeld, G.3    Bartolomei, M.S.4
  • 18
    • 75749142713 scopus 로고    scopus 로고
    • Ctcf is a dna methylation-sensitive positive regulator of the ink/arf locus
    • Rodriguez, C. et al. CTCF is a DNA methylation-sensitive positive regulator of the INK/ARF locus. Biochem. Biophys. Res. Commun. 392, 129-134 (2010
    • (2010) Biochem. Biophys. Res. Commun , vol.392 , pp. 129-134
    • Rodriguez, C.1
  • 19
    • 77956240630 scopus 로고    scopus 로고
    • DNA methylation prevents CTCF-mediated silencing of the oncogene BCL6 in B cell lymphomas
    • Lai, A. Y. et al. DNA methylation prevents CTCF-mediated silencing of the oncogene BCL6 in B cell lymphomas. J. Exp. Med. 207, 1939-1950 (2010
    • (2010) J. Exp. Med , vol.207 , pp. 1939-1950
    • Lai, A.Y.1
  • 20
    • 78650720493 scopus 로고    scopus 로고
    • Nicotinamide adenine dinucleotide (nad)-regulated dna methylation alters ccctc-binding factor (ctcf)/cohesin binding and transcription at the bdnf locus
    • Chang, J. et al. Nicotinamide adenine dinucleotide (NAD)-regulated DNA methylation alters CCCTC-binding factor (CTCF)/cohesin binding and transcription at the BDNF locus. Proc. Natl Acad. Sci. USA 107, 21836-21841 (2010
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 21836-21841
    • Chang, J.1
  • 21
    • 84865836579 scopus 로고    scopus 로고
    • Widespread plasticity in ctcf occupancy linked to dna methylation
    • Wang, H. et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 22, 1680-1688 (2012
    • (2012) Genome Res , vol.22 , pp. 1680-1688
    • Wang, H.1
  • 22
    • 84555178345 scopus 로고    scopus 로고
    • Adp-ribose polymers localized on ctcf-parp1-dnmt1 complex prevent methylation of ctcf target sites
    • Zampieri, M. et al. ADP-ribose polymers localized on Ctcf-Parp1-Dnmt1 complex prevent methylation of Ctcf target sites. Biochem. J. 441, 645-652 (2012
    • (2012) Biochem. J. , vol.441 , pp. 645-652
    • Zampieri, M.1
  • 23
    • 52049112345 scopus 로고    scopus 로고
    • Ccctc-binding factor activates parp 1 affecting dna methylation machinery
    • Guastafierro, T. et al. CCCTC-binding factor activates PARP 1 affecting DNA methylation machinery. J. Biol. Chem. 283, 21873-21880 (2008
    • (2008) J. Biol. Chem , vol.283 , pp. 21873-21880
    • Guastafierro, T.1
  • 24
    • 66149123748 scopus 로고    scopus 로고
    • The nuclear DNA base 5 hydroxymethylcytosine is present in Purkinje neurons and the brain
    • Kriaucionis, S. & Heintz, N. The nuclear DNA base 5 hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929-930 (2009
    • (2009) Science , vol.324 , pp. 929-930
    • Kriaucionis, S.1    Heintz, N.2
  • 25
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5 methylcytosine to 5 hydroxymethylcytosine in mammalian dna by mll partner tet1
    • Tahiliani, M et al. Conversion of 5 methylcytosine to 5 hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935 (2009
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 26
    • 80052461558 scopus 로고    scopus 로고
    • Tet proteins can convert 5 methylcytosine to 5 formylcytosine and 5 carboxylcytosine
    • Ito, S. et al. Tet proteins can convert 5 methylcytosine to 5 formylcytosine and 5 carboxylcytosine. Science 333, 1300-1303 (2011
    • (2011) Science , vol.333 , pp. 1300-1303
    • Ito, S.1
  • 27
    • 84861990517 scopus 로고    scopus 로고
    • Base-resolution analysis of 5 hydroxymethylcytosine in the mammalian genome
    • Yu, M. et al. Base-resolution analysis of 5 hydroxymethylcytosine in the mammalian genome. Cell 149, 1368-1380 (2012
    • (2012) Cell , vol.149 , pp. 1368-1380
    • Yu, M.1
  • 28
    • 84876907152 scopus 로고    scopus 로고
    • Genome-wide profiling of 5 formylcytosine reveals its roles in epigenetic priming
    • Song, C. X. et al. Genome-wide profiling of 5 formylcytosine reveals its roles in epigenetic priming. Cell 153, 678-691 (2013
    • (2013) Cell , vol.153 , pp. 678-691
    • Song, C.X.1
  • 29
    • 84874771985 scopus 로고    scopus 로고
    • Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives
    • Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives. Cell 152, 1146-1159 (2013
    • (2013) Cell , vol.152 , pp. 1146-1159
    • Spruijt, C.G.1
  • 30
    • 59249092289 scopus 로고    scopus 로고
    • The ctcf insulator protein is posttranslationally modified by sumo
    • MacPherson, M. J., Beatty, L. G., Zhou, W., Du, M. & Sadowski, P. D. The CTCF insulator protein is posttranslationally modified by SUMO. Mol. Cell. Biol. 29, 714-725 (2009
    • (2009) Mol. Cell. Biol , vol.29 , pp. 714-725
    • MacPherson, M.J.1    Beatty, L.G.2    Zhou, W.3    Du, M.4    Sadowski, P.D.5
  • 31
    • 6944231017 scopus 로고    scopus 로고
    • Poly(adp-ribosyl)ation regulates ctcf-dependent chromatin insulation
    • Yu, W. et al. Poly(ADP-ribosyl)ation regulates CTCF-dependent chromatin insulation. Nature Genet. 36, 1105-1110 (2004
    • (2004) Nature Genet , vol.36 , pp. 1105-1110
    • Yu, W.1
  • 32
    • 65549159993 scopus 로고    scopus 로고
    • Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary
    • Witcher, M. & Emerson, B. M. Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol. Cell 34, 271-284 (2009
    • (2009) Mol. Cell , vol.34 , pp. 271-284
    • Witcher, M.1    Emerson, B.M.2
  • 33
    • 84884840336 scopus 로고    scopus 로고
    • Poly(adp-ribosyl)ation regulates insulator function and intrachromosomal interactions in drosophila
    • Ong, C. T., Van Bortle, K., Ramos, E. & Corces, V. G. Poly(ADP-ribosyl)ation regulates insulator function and intrachromosomal interactions in Drosophila. Cell 155, 148-159 (2013
    • (2013) Cell , vol.155 , pp. 148-159
    • Ong, C.T.1    Van Bortle, K.2    Ramos, E.3    Corces, V.G.4
  • 34
    • 65649115253 scopus 로고    scopus 로고
    • Ctcf and its protein partners: Divide and rule
    • Zlatanova, J & Caiafa, P. CTCF and its protein partners: Divide and rule? J. Cell Sci. 122, 1275-1284 (2009
    • (2009) J. Cell Sci , vol.122 , pp. 1275-1284
    • Zlatanova, J.1    Caiafa, P.2
  • 35
    • 79958065572 scopus 로고    scopus 로고
    • Specific sites in the c terminus of ctcf interact with the sa2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity
    • Xiao, T., Wallace, J. & Felsenfeld, G. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol. Cell. Biol. 31, 2174-2183 (2011
    • (2011) Mol. Cell. Biol , vol.31 , pp. 2174-2183
    • Xiao, T.1    Wallace, J.2    Felsenfeld, G.3
  • 36
    • 39149121436 scopus 로고    scopus 로고
    • Cohesin mediates transcriptional insulation by ccctc-binding factor
    • Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796-801 (2008
    • (2008) Nature , vol.451 , pp. 796-801
    • Wendt, K.S.1
  • 37
    • 38849121606 scopus 로고    scopus 로고
    • Cohesins functionally associate with CTCF on mammalian chromosome arms
    • Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422-433 (2008
    • (2008) Cell , vol.132 , pp. 422-433
    • Parelho, V.1
  • 38
    • 46149113242 scopus 로고    scopus 로고
    • Ctcf physically links cohesin to chromatin
    • Rubio, E. D. et al. CTCF physically links cohesin to chromatin. Proc. Natl. Acad. Sci. USA 105, 8309-8314 (2008
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 8309-8314
    • Rubio, E.D.1
  • 39
    • 39449111307 scopus 로고    scopus 로고
    • Cohesins localize with ctcf at the kshv latency control region and at cellular c myc and h19/igf2 insulators
    • Stedman, W. et al. Cohesins localize with CTCF at the KSHV latency control region and at cellular c myc and H19/Igf2 insulators. EMBO J. 27, 654-666 (2008
    • (2008) EMBO J. , vol.27 , pp. 654-666
    • Stedman, W.1
  • 40
    • 84887006823 scopus 로고    scopus 로고
    • Genomic and proteomic analyses of Prdm5 reveal interactions with insulator binding proteins in embryonic stem cells
    • Galli, G. G. et al. Genomic and proteomic analyses of Prdm5 reveal interactions with insulator binding proteins in embryonic stem cells. Mol. Cell. Biol. 33, 4504-4516 (2013
    • (2013) Mol. Cell. Biol , vol.33 , pp. 4504-4516
    • Galli, G.G.1
  • 41
    • 84886780296 scopus 로고    scopus 로고
    • Dynamic trans-Acting factor colocalization in human cells
    • Xie, D. et al. Dynamic trans-Acting factor colocalization in human cells. Cell 155, 713-724 (2013
    • (2013) Cell , vol.155 , pp. 713-724
    • Xie, D.1
  • 42
    • 67650997080 scopus 로고    scopus 로고
    • Cohesins form chromosomal cis-interactions at the developmentally regulated ifng locus
    • Hadjur, S. et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410-413 (2009
    • (2009) Nature , vol.460 , pp. 410-413
    • Hadjur, S.1
  • 43
    • 77649261872 scopus 로고    scopus 로고
    • Cell type specificity of chromatin organization mediated by CTCF and cohesin
    • Hou, C., Dale, R. & Dean, A. Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc. Natl Acad. Sci. USA 107, 3651-3656 (2010
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 3651-3656
    • Hou, C.1    Dale, R.2    Dean, A.3
  • 44
    • 73649145481 scopus 로고    scopus 로고
    • Cohesin is required for higher-order chromatin conformation at the imprinted igf2-h19 locus
    • Nativio, R. et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 5, e1000739 (2009
    • (2009) PLoS Genet , vol.5
    • Nativio, R.1
  • 45
    • 84875262801 scopus 로고    scopus 로고
    • Tfiiic bound dna elements in nuclear organization and insulation
    • Kirkland, J. G., Raab, J. R. & Kamakaka, R. T. TFIIIC bound DNA elements in nuclear organization and insulation. Biochim. Biophys. Acta 1829, 418-424 (2013
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 418-424
    • Kirkland, J.G.1    Raab, J.R.2    Kamakaka, R.T.3
  • 46
    • 33646912186 scopus 로고    scopus 로고
    • A role for TFIIIC transcription factor complex in genome organization
    • Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859-872 (2006
    • (2006) Cell , vol.125 , pp. 859-872
    • Noma, K.1    Cam, H.P.2    Maraia, R.J.3    Grewal, S.I.4
  • 47
    • 34447515727 scopus 로고    scopus 로고
    • Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis
    • Lunyak, V. V. et al. Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317, 248-251 (2007
    • (2007) Science , vol.317 , pp. 248-251
    • Lunyak, V.V.1
  • 48
    • 84857190176 scopus 로고    scopus 로고
    • Human tRNA genes function as chromatin insulators
    • Raab, J. R. et al. Human tRNA genes function as chromatin insulators. EMBO J. 31, 330-350 (2012
    • (2012) EMBO J. , vol.31 , pp. 330-350
    • Raab, J.R.1
  • 49
    • 84855288772 scopus 로고    scopus 로고
    • Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells
    • Carriere, L. et al. Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells. Nucleic Acids Res. 40, 270-283 (2012
    • (2012) Nucleic Acids Res , vol.40 , pp. 270-283
    • Carriere, L.1
  • 50
    • 77951943463 scopus 로고    scopus 로고
    • Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors
    • Oler, A. J. et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nature Struct. Mol. Biol. 17, 620-628 (2010
    • (2010) Nature Struct. Mol. Biol , vol.17 , pp. 620-628
    • Oler, A.J.1
  • 51
    • 77951962545 scopus 로고    scopus 로고
    • Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells
    • Moqtaderi, Z. et al. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nature Struct. Mol. Biol. 17, 635-640 (2010
    • (2010) Nature Struct. Mol. Biol , vol.17 , pp. 635-640
    • Moqtaderi, Z.1
  • 52
    • 33746472891 scopus 로고    scopus 로고
    • RNA interference machinery influences the nuclear organization of a chromatin insulator
    • Lei, E. P. & Corces, V. G. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nature Genet. 38, 936-941 (2006
    • (2006) Nature Genet , vol.38 , pp. 936-941
    • Lei, E.P.1    Corces, V.G.2
  • 53
    • 78349252731 scopus 로고    scopus 로고
    • Mediation of ctcf transcriptional insulation by dead-box rna-binding protein p68 and steroid receptor rna activator sra
    • Yao, H. et al. Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev. 24, 2543-2555 (2010
    • (2010) Genes Dev , vol.24 , pp. 2543-2555
    • Yao, H.1
  • 54
    • 84879376976 scopus 로고    scopus 로고
    • Jpx rna activates xist by evicting ctcf
    • Sun, S. et al. Jpx RNA activates Xist by evicting CTCF. Cell 153, 1537-1551 (2013
    • (2013) Cell , vol.153 , pp. 1537-1551
    • Sun, S.1
  • 55
    • 33750203582 scopus 로고    scopus 로고
    • Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra-And interchromosomal interactions
    • Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra-And interchromosomal interactions. Nature Genet. 38, 1341-1347 (2006
    • (2006) Nature Genet , vol.38 , pp. 1341-1347
    • Zhao, Z.1
  • 56
    • 33748259774 scopus 로고    scopus 로고
    • Ctcf mediates long-range chromatin looping and local histone modification in the β-globin locus
    • Splinter, E. et al. CTCF mediates long-range chromatin looping and local histone modification in the β-globin locus. Genes Dev. 20, 2349-2354 (2006
    • (2006) Genes Dev , vol.20 , pp. 2349-2354
    • Splinter, E.1
  • 57
    • 0037338603 scopus 로고    scopus 로고
    • Protein: Protein interactions and the pairing of boundary elements in vivo
    • Blanton, J., Gaszner, M. & Schedl, P. Protein:protein interactions and the pairing of boundary elements in vivo. Genes Dev. 17, 664-675 (2003
    • (2003) Genes Dev , vol.17 , pp. 664-675
    • Blanton, J.1    Gaszner, M.2    Schedl, P.3
  • 58
    • 0042978644 scopus 로고    scopus 로고
    • Visualization of chromatin domains created by the gypsy insulator of Drosophila
    • Byrd, K. & Corces, V. G. Visualization of chromatin domains created by the gypsy insulator of Drosophila. J. Cell Biol. 162, 565-574 (2003
    • (2003) J. Cell Biol , vol.162 , pp. 565-574
    • Byrd, K.1    Corces, V.G.2
  • 59
    • 0026027982 scopus 로고
    • A position-effect assay for boundaries of higher order chromosomal domains
    • Kellum, R. & Schedl, P. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941-950 (1991
    • (1991) Cell , vol.64 , pp. 941-950
    • Kellum, R.1    Schedl, P.2
  • 60
    • 24044461066 scopus 로고    scopus 로고
    • Barrier function at hmr
    • Oki, M. & Kamakaka, R. T. Barrier function at HMR. Mol. Cell 19, 707-716 (2005
    • (2005) Mol. Cell , vol.19 , pp. 707-716
    • Oki, M.1    Kamakaka, R.T.2
  • 61
    • 36048976921 scopus 로고    scopus 로고
    • Usf1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier
    • Huang, S., Li, X., Yusufzai, T. M., Qiu, Y. & Felsenfeld, G. USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol. Cell. Biol. 27, 7991-8002 (2007
    • (2007) Mol. Cell. Biol , vol.27 , pp. 7991-8002
    • Huang, S.1    Li, X.2    Yusufzai, T.M.3    Qiu, Y.4    Felsenfeld, G.5
  • 62
    • 45149084413 scopus 로고    scopus 로고
    • Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions
    • Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948-951 (2008
    • (2008) Nature , vol.453 , pp. 948-951
    • Guelen, L.1
  • 63
    • 79959699992 scopus 로고    scopus 로고
    • Ctcf-mediated functional chromatin interactome in pluripotent cells
    • Handoko, L. et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nature Genet. 43, 630-638 (2011
    • (2011) Nature Genet , vol.43 , pp. 630-638
    • Handoko, L.1
  • 64
    • 80052720433 scopus 로고    scopus 로고
    • A Wt1 controlled chromatin switching mechanism underpins tissue-specific Wnt4 activation and repression
    • Essafi, A. et al. A Wt1 controlled chromatin switching mechanism underpins tissue-specific Wnt4 activation and repression. Dev. Cell 21, 559-574 (2011
    • (2011) Dev. Cell , vol.21 , pp. 559-574
    • Essafi, A.1
  • 65
    • 84862183904 scopus 로고    scopus 로고
    • Integrated analysis identifies a class of androgen-responsive genes regulated by short combinatorial long-range mechanism facilitated by CTCF
    • Taslim, C. et al. Integrated analysis identifies a class of androgen-responsive genes regulated by short combinatorial long-range mechanism facilitated by CTCF. Nucleic Acids Res. 40, 4754-4764 (2012
    • (2012) Nucleic Acids Res , vol.40 , pp. 4754-4764
    • Taslim, C.1
  • 66
    • 79956324593 scopus 로고    scopus 로고
    • Conserved developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus
    • Kim, Y. J., Cecchini, K. R. & Kim, T. H. Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus. Proc. Natl Acad. Sci. USA 108, 7391-7396 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 7391-7396
    • Kim, Y.J.1    Cecchini, K.R.2    Kim, T.H.3
  • 67
    • 84868334509 scopus 로고    scopus 로고
    • Nature and function of insulator protein binding sites in the Drosophila genome
    • Schwartz, Y. B. et al. Nature and function of insulator protein binding sites in the Drosophila genome. Genome Res. 22, 2188-2198 (2012
    • (2012) Genome Res , vol.22 , pp. 2188-2198
    • Schwartz, Y.B.1
  • 68
    • 84868335552 scopus 로고    scopus 로고
    • Drosophila ctcf tandemly aligns with other insulator proteins at the borders of h3k27me3 domains
    • Van Bortle, K. et al. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains. Genome Res. 22, 2176-2187 (2012
    • (2012) Genome Res , vol.22 , pp. 2176-2187
    • Van Bortle, K.1
  • 69
    • 79251534690 scopus 로고    scopus 로고
    • Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster
    • Li, H. B. et al. Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster. Mol. Cell. Biol. 31, 616-625 (2011
    • (2011) Mol. Cell. Biol , vol.31 , pp. 616-625
    • Li, H.B.1
  • 70
    • 80053617964 scopus 로고    scopus 로고
    • Regulation of chromatin organization and inducible gene expression by a Drosophila insulator
    • Wood, A. M. et al. Regulation of chromatin organization and inducible gene expression by a Drosophila insulator. Mol. Cell 44, 29-38 (2011
    • (2011) Mol. Cell , vol.44 , pp. 29-38
    • Wood, A.M.1
  • 71
    • 34249848791 scopus 로고    scopus 로고
    • Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites
    • Xie, X. et al. Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc. Natl Acad. Sci. USA 104, 7145-7150 (2007
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 7145-7150
    • Xie, X.1
  • 72
    • 84868314500 scopus 로고    scopus 로고
    • The BEAF 32 insulator coordinates genome organization and function during the evolution of Drosophila species
    • Yang, J., Ramos, E. & Corces, V. G. The BEAF 32 insulator coordinates genome organization and function during the evolution of Drosophila species. Genome Res. 22, 2199-2207 (2012
    • (2012) Genome Res , vol.22 , pp. 2199-2207
    • Yang, J.1    Ramos, E.2    Corces, V.G.3
  • 73
    • 84865800494 scopus 로고    scopus 로고
    • The long-range interaction landscape of gene promoters
    • Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109-113 (2012
    • (2012) Nature , vol.489 , pp. 109-113
    • Sanyal, A.1    Lajoie, B.R.2    Jain, G.3    Dekker, J.4
  • 74
    • 84864462544 scopus 로고    scopus 로고
    • A map of the cis-regulatory sequences in the mouse genome
    • Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116-120 (2012
    • (2012) Nature , vol.488 , pp. 116-120
    • Shen, Y.1
  • 75
    • 77956645612 scopus 로고    scopus 로고
    • CTCF controls expression and chromatin architecture of the human major histocompatibility complex class II locus
    • Majumder, P. & Boss, J. M. CTCF controls expression and chromatin architecture of the human major histocompatibility complex class II locus. Mol. Cell. Biol. 30, 4211-4223 (2010
    • (2010) Mol. Cell. Biol , vol.30 , pp. 4211-4223
    • Majumder, P.1    Boss, J.M.2
  • 76
    • 42249105007 scopus 로고    scopus 로고
    • The insulator factor ctcf controls mhc class ii gene expression and is required for the formation of long-distance chromatin interactions
    • Majumder, P., Gomez, J. A., Chadwick, B. P. & Boss, J. M. The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. J. Exp. Med. 205, 785-798 (2008
    • (2008) J. Exp. Med , vol.205 , pp. 785-798
    • Majumder, P.1    Gomez, J.A.2    Chadwick, B.P.3    Boss, J.M.4
  • 77
    • 79952360420 scopus 로고    scopus 로고
    • Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription
    • Xu, Z., Wei, G., Chepelev, I., Zhao, K. & Felsenfeld, G. Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription. Nature Struct. Mol. Biol. 18, 372-378 (2011
    • (2011) Nature Struct. Mol. Biol , vol.18 , pp. 372-378
    • Xu, Z.1    Wei, G.2    Chepelev, I.3    Zhao, K.4    Felsenfeld, G.5
  • 78
    • 84860376812 scopus 로고    scopus 로고
    • Identification of CTCF as a master regulator of the clustered protocadherin genes
    • Golan-Mashiach, M. et al. Identification of CTCF as a master regulator of the clustered protocadherin genes. Nucleic Acids Res. 40, 3378-3391 (2012
    • (2012) Nucleic Acids Res , vol.40 , pp. 3378-3391
    • Golan-Mashiach, M.1
  • 79
    • 80054737703 scopus 로고    scopus 로고
    • Regulatory elements required for the activation and repression of the protocadherin-α gene cluster
    • Kehayova, P., Monahan, K., Chen, W. & Maniatis, T. Regulatory elements required for the activation and repression of the protocadherin-α gene cluster. Proc. Natl Acad. Sci. USA 108, 17195-17200 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 17195-17200
    • Kehayova, P.1    Monahan, K.2    Chen, W.3    Maniatis, T.4
  • 80
    • 84871398317 scopus 로고    scopus 로고
    • CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice
    • Guo, Y. et al. CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice. Proc. Natl Acad. Sci. USA 109, 21081-21086 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 21081-21086
    • Guo, Y.1
  • 81
    • 84861917541 scopus 로고    scopus 로고
    • Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-α gene expression
    • Monahan, K. et al. Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-α gene expression. Proc. Natl Acad. Sci. USA 109, 9125-9130 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 9125-9130
    • Monahan, K.1
  • 82
    • 84865724573 scopus 로고    scopus 로고
    • CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons
    • Hirayama, T., Tarusawa, E., Yoshimura, Y., Galjart, N. & Yagi, T. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep. 2, 345-357 (2012
    • (2012) Cell Rep , vol.2 , pp. 345-357
    • Hirayama, T.1    Tarusawa, E.2    Yoshimura, Y.3    Galjart, N.4    Yagi, T.5
  • 83
    • 80052297694 scopus 로고    scopus 로고
    • Control of embryonic stem cell lineage commitment by core promoter factor TAF3
    • Liu, Z., Scannell, D. R., Eisen, M. B. & Tjian, R. Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 146, 720-731 (2011
    • (2011) Cell , vol.146 , pp. 720-731
    • Liu, Z.1    Scannell, D.R.2    Eisen, M.B.3    Tjian, R.4
  • 84
    • 84859383686 scopus 로고    scopus 로고
    • Chromatin topology and the regulation of antigen receptor assembly
    • Bossen, C., Mansson, R. & Murre, C. Chromatin topology and the regulation of antigen receptor assembly. Annu. Rev. Immunol. 30, 337-356 (2012
    • (2012) Annu. Rev. Immunol , vol.30 , pp. 337-356
    • Bossen, C.1    Mansson, R.2    Murre, C.3
  • 85
    • 80054702528 scopus 로고    scopus 로고
    • Two forms of loops generate the chromatin conformation of the immunoglobulin heavy-chain gene locus
    • Guo, C. et al. Two forms of loops generate the chromatin conformation of the immunoglobulin heavy-chain gene locus. Cell 147, 332-343 (2011
    • (2011) Cell , vol.147 , pp. 332-343
    • Guo, C.1
  • 86
    • 79959354832 scopus 로고    scopus 로고
    • CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro B cells
    • Degner, S. C. et al. CCCTC-binding factor (CTCF) and cohesin influence the genomic architecture of the Igh locus and antisense transcription in pro B cells. Proc. Natl Acad. Sci. USA 108, 9566-9571 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 9566-9571
    • Degner, S.C.1
  • 87
    • 84874438729 scopus 로고    scopus 로고
    • Tcra gene recombination is supported by a Tcra enhancer-And CTCF-dependent chromatin hub
    • Shih, H. Y. et al. Tcra gene recombination is supported by a Tcra enhancer-And CTCF-dependent chromatin hub. Proc. Natl Acad. Sci. USA 109, E3493-E3502 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109
    • Shih, H.Y.1
  • 88
    • 80053130223 scopus 로고    scopus 로고
    • Ctcf-binding elements mediate control of v(d) j recombination
    • Guo, C. et al. CTCF-binding elements mediate control of V(D)J recombination. Nature 477, 424-430 (2011
    • (2011) Nature , vol.477 , pp. 424-430
    • Guo, C.1
  • 89
    • 80755180849 scopus 로고    scopus 로고
    • The DNA-binding protein CTCF limits proximal Vκ recombination and restricts κ enhancer interactions to the immunoglobulin κ light chain locus
    • Ribeiro de Almeida, C. et al. The DNA-binding protein CTCF limits proximal Vκ recombination and restricts κ enhancer interactions to the immunoglobulin κ light chain locus. Immunity 35, 501-513 (2011
    • (2011) Immunity , vol.35 , pp. 501-513
    • Ribeiro De Almeida, C.1
  • 90
    • 84857051019 scopus 로고    scopus 로고
    • Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development
    • Stadhouders, R. et al. Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J. 31, 986-999 (2012
    • (2012) EMBO J. , vol.31 , pp. 986-999
    • Stadhouders, R.1
  • 91
    • 84878891601 scopus 로고    scopus 로고
    • Promoter-proximal CCCTC-factor binding is associated with an increase in the transcriptional pausing index
    • Paredes, S. H., Melgar, M. F. & Sethupathy, P. Promoter-proximal CCCTC-factor binding is associated with an increase in the transcriptional pausing index. Bioinformatics 29, 1485-1487 (2013
    • (2013) Bioinformatics , vol.29 , pp. 1485-1487
    • Paredes, S.H.1    Melgar, M.F.2    Sethupathy, P.3
  • 92
    • 80455176999 scopus 로고    scopus 로고
    • CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
    • Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74-79 (2011
    • (2011) Nature , vol.479 , pp. 74-79
    • Shukla, S.1
  • 93
    • 84869003748 scopus 로고    scopus 로고
    • Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains
    • Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471-484 (2012
    • (2012) Mol. Cell , vol.48 , pp. 471-484
    • Hou, C.1    Li, L.2    Qin, Z.S.3    Corces, V.G.4
  • 94
    • 84856747483 scopus 로고    scopus 로고
    • Three-dimensional folding and functional organization principles of the Drosophila genome
    • Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458-472 (2012
    • (2012) Cell , vol.148 , pp. 458-472
    • Sexton, T.1
  • 95
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380 (2012
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1
  • 96
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X inactivation centre
    • Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X inactivation centre. Nature 485, 381-385 (2012
    • (2012) Nature , vol.485 , pp. 381-385
    • Nora, E.P.1
  • 97
    • 84892934183 scopus 로고    scopus 로고
    • Cohesin and ctcf differentially affect chromatin architecture and gene expression in human cells
    • Zuin, J. et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl. Acad. Sci. USA 111, 996-1001 (2013
    • (2013) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 996-1001
    • Zuin, J.1
  • 98
    • 84890566970 scopus 로고    scopus 로고
    • Cohesin-mediated interactions organize chromosomal domain architecture
    • Sofueva, S. et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 32, 3119-3129 (2013
    • (2013) EMBO J. , vol.32 , pp. 3119-3129
    • Sofueva, S.1
  • 99
    • 84890504911 scopus 로고    scopus 로고
    • Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments
    • Seitan, V. C. et al. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res. 23, 2066-2077 (2013
    • (2013) Genome Res , vol.23 , pp. 2066-2077
    • Seitan, V.C.1
  • 100
    • 84869502375 scopus 로고    scopus 로고
    • Global changes in the nuclear positioning of genes and intra-And interdomain genomic interactions that orchestrate B cell fate
    • Lin, Y. C. et al. Global changes in the nuclear positioning of genes and intra-And interdomain genomic interactions that orchestrate B cell fate. Nature Immunol. 13, 1196-1204 (2012
    • (2012) Nature Immunol , vol.13 , pp. 1196-1204
    • Lin, Y.C.1
  • 101
    • 84878860751 scopus 로고    scopus 로고
    • Architectural protein subclasses shape 3D organization of genomes during lineage commitment
    • Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281-1295 (2013
    • (2013) Cell , vol.153 , pp. 1281-1295
    • Phillips-Cremins, J.E.1
  • 102
    • 84888018217 scopus 로고    scopus 로고
    • Organization of the mitotic chromosome
    • Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948-953 (2013
    • (2013) Science , vol.342 , pp. 948-953
    • Naumova, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.