메뉴 건너뛰기




Volumn 27, Issue 4, 2011, Pages 149-156

Genome organization in and around the nucleolus

Author keywords

[No Author keywords available]

Indexed keywords

CELL NUCLEUS DNA; RIBOSOME RNA;

EID: 79953065005     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2011.01.002     Document Type: Review
Times cited : (173)

References (96)
  • 1
    • 33846283384 scopus 로고    scopus 로고
    • Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions
    • Lanctot C., et al. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 2007, 8:104-115.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 104-115
    • Lanctot, C.1
  • 2
    • 18744375181 scopus 로고    scopus 로고
    • Concepts in nuclear architecture
    • Misteli T. Concepts in nuclear architecture. Bioessays 2005, 27:477-487.
    • (2005) Bioessays , vol.27 , pp. 477-487
    • Misteli, T.1
  • 3
    • 0035316574 scopus 로고    scopus 로고
    • Chromosome territories, nuclear architecture and gene regulation in mammalian cells
    • Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001, 2:292-301.
    • (2001) Nat. Rev. Genet. , vol.2 , pp. 292-301
    • Cremer, T.1    Cremer, C.2
  • 5
    • 33751203862 scopus 로고    scopus 로고
    • SnapShot: cellular bodies
    • Spector D.L. SnapShot: cellular bodies. Cell 2006, 127:1071.
    • (2006) Cell , vol.127 , pp. 1071
    • Spector, D.L.1
  • 6
    • 71849090342 scopus 로고    scopus 로고
    • Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly?
    • Matera A.G., et al. Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly?. Dev. Cell 2009, 17:639-647.
    • (2009) Dev. Cell , vol.17 , pp. 639-647
    • Matera, A.G.1
  • 7
    • 34250836327 scopus 로고    scopus 로고
    • The multifunctional nucleolus
    • Boisvert F.M., et al. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 2007, 8:574-585.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 574-585
    • Boisvert, F.M.1
  • 8
    • 77950664003 scopus 로고    scopus 로고
    • The proteins of intra-nuclear bodies: a data-driven analysis of sequence, interaction and expression
    • Mohamad N., Boden M. The proteins of intra-nuclear bodies: a data-driven analysis of sequence, interaction and expression. BMC Syst. Biol. 2010, 4:44.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 44
    • Mohamad, N.1    Boden, M.2
  • 9
    • 77649159264 scopus 로고    scopus 로고
    • A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage
    • Boisvert F.M., et al. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol. Cell. Proteomics 2010, 9:457-470.
    • (2010) Mol. Cell. Proteomics , vol.9 , pp. 457-470
    • Boisvert, F.M.1
  • 10
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    • Birney E., et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447:799-816.
    • (2007) Nature , vol.447 , pp. 799-816
    • Birney, E.1
  • 11
    • 34249026300 scopus 로고    scopus 로고
    • High-resolution profiling of histone methylations in the human genome
    • Barski A., et al. High-resolution profiling of histone methylations in the human genome. Cell 2007, 129:823-837.
    • (2007) Cell , vol.129 , pp. 823-837
    • Barski, A.1
  • 12
    • 77957776228 scopus 로고    scopus 로고
    • Systematic protein location mapping reveals five principal chromatin types in Drosophila cells
    • Filion G.J., et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 2010, 143:212-224.
    • (2010) Cell , vol.143 , pp. 212-224
    • Filion, G.J.1
  • 13
    • 67650711140 scopus 로고    scopus 로고
    • Genome-wide views of chromatin structure
    • Rando O.J., Chang H.Y. Genome-wide views of chromatin structure. Annu. Rev. Biochem. 2009, 78:245-271.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 245-271
    • Rando, O.J.1    Chang, H.Y.2
  • 14
    • 78650304236 scopus 로고    scopus 로고
    • Charting histone modifications and the functional organization of mammalian genomes
    • Zhou V.W., et al. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 2010, 12:7-18.
    • (2010) Nat. Rev. Genet. , vol.12 , pp. 7-18
    • Zhou, V.W.1
  • 15
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326:289-293.
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 16
    • 72449204595 scopus 로고    scopus 로고
    • Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin
    • Bancaud A., et al. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 2009, 28:3785-3798.
    • (2009) EMBO J. , vol.28 , pp. 3785-3798
    • Bancaud, A.1
  • 17
    • 0024466780 scopus 로고
    • A fractal model of chromosomes and chromosomal DNA replication
    • Takahashi M. A fractal model of chromosomes and chromosomal DNA replication. J. Theor. Biol. 1989, 141:117-136.
    • (1989) J. Theor. Biol. , vol.141 , pp. 117-136
    • Takahashi, M.1
  • 18
    • 58149259990 scopus 로고    scopus 로고
    • De novo formation of a subnuclear body
    • Kaiser T.E., et al. De novo formation of a subnuclear body. Science 2008, 322:1713-1717.
    • (2008) Science , vol.322 , pp. 1713-1717
    • Kaiser, T.E.1
  • 19
    • 77956202370 scopus 로고    scopus 로고
    • Assembly dynamics of PML nuclear bodies in living cells
    • Brand P., et al. Assembly dynamics of PML nuclear bodies in living cells. PMC Biophys. 2010, 3:3.
    • (2010) PMC Biophys. , vol.3 , pp. 3
    • Brand, P.1
  • 20
    • 11844291918 scopus 로고    scopus 로고
    • UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery
    • Mais C., et al. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev. 2005, 19:50-64.
    • (2005) Genes Dev. , vol.19 , pp. 50-64
    • Mais, C.1
  • 21
    • 34547936557 scopus 로고    scopus 로고
    • Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells
    • Prieto J.L., McStay B. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev. 2007, 21:2041-2054.
    • (2007) Genes Dev. , vol.21 , pp. 2041-2054
    • Prieto, J.L.1    McStay, B.2
  • 22
    • 53249154279 scopus 로고    scopus 로고
    • Pseudo-NORs: a novel model for studying nucleoli
    • Prieto J.L., McStay B. Pseudo-NORs: a novel model for studying nucleoli. Biochim. Biophys. Acta 2008, 1783:2116-2123.
    • (2008) Biochim. Biophys. Acta , vol.1783 , pp. 2116-2123
    • Prieto, J.L.1    McStay, B.2
  • 23
    • 45149084413 scopus 로고    scopus 로고
    • Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions
    • Guelen L., et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 2008, 453:948-951.
    • (2008) Nature , vol.453 , pp. 948-951
    • Guelen, L.1
  • 24
    • 33748289518 scopus 로고    scopus 로고
    • Characterization of the Drosophila melanogaster genome at the nuclear lamina
    • Pickersgill H., et al. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 2006, 38:1005-1014.
    • (2006) Nat. Genet. , vol.38 , pp. 1005-1014
    • Pickersgill, H.1
  • 25
    • 77950375276 scopus 로고    scopus 로고
    • Initial genomics of the human nucleolus
    • Nemeth A., et al. Initial genomics of the human nucleolus. PLoS Genet. 2010, 6:e1000889.
    • (2010) PLoS Genet. , vol.6
    • Nemeth, A.1
  • 26
    • 78149295090 scopus 로고    scopus 로고
    • High-resolution whole-genome sequencing reveals specific chromatin domains from most human chromosomes associate with nucleoli
    • van Koningsbruggen S., et al. High-resolution whole-genome sequencing reveals specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 2010, 21:3735-3748.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 3735-3748
    • van Koningsbruggen, S.1
  • 27
    • 41649097238 scopus 로고    scopus 로고
    • Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin
    • Dechat T., et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 2008, 22:832-853.
    • (2008) Genes Dev. , vol.22 , pp. 832-853
    • Dechat, T.1
  • 28
    • 23744470383 scopus 로고    scopus 로고
    • Human ribosomal RNA gene arrays display a broad range of palindromic structures
    • Caburet S., et al. Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res. 2005, 15:1079-1085.
    • (2005) Genome Res. , vol.15 , pp. 1079-1085
    • Caburet, S.1
  • 29
    • 0029804026 scopus 로고    scopus 로고
    • Human ribosomal RNA variants from a single individual and their expression in different tissues
    • Kuo B.A., et al. Human ribosomal RNA variants from a single individual and their expression in different tissues. Nucleic Acids Res. 1996, 24:4817-4824.
    • (1996) Nucleic Acids Res. , vol.24 , pp. 4817-4824
    • Kuo, B.A.1
  • 30
    • 55849109584 scopus 로고    scopus 로고
    • The epigenetics of rRNA genes: from molecular to chromosome biology
    • McStay B., Grummt I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu. Rev. Cell Dev. Biol. 2008, 24:131-157.
    • (2008) Annu. Rev. Cell Dev. Biol. , vol.24 , pp. 131-157
    • McStay, B.1    Grummt, I.2
  • 31
    • 42449101817 scopus 로고    scopus 로고
    • Epigenetic regulation of TTF-I-mediated promoter-terminator interactions of rRNA genes
    • Nemeth A., et al. Epigenetic regulation of TTF-I-mediated promoter-terminator interactions of rRNA genes. EMBO J. 2008, 27:1255-1265.
    • (2008) EMBO J. , vol.27 , pp. 1255-1265
    • Nemeth, A.1
  • 32
    • 67349121053 scopus 로고    scopus 로고
    • C-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells
    • Shiue C.N., et al. c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 2009, 28:1833-1842.
    • (2009) Oncogene , vol.28 , pp. 1833-1842
    • Shiue, C.N.1
  • 33
    • 20044375377 scopus 로고    scopus 로고
    • C-Myc associates with ribosomal DNA and activates RNA polymerase I transcription
    • Arabi A., et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat. Cell Biol. 2005, 7:303-310.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 303-310
    • Arabi, A.1
  • 34
    • 33646843753 scopus 로고    scopus 로고
    • Activation by c-Myc of transcription by RNA polymerases I, II and III
    • Gomez-Roman N., et al. Activation by c-Myc of transcription by RNA polymerases I, II and III. Biochem. Soc. Symp. 2006, 141-154.
    • (2006) Biochem. Soc. Symp. , pp. 141-154
    • Gomez-Roman, N.1
  • 35
    • 14744284578 scopus 로고    scopus 로고
    • C-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I
    • Grandori C., et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell Biol. 2005, 7:311-318.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 311-318
    • Grandori, C.1
  • 36
    • 14744297005 scopus 로고    scopus 로고
    • Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development
    • Grewal S.S., et al. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat. Cell Biol. 2005, 7:295-302.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 295-302
    • Grewal, S.S.1
  • 37
    • 0030861450 scopus 로고    scopus 로고
    • Oligomerization of the transcription termination factor TTF-I: implications for the structural organization of ribosomal transcription units
    • Sander E.E., Grummt I. Oligomerization of the transcription termination factor TTF-I: implications for the structural organization of ribosomal transcription units. Nucleic Acids Res. 1997, 25:1142-1147.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 1142-1147
    • Sander, E.E.1    Grummt, I.2
  • 38
    • 3242885608 scopus 로고    scopus 로고
    • The chromatin remodeling complex NoRC and TTF-I cooperate in the regulation of the mammalian rRNA genes in vivo
    • Nemeth A., et al. The chromatin remodeling complex NoRC and TTF-I cooperate in the regulation of the mammalian rRNA genes in vivo. Nucleic Acids Res. 2004, 32:4091-4099.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 4091-4099
    • Nemeth, A.1
  • 39
    • 59449110517 scopus 로고    scopus 로고
    • UBF levels determine the number of active ribosomal RNA genes in mammals
    • Sanij E., et al. UBF levels determine the number of active ribosomal RNA genes in mammals. J. Cell Biol. 2008, 183:1259-1274.
    • (2008) J. Cell Biol. , vol.183 , pp. 1259-1274
    • Sanij, E.1
  • 40
    • 46649110132 scopus 로고    scopus 로고
    • Mouse ribosomal RNA genes contain multiple differentially regulated variants
    • Tseng H., et al. Mouse ribosomal RNA genes contain multiple differentially regulated variants. PLoS ONE 2008, 3:e1843.
    • (2008) PLoS ONE , vol.3
    • Tseng, H.1
  • 41
    • 33746277552 scopus 로고    scopus 로고
    • Structure and function of the nucleolus in the spotlight
    • Raska I., et al. Structure and function of the nucleolus in the spotlight. Curr. Opin. Cell Biol. 2006, 18:325-334.
    • (2006) Curr. Opin. Cell Biol. , vol.18 , pp. 325-334
    • Raska, I.1
  • 42
    • 0029113034 scopus 로고
    • The FSHD-associated repeat, D4Z4, is a member of a dispersed family of homeobox-containing repeats, subsets of which are clustered on the short arms of the acrocentric chromosomes
    • Lyle R., et al. The FSHD-associated repeat, D4Z4, is a member of a dispersed family of homeobox-containing repeats, subsets of which are clustered on the short arms of the acrocentric chromosomes. Genomics 1995, 28:389-397.
    • (1995) Genomics , vol.28 , pp. 389-397
    • Lyle, R.1
  • 43
    • 0017052931 scopus 로고
    • Chromosomal constitution of nucleolus-associated chromatin in man
    • Stahl A., et al. Chromosomal constitution of nucleolus-associated chromatin in man. Hum. Genet. 1976, 35:27-34.
    • (1976) Hum. Genet. , vol.35 , pp. 27-34
    • Stahl, A.1
  • 44
    • 0028010158 scopus 로고
    • Interactive computer-assisted analysis of chromosome 1 colocalization with nucleoli
    • Leger I., et al. Interactive computer-assisted analysis of chromosome 1 colocalization with nucleoli. Cytometry 1994, 16:313-323.
    • (1994) Cytometry , vol.16 , pp. 313-323
    • Leger, I.1
  • 45
    • 0033844945 scopus 로고    scopus 로고
    • Initiation of nucleolar assembly is independent of RNA polymerase I transcription
    • Dousset T., et al. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol. Biol. Cell 2000, 11:2705-2717.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 2705-2717
    • Dousset, T.1
  • 46
    • 62849115107 scopus 로고    scopus 로고
    • Repeated elements coordinate the spatial organization of the yeast genome
    • O'Sullivan J.M., et al. Repeated elements coordinate the spatial organization of the yeast genome. Yeast 2009, 26:125-138.
    • (2009) Yeast , vol.26 , pp. 125-138
    • O'Sullivan, J.M.1
  • 47
    • 57049179496 scopus 로고    scopus 로고
    • High-resolution statistical mapping reveals gene territories in live yeast
    • Berger A.B., et al. High-resolution statistical mapping reveals gene territories in live yeast. Nat. Methods 2008, 5:1031-1037.
    • (2008) Nat. Methods , vol.5 , pp. 1031-1037
    • Berger, A.B.1
  • 48
    • 0036006293 scopus 로고    scopus 로고
    • Chromatin motion is constrained by association with nuclear compartments in human cells
    • Chubb J.R., et al. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 2002, 12:439-445.
    • (2002) Curr. Biol. , vol.12 , pp. 439-445
    • Chubb, J.R.1
  • 49
    • 58049195492 scopus 로고    scopus 로고
    • The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription
    • Shimi T., et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 2008, 22:3409-3421.
    • (2008) Genes Dev. , vol.22 , pp. 3409-3421
    • Shimi, T.1
  • 50
    • 65349090225 scopus 로고    scopus 로고
    • Nuclear neighborhoods and gene expression
    • Zhao R., et al. Nuclear neighborhoods and gene expression. Curr. Opin. Genet. Dev. 2009, 19:172-179.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 172-179
    • Zhao, R.1
  • 51
    • 34547628691 scopus 로고    scopus 로고
    • Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere
    • Wong L.H., et al. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res. 2007, 17:1146-1160.
    • (2007) Genome Res. , vol.17 , pp. 1146-1160
    • Wong, L.H.1
  • 52
    • 0030005052 scopus 로고    scopus 로고
    • Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure and dispersion of chromosomal domains
    • Haaf T., Ward D.C. Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure and dispersion of chromosomal domains. Exp. Cell Res. 1996, 224:163-173.
    • (1996) Exp. Cell Res. , vol.224 , pp. 163-173
    • Haaf, T.1    Ward, D.C.2
  • 53
    • 0842310349 scopus 로고    scopus 로고
    • CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species
    • Yusufzai T.M., et al. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell 2004, 13:291-298.
    • (2004) Mol. Cell , vol.13 , pp. 291-298
    • Yusufzai, T.M.1
  • 54
    • 33845707730 scopus 로고    scopus 로고
    • NoRC-dependent nucleosome positioning silences rRNA genes
    • Li J., et al. NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J. 2006, 25:5735-5741.
    • (2006) EMBO J. , vol.25 , pp. 5735-5741
    • Li, J.1
  • 55
    • 13244277994 scopus 로고    scopus 로고
    • The chromatin remodeling complex NoRC controls replication timing of rRNA genes
    • Li J., et al. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 2005, 24:120-127.
    • (2005) EMBO J. , vol.24 , pp. 120-127
    • Li, J.1
  • 56
    • 0036844024 scopus 로고    scopus 로고
    • The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription
    • Santoro R., et al. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat. Genet. 2002, 32:393-396.
    • (2002) Nat. Genet. , vol.32 , pp. 393-396
    • Santoro, R.1
  • 57
    • 0035801407 scopus 로고    scopus 로고
    • NoRC - a novel member of mammalian ISWI-containing chromatin remodeling machines
    • Strohner R., et al. NoRC - a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 2001, 20:4892-4900.
    • (2001) EMBO J. , vol.20 , pp. 4892-4900
    • Strohner, R.1
  • 58
    • 0842347401 scopus 로고    scopus 로고
    • Recruitment of the nucleolar remodeling complex NoRC establishes ribosomal DNA silencing in chromatin
    • Strohner R., et al. Recruitment of the nucleolar remodeling complex NoRC establishes ribosomal DNA silencing in chromatin. Mol. Cell. Biol. 2004, 24:1791-1798.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 1791-1798
    • Strohner, R.1
  • 59
    • 0037009366 scopus 로고    scopus 로고
    • The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription
    • Zhou Y., et al. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J. 2002, 21:4632-4640.
    • (2002) EMBO J. , vol.21 , pp. 4632-4640
    • Zhou, Y.1
  • 60
    • 77954954525 scopus 로고    scopus 로고
    • The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats
    • Guetg C., et al. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J. 2010, 29:2135-2146.
    • (2010) EMBO J. , vol.29 , pp. 2135-2146
    • Guetg, C.1
  • 61
    • 34249681648 scopus 로고    scopus 로고
    • Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells
    • Espada J., et al. Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Res. 2007, 35:2191-2198.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 2191-2198
    • Espada, J.1
  • 62
    • 32344450824 scopus 로고    scopus 로고
    • Genomic DNA methylation: the mark and its mediators
    • Klose R.J., Bird A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 2006, 31:89-97.
    • (2006) Trends Biochem. Sci. , vol.31 , pp. 89-97
    • Klose, R.J.1    Bird, A.P.2
  • 63
    • 77957932111 scopus 로고    scopus 로고
    • Genomics tools for unraveling chromosome architecture
    • van Steensel B., Dekker J. Genomics tools for unraveling chromosome architecture. Nat. Biotechnol. 2010, 28:1089-1095.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 1089-1095
    • van Steensel, B.1    Dekker, J.2
  • 64
    • 0037039159 scopus 로고    scopus 로고
    • Directed proteomic analysis of the human nucleolus
    • Andersen J.S., et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 2002, 12:1-11.
    • (2002) Curr. Biol. , vol.12 , pp. 1-11
    • Andersen, J.S.1
  • 65
    • 19944400417 scopus 로고    scopus 로고
    • Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions
    • Pendle A.F., et al. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol. Cell 2005, 16:260-269.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 260-269
    • Pendle, A.F.1
  • 66
    • 0036856312 scopus 로고    scopus 로고
    • Functional proteomic analysis of human nucleolus
    • Scherl A., et al. Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 2002, 13:4100-4109.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 4100-4109
    • Scherl, A.1
  • 67
    • 69949191661 scopus 로고    scopus 로고
    • Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus
    • Kim S.H., et al. Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. Plant Cell 2009, 21:2045-2057.
    • (2009) Plant Cell , vol.21 , pp. 2045-2057
    • Kim, S.H.1
  • 68
    • 77953234404 scopus 로고    scopus 로고
    • Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli
    • Kim S.H., et al. Plant U13 orthologues and orphan snoRNAs identified by RNomics of RNA from Arabidopsis nucleoli. Nucleic Acids Res. 2010, 38:3054-3067.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 3054-3067
    • Kim, S.H.1
  • 69
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker J., et al. Capturing chromosome conformation. Science 2002, 295:1306-1311.
    • (2002) Science , vol.295 , pp. 1306-1311
    • Dekker, J.1
  • 70
    • 33749400168 scopus 로고    scopus 로고
    • Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements
    • Dostie J., et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 2006, 16:1299-1309.
    • (2006) Genome Res. , vol.16 , pp. 1299-1309
    • Dostie, J.1
  • 71
    • 39449139894 scopus 로고    scopus 로고
    • High-resolution circular chromosome conformation capture assay
    • Gondor A., et al. High-resolution circular chromosome conformation capture assay. Nat. Protoc. 2008, 3:303-313.
    • (2008) Nat. Protoc. , vol.3 , pp. 303-313
    • Gondor, A.1
  • 72
    • 33750212321 scopus 로고    scopus 로고
    • Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C)
    • Simonis M., et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 2006, 38:1348-1354.
    • (2006) Nat. Genet. , vol.38 , pp. 1348-1354
    • Simonis, M.1
  • 73
    • 73949133990 scopus 로고    scopus 로고
    • Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification
    • Vassetzky Y., et al. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol. Biol. 2009, 567:171-188.
    • (2009) Methods Mol. Biol. , vol.567 , pp. 171-188
    • Vassetzky, Y.1
  • 74
    • 0034007256 scopus 로고    scopus 로고
    • Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase
    • van Steensel B., Henikoff S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 2000, 18:424-428.
    • (2000) Nat. Biotechnol. , vol.18 , pp. 424-428
    • van Steensel, B.1    Henikoff, S.2
  • 75
    • 34250791291 scopus 로고    scopus 로고
    • Detection of in vivo protein-DNA interactions using DamID in mammalian cells
    • Vogel M.J., et al. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat. Protoc. 2007, 2:1467-1478.
    • (2007) Nat. Protoc. , vol.2 , pp. 1467-1478
    • Vogel, M.J.1
  • 76
    • 0026660025 scopus 로고
    • HnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs
    • Ghetti A., et al. hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res. 1992, 20:3671-3678.
    • (1992) Nucleic Acids Res. , vol.20 , pp. 3671-3678
    • Ghetti, A.1
  • 77
    • 0031005765 scopus 로고    scopus 로고
    • The dynamic organization of the perinucleolar compartment in the cell nucleus
    • Huang S., et al. The dynamic organization of the perinucleolar compartment in the cell nucleus. J. Cell Biol. 1997, 137:965-974.
    • (1997) J. Cell Biol. , vol.137 , pp. 965-974
    • Huang, S.1
  • 78
    • 0029055036 scopus 로고
    • A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I
    • Matera A.G., et al. A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J. Cell Biol. 1995, 129:1181-1193.
    • (1995) J. Cell Biol. , vol.129 , pp. 1181-1193
    • Matera, A.G.1
  • 79
    • 0035983223 scopus 로고    scopus 로고
    • The nucleolus - a gateway to viral infection?
    • Hiscox J.A. The nucleolus - a gateway to viral infection?. Arch. Virol. 2002, 147:1077-1089.
    • (2002) Arch. Virol. , vol.147 , pp. 1077-1089
    • Hiscox, J.A.1
  • 80
    • 33846547544 scopus 로고    scopus 로고
    • RNA viruses: hijacking the dynamic nucleolus
    • Hiscox J.A. RNA viruses: hijacking the dynamic nucleolus. Nat. Rev. Microbiol. 2007, 5:119-127.
    • (2007) Nat. Rev. Microbiol. , vol.5 , pp. 119-127
    • Hiscox, J.A.1
  • 81
    • 0032499703 scopus 로고    scopus 로고
    • Nucleolar localization of the Werner syndrome protein in human cells
    • Marciniak R.A., et al. Nucleolar localization of the Werner syndrome protein in human cells. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:6887-6892.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 6887-6892
    • Marciniak, R.A.1
  • 82
    • 18744434657 scopus 로고    scopus 로고
    • The fragile X-related proteins FXR1P and FXR2P contain a functional nucleolar-targeting signal equivalent to the HIV-1 regulatory proteins
    • Tamanini F., et al. The fragile X-related proteins FXR1P and FXR2P contain a functional nucleolar-targeting signal equivalent to the HIV-1 regulatory proteins. Hum. Mol. Genet. 2000, 9:1487-1493.
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 1487-1493
    • Tamanini, F.1
  • 83
    • 0030570761 scopus 로고    scopus 로고
    • Association of FMRP with ribosomal precursor particles in the nucleolus
    • Willemsen R., et al. Association of FMRP with ribosomal precursor particles in the nucleolus. Biochem. Biophys. Res. Commun. 1996, 225:27-33.
    • (1996) Biochem. Biophys. Res. Commun. , vol.225 , pp. 27-33
    • Willemsen, R.1
  • 84
    • 0034494767 scopus 로고    scopus 로고
    • Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome
    • Isaac C., et al. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol. Biol. Cell 2000, 11:3061-3071.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 3061-3071
    • Isaac, C.1
  • 85
    • 0034624982 scopus 로고    scopus 로고
    • Nuclear structure in normal and Bloom syndrome cells
    • Yankiwski V., et al. Nuclear structure in normal and Bloom syndrome cells. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:5214-5219.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 5214-5219
    • Yankiwski, V.1
  • 86
    • 33748606377 scopus 로고    scopus 로고
    • The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress
    • Woo L.L., et al. The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp. Cell Res. 2006, 312:3443-3457.
    • (2006) Exp. Cell Res. , vol.312 , pp. 3443-3457
    • Woo, L.L.1
  • 87
    • 0032754538 scopus 로고    scopus 로고
    • Dyskerin localizes to the nucleolus and its mislocalization is unlikely to play a role in the pathogenesis of dyskeratosis congenita
    • Heiss N.S., et al. Dyskerin localizes to the nucleolus and its mislocalization is unlikely to play a role in the pathogenesis of dyskeratosis congenita. Hum. Mol. Genet. 1999, 8:2515-2524.
    • (1999) Hum. Mol. Genet. , vol.8 , pp. 2515-2524
    • Heiss, N.S.1
  • 88
    • 75749105129 scopus 로고    scopus 로고
    • Diamond Blackfan anemia 2008-2009: broadening the scope of ribosome biogenesis disorders
    • Lipton J.M., Ellis S.R. Diamond Blackfan anemia 2008-2009: broadening the scope of ribosome biogenesis disorders. Curr. Opin. Pediatr. 2009, 22:12-19.
    • (2009) Curr. Opin. Pediatr. , vol.22 , pp. 12-19
    • Lipton, J.M.1    Ellis, S.R.2
  • 89
    • 77949495196 scopus 로고    scopus 로고
    • The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer
    • Drygin D., et al. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu. Rev. Pharmacol. Toxicol. 2010, 50:131-156.
    • (2010) Annu. Rev. Pharmacol. Toxicol. , vol.50 , pp. 131-156
    • Drygin, D.1
  • 90
    • 77951174629 scopus 로고    scopus 로고
    • P53 localizes to intranucleolar regions distinct from the ribosome production compartments
    • Kruger T., Scheer U. p53 localizes to intranucleolar regions distinct from the ribosome production compartments. J. Cell Sci. 2010, 123:1203-1208.
    • (2010) J. Cell Sci. , vol.123 , pp. 1203-1208
    • Kruger, T.1    Scheer, U.2
  • 91
    • 0034610752 scopus 로고    scopus 로고
    • Non-activated p53 co-localizes with sites of transcription within both the nucleoplasm and the nucleolus
    • Rubbi C.P., Milner J. Non-activated p53 co-localizes with sites of transcription within both the nucleoplasm and the nucleolus. Oncogene 2000, 19:85-96.
    • (2000) Oncogene , vol.19 , pp. 85-96
    • Rubbi, C.P.1    Milner, J.2
  • 92
    • 0033771948 scopus 로고    scopus 로고
    • Identification of a cryptic nucleolar-localization signal in MDM2
    • Lohrum M.A., et al. Identification of a cryptic nucleolar-localization signal in MDM2. Nat. Cell Biol. 2000, 2:179-181.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 179-181
    • Lohrum, M.A.1
  • 93
    • 0033536063 scopus 로고    scopus 로고
    • P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2
    • Tao W., Levine A.J. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:6937-6941.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 6937-6941
    • Tao, W.1    Levine, A.J.2
  • 94
    • 0034660460 scopus 로고    scopus 로고
    • Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization
    • Rizos H., et al. Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization. Oncogene 2000, 19:2978-2985.
    • (2000) Oncogene , vol.19 , pp. 2978-2985
    • Rizos, H.1
  • 95
    • 0344442399 scopus 로고    scopus 로고
    • A role for c-Myc in the regulation of ribosomal RNA processing
    • Schlosser I., et al. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res. 2003, 31:6148-6156.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 6148-6156
    • Schlosser, I.1
  • 96
    • 70350220557 scopus 로고    scopus 로고
    • Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis
    • Drygin D., et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 2009, 69:7653-7661.
    • (2009) Cancer Res. , vol.69 , pp. 7653-7661
    • Drygin, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.