-
2
-
-
33750044901
-
Ribosome biogenesis and cell growth: MTOR coordinates transcription by all three classes of nuclear RNA polymerases
-
Mayer C, Grummt I. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene. 2006;25:6384-91.
-
(2006)
Oncogene
, vol.25
, pp. 6384-6391
-
-
Mayer, C.1
Grummt, I.2
-
3
-
-
70549086622
-
Growth control and ribosome biogenesis
-
Lempiäinen H, Shore D. Growth control and ribosome biogenesis. Curr Opin Cell Biol.2009;21:855-63.
-
(2009)
Curr Opin Cell Biol
, vol.21
, pp. 855-863
-
-
Lempiäinen, H.1
Shore, D.2
-
5
-
-
33845525592
-
New insights into nucleolar architecture and activity
-
Raska I, Shaw PJ, Cmarko D. New insights into nucleolar architecture and activity. Int Rev Cytol.2006;255:177-235.
-
(2006)
Int Rev Cytol
, vol.255
, pp. 177-235
-
-
Raska, I.1
Shaw, P.J.2
Cmarko, D.3
-
8
-
-
0031946191
-
Nucleolar function and size in cancer cells
-
Derenzini M, Trerè D, Pession A, Montanaro L, Sirri V, Ochs RL. Nucleolar function and size in cancer cells. Am J Pathol. 1998;152:1291-7.
-
(1998)
Am J Pathol
, vol.152
, pp. 1291-1297
-
-
Derenzini, M.1
Trerè, D.2
Pession, A.3
Montanaro, L.4
Sirri, V.5
Ochs, R.L.6
-
9
-
-
0037363075
-
Does the ribosome translate cancer?
-
Ruggero D, Pandolfi PP. Does the ribosome translate cancer? Nat Rev Cancer. 2003;3:179-92.
-
(2003)
Nat Rev Cancer
, vol.3
, pp. 179-192
-
-
Ruggero, D.1
Pandolfi, P.P.2
-
10
-
-
48749119882
-
Nucleolus, ribosomes, and cancer
-
Montanaro L, Treré D, Derenzini M. Nucleolus, ribosomes, and cancer. Am J Pathol.2008;173:301-10.
-
(2008)
Am J Pathol
, vol.173
, pp. 301-310
-
-
Montanaro, L.1
Treré, D.2
Derenzini, M.3
-
11
-
-
0034717122
-
Like attracts like: Getting RNA processing together in the nucleus
-
Lewis JD, Tollervey D. Like attracts like: getting RNA processing together in the nucleus. Science.2000;288:1385-9.
-
(2000)
Science
, vol.288
, pp. 1385-1389
-
-
Lewis, J.D.1
Tollervey, D.2
-
12
-
-
0033761629
-
Synthesis of the translational apparatus is regulated at the translational level
-
Meyuhas O. Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem. 2000;267:6321-30.
-
(2000)
Eur J Biochem
, vol.267
, pp. 6321-6330
-
-
Meyuhas, O.1
-
13
-
-
0017760147
-
In the absence of ribosomal RNA synthesis, the ribosomal proteins of HeLa cells are synthesized normally and degraded rapidly
-
Warner JR. In the absence of ribosomal RNA synthesis, the ribosomal proteins of HeLa cells are synthesized normally and degraded rapidly. J Mol Biol. 1977;115:315-33.
-
(1977)
J Mol Biol
, vol.115
, pp. 315-333
-
-
Warner, J.R.1
-
14
-
-
34247391127
-
Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins
-
Lam YW, Lamond AI, Mann M, Andersen JS. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol. 2007;17:749-60.
-
(2007)
Curr Biol
, vol.17
, pp. 749-760
-
-
Lam, Y.W.1
Lamond, A.I.2
Mann, M.3
Andersen, J.S.4
-
17
-
-
29244480602
-
Proteasomes degrade proteins in focal subdomains of the human cell nucleus
-
Rockel TD, Stuhlmann D, von Mikecz A. Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J Cell Sci.2005;118:5231-42.
-
(2005)
J Cell Sci
, vol.118
, pp. 5231-5242
-
-
Rockel, T.D.1
Stuhlmann, D.2
von Mikecz, A.3
-
18
-
-
0037650101
-
Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels
-
Arabi A, Rustum C, Hallberg E, Wright APH. Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels. J Cell Sci. 2003;116:1707-17.
-
(2003)
J Cell Sci
, vol.116
, pp. 1707-1717
-
-
Arabi, A.1
Rustum, C.2
Hallberg, E.3
Wright, A.P.H.4
-
19
-
-
34249934582
-
Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry
-
Scharf A, Rockel TD, von Mikecz A. Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry. Histochem Cell Biol. 2007;127:591-601.
-
(2007)
Histochem Cell Biol
, vol.127
, pp. 591-601
-
-
Scharf, A.1
Rockel, T.D.2
von Mikecz, A.3
-
20
-
-
0041706156
-
A proteomics approach to understanding protein ubiquitination
-
Peng J, Schwartz D, Elias JE, et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol. 2003;21:921-6.
-
(2003)
Nat Biotechnol
, vol.21
, pp. 921-926
-
-
Peng, J.1
Schwartz, D.2
Elias, J.E.3
-
21
-
-
27744500428
-
Large-scale analysis of the human ubiquitin-related proteome
-
Matsumoto M, Hatakeyama S, Oyamada K, Oda Y, Nishimura T, Nakayama KI. Large-scale analysis of the human ubiquitin-related proteome. Proteomics. 2005;5:4145-51.
-
(2005)
Proteomics
, vol.5
, pp. 4145-4151
-
-
Matsumoto, M.1
Hatakeyama, S.2
Oyamada, K.3
Oda, Y.4
Nishimura, T.5
Nakayama, K.I.6
-
22
-
-
40249111681
-
Ribosomal proteins are targets for the NEDD8 pathway
-
Xirodimas DP, Sundqvist A, Nakamura A, Shen L, Botting C, Hay RT. Ribosomal proteins are targets for the NEDD8 pathway. EMBO Rep.2008;9:280-6.
-
(2008)
EMBO Rep
, vol.9
, pp. 280-286
-
-
Xirodimas, D.P.1
Sundqvist, A.2
Nakamura, A.3
Shen, L.4
Botting, C.5
Hay, R.T.6
-
23
-
-
71049147061
-
Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition
-
Matafora V, D'Amato A, Mori S, Blasi F, Bachi A. Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics. 2009;8:2243-55.
-
(2009)
Mol Cell Proteomics
, vol.8
, pp. 2243-2255
-
-
Matafora, V.1
D'Amato, A.2
Mori, S.3
Blasi, F.4
Bachi, A.5
-
24
-
-
0024593537
-
The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis
-
Finley D, Bartel B, Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature. 1989;338:394-401.
-
(1989)
Nature
, vol.338
, pp. 394-401
-
-
Finley, D.1
Bartel, B.2
Varshavsky, A.3
-
25
-
-
0024560651
-
Identification of the long ubiquitin extension as ribosomal protein S27a
-
Redman KL, Rechsteiner M. Identification of the long ubiquitin extension as ribosomal protein S27a. Nature. 1989;338:438-40.
-
(1989)
Nature
, vol.338
, pp. 438-440
-
-
Redman, K.L.1
Rechsteiner, M.2
-
26
-
-
0028848152
-
The carboxyl extensions of two rat ubiquitin fusion proteins are ribosomal proteins S27a and L40
-
Chan YL, Suzuki K, Wool IG. The carboxyl extensions of two rat ubiquitin fusion proteins are ribosomal proteins S27a and L40. Biochem Biophys Res Commun. 1995;215:682-90.
-
(1995)
Biochem Biophys Res Commun
, vol.215
, pp. 682-690
-
-
Chan, Y.L.1
Suzuki, K.2
Wool, I.G.3
-
27
-
-
0023666139
-
The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
-
Finley D, Ozkaynak E, Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell. 1987;48:1035-46.
-
(1987)
Cell
, vol.48
, pp. 1035-1046
-
-
Finley, D.1
Ozkaynak, E.2
Varshavsky, A.3
-
28
-
-
34547178709
-
Sequence and structure evolved separately in a ribosomal ubiquitin variant
-
Catic A, Sun ZJ, Ratner DM, et al. Sequence and structure evolved separately in a ribosomal ubiquitin variant. EMBO J. 2007;26:3474-83.
-
(2007)
EMBO J
, vol.26
, pp. 3474-3483
-
-
Catic, A.1
Sun, Z.J.2
Ratner, D.M.3
-
29
-
-
0027305778
-
The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30
-
Olvera J, Wool IG. The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30. J Biol Chem. 1993;268:17967-74.
-
(1993)
J Biol Chem
, vol.268
, pp. 17967-17974
-
-
Olvera, J.1
Wool, I.G.2
-
30
-
-
62949242460
-
Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits
-
Lacombe T, García-Gómez JJ, de la Cruz J, et al. Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits. Mol Microbiol. 2009;72:69-84.
-
(2009)
Mol Microbiol
, vol.72
, pp. 69-84
-
-
Lacombe, T.1
García-Gómez, J.J.2
de la Cruz, J.3
-
31
-
-
33745478477
-
Potential roles for ubiquitin and the proteasome during ribosome biogenesis
-
Stavreva DA, Kawasaki M, Dundr M, et al. Potential roles for ubiquitin and the proteasome during ribosome biogenesis. Mol Cell Biol.2006;26:5131-45.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 5131-5145
-
-
Stavreva, D.A.1
Kawasaki, M.2
Dundr, M.3
-
32
-
-
56149116334
-
Proteasomal ATPases are associated with rDNA: The ubiquitin proteasome system plays a direct role in RNA polymerase I transcription
-
Fátyol K, Grummt I. Proteasomal ATPases are associated with rDNA: the ubiquitin proteasome system plays a direct role in RNA polymerase I transcription. Biochim Biophys Acta.2008;1779:850-9.
-
(2008)
Biochim Biophys Acta
, vol.1779
, pp. 850-859
-
-
Fátyol, K.1
Grummt, I.2
-
33
-
-
0036799361
-
Subcellular recruitment of fibrillarin to nucleoplasmic proteasomes: Implications for processing of a nucleolar autoantigen
-
Chen M, Rockel T, Steinweger G, Hemmerich P, Risch J, von Mikecz A. Subcellular recruitment of fibrillarin to nucleoplasmic proteasomes: implications for processing of a nucleolar autoantigen. Mol Biol Cell. 2002;13:3576-87.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 3576-3587
-
-
Chen, M.1
Rockel, T.2
Steinweger, G.3
Hemmerich, P.4
Risch, J.5
von Mikecz, A.6
-
34
-
-
77951146831
-
N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies
-
Sharma P, Murillas R, Zhang H, Kuehn MR. N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J Cell Sci. 2010;123:1227-34.
-
(2010)
J Cell Sci
, vol.123
, pp. 1227-1234
-
-
Sharma, P.1
Murillas, R.2
Zhang, H.3
Kuehn, M.R.4
-
35
-
-
66149152311
-
Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36
-
Endo A, Matsumoto M, Inada T, et al. Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J Cell Sci.2009;122:678-86.
-
(2009)
J Cell Sci
, vol.122
, pp. 678-686
-
-
Endo, A.1
Matsumoto, M.2
Inada, T.3
-
36
-
-
33751316103
-
A late-acting quality control process for mature eukaryotic rRNAs
-
LaRiviere FJ, Cole SE, Ferullo DJ, Moore MJ. A late-acting quality control process for mature eukaryotic rRNAs. Mol Cell. 2006;24:619-26.
-
(2006)
Mol Cell
, vol.24
, pp. 619-626
-
-
Lariviere, F.J.1
Cole, S.E.2
Ferullo, D.J.3
Moore, M.J.4
-
37
-
-
65249168677
-
A role for ubiquitin in the clearance of nonfunctional rRNAs
-
Fujii K, Kitabatake M, Sakata T, Miyata A, Ohno M. A role for ubiquitin in the clearance of nonfunctional rRNAs. Genes Dev. 2009;23:963-74.
-
(2009)
Genes Dev
, vol.23
, pp. 963-974
-
-
Fujii, K.1
Kitabatake, M.2
Sakata, T.3
Miyata, A.4
Ohno, M.5
-
38
-
-
63649113699
-
Origin and function of ubiquitinlike proteins
-
Hochstrasser M. Origin and function of ubiquitinlike proteins. Nature. 2009;458:422-9.
-
(2009)
Nature
, vol.458
, pp. 422-429
-
-
Hochstrasser, M.1
-
39
-
-
70449697971
-
Regulation of nucleolar signalling to p53 through NEDDylation of L11
-
Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP. Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep. 2009;10:1132-9.
-
(2009)
EMBO Rep
, vol.10
, pp. 1132-1139
-
-
Sundqvist, A.1
Liu, G.2
Mirsaliotis, A.3
Xirodimas, D.P.4
-
40
-
-
33748574525
-
Formation and nuclear export of preribosomes are functionally linked to the small-ubiquitin-related modifier pathway
-
Panse VG, Kressler D, Pauli A, et al. Formation and nuclear export of preribosomes are functionally linked to the small-ubiquitin-related modifier pathway. Traffic. 2006;7:1311-21.
-
(2006)
Traffic
, vol.7
, pp. 1311-1321
-
-
Panse, V.G.1
Kressler, D.2
Pauli, A.3
-
41
-
-
0033760171
-
A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase
-
Nishida T, Tanaka H, Yasuda H. A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur J Biochem. 2000;267:6423-7.
-
(2000)
Eur J Biochem
, vol.267
, pp. 6423-6427
-
-
Nishida, T.1
Tanaka, H.2
Yasuda, H.3
-
42
-
-
33745049415
-
The SUMO-specific protease SENP5 is required for cell division
-
Di Bacco A, Ouyang J, Lee H, Catic A, Ploegh H, Gill G. The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol.2006;26:4489-98.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 4489-4498
-
-
Di Bacco, A.1
Ouyang, J.2
Lee, H.3
Catic, A.4
Ploegh, H.5
Gill, G.6
-
43
-
-
33744917849
-
Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3
-
Gong L, Yeh ETH. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem.2006;281:15869-77.
-
(2006)
J Biol Chem
, vol.281
, pp. 15869-15877
-
-
Gong, L.1
Yeh, E.T.H.2
-
44
-
-
58149195377
-
Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases
-
Yun C, Wang Y, Mukhopadhyay D, et al. Nucleolar protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP5 proteases. J Cell Biol. 2008;183:589-95.
-
(2008)
J Cell Biol
, vol.183
, pp. 589-595
-
-
Yun, C.1
Wang, Y.2
Mukhopadhyay, D.3
-
45
-
-
40249105993
-
The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing
-
Haindl M, Harasim T, Eick D, Muller S. The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep. 2008;9:273-9.
-
(2008)
EMBO Rep
, vol.9
, pp. 273-279
-
-
Haindl, M.1
Harasim, T.2
Eick, D.3
Muller, S.4
-
46
-
-
28444448039
-
The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice
-
Nacerddine K, Lehembre F, Bhaumik M, et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell. 2005;9:769-79.
-
(2005)
Dev Cell
, vol.9
, pp. 769-779
-
-
Nacerddine, K.1
Lehembre, F.2
Bhaumik, M.3
-
47
-
-
0034098784
-
The nucleolus: The magician's hat for cell cycle tricks
-
Visintin R, Amon A. The nucleolus: the magician's hat for cell cycle tricks. Curr Opin Cell Biol. 2000;12:372-7.
-
(2000)
Curr Opin Cell Biol
, vol.12
, pp. 372-377
-
-
Visintin, R.1
Amon, A.2
-
48
-
-
67650534951
-
Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis
-
Zunino R, Braschi E, Xu L, McBride HM. Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J Biol Chem. 2009;284:17783-95.
-
(2009)
J Biol Chem
, vol.284
, pp. 17783-17795
-
-
Zunino, R.1
Braschi, E.2
Xu, L.3
McBride, H.M.4
-
49
-
-
0034674714
-
Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6
-
Volarevic S, Stewart MJ, Ledermann B, et al. Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science.2000;288:2045-7.
-
(2000)
Science
, vol.288
, pp. 2045-2047
-
-
Volarevic, S.1
Stewart, M.J.2
Ledermann, B.3
-
50
-
-
0034977001
-
Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: Effects of nucleolar protein Bop1 on G(1)/S transition
-
Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol.2001;21:4246-55.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 4246-4255
-
-
Pestov, D.G.1
Strezoska, Z.2
Lau, L.F.3
-
51
-
-
21244504900
-
Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53- mediated apoptosis
-
Yuan X, Zhou Y, Casanova E, et al. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53- mediated apoptosis. Mol Cell. 2005;19:77-87.
-
(2005)
Mol Cell
, vol.19
, pp. 77-87
-
-
Yuan, X.1
Zhou, Y.2
Casanova, E.3
-
52
-
-
0344011603
-
Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses
-
Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J.2003;22:6068-77.
-
(2003)
EMBO J
, vol.22
, pp. 6068-6077
-
-
Rubbi, C.P.1
Milner, J.2
-
53
-
-
77951248778
-
Chemotherapeutic drugs inhibit ribosome biogenesis at various levels
-
Burger K, Mühl B, Harasim T, et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem. 2010;285:12416-25.
-
(2010)
J Biol Chem
, vol.285
, pp. 12416-12425
-
-
Burger, K.1
Mühl, B.2
Harasim, T.3
-
54
-
-
23744467924
-
Mammalian WDR12 is a novel member of the Pes1- Bop1 complex and is required for ribosome biogenesis and cell proliferation
-
Hölzel M, Rohrmoser M, Schlee M, et al. Mammalian WDR12 is a novel member of the Pes1- Bop1 complex and is required for ribosome biogenesis and cell proliferation. J Cell Biol.2005;170:367-78.
-
(2005)
J Cell Biol
, vol.170
, pp. 367-378
-
-
Hölzel, M.1
Rohrmoser, M.2
Schlee, M.3
-
55
-
-
64049107857
-
Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11- translation-dependent mechanism of p53 induction
-
Fumagalli S, Di Cara A, Neb-Gulati A, et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11- translation-dependent mechanism of p53 induction. Nat Cell Biol. 2009;11:501-8.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 501-508
-
-
Fumagalli, S.1
Di Cara, A.2
Neb-Gulati, A.3
-
56
-
-
77949885929
-
Defects in 18 S or 28 S rRNA processing activate the p53 pathway
-
Hölzel M, Orban M, Hochstatter J, et al. Defects in 18 S or 28 S rRNA processing activate the p53 pathway. J Biol Chem. 2010;285:6364-70.
-
(2010)
J Biol Chem
, vol.285
, pp. 6364-6370
-
-
Hölzel, M.1
Orban, M.2
Hochstatter, J.3
-
57
-
-
77949711824
-
Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation
-
Lindström MS, Nistér M. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation. PLoS One. 2010;5:e9578.
-
(2010)
PLoS One
, vol.5
-
-
Lindström, M.S.1
Nistér, M.2
-
58
-
-
33847271089
-
Coping with stress: Multiple ways to activate p53
-
Horn HF, Vousden KH. Coping with stress: multiple ways to activate p53. Oncogene.2007;26:1306-16.
-
(2007)
Oncogene
, vol.26
, pp. 1306-1316
-
-
Horn, H.F.1
Vousden, K.H.2
-
59
-
-
50149097809
-
A complex barcode underlies the heterogeneous response of p53 to stress
-
Murray-Zmijewski F, Slee EA, Lu X. A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol. 2008;9: 702-12.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 702-712
-
-
Murray-Zmijewski, F.1
Slee, E.A.2
Lu, X.3
-
60
-
-
33845196230
-
Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation
-
Panic L, Tamarut S, Sticker-Jantscheff M, et al. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol.2006;26:8880-91.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 8880-8891
-
-
Panic, L.1
Tamarut, S.2
Sticker-Jantscheff, M.3
-
61
-
-
33744959048
-
Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system
-
Azuma M, Toyama R, Laver E, Dawid IB. Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system. J Biol Chem.2006;281:13309-16.
-
(2006)
J Biol Chem
, vol.281
, pp. 13309-13316
-
-
Azuma, M.1
Toyama, R.2
Laver, E.3
Dawid, I.B.4
-
62
-
-
58349108899
-
Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response
-
Chakraborty A, Uechi T, Higa S, Torihara H, Kenmochi N. Loss of ribosomal protein L11 affects zebrafish embryonic development through a p53-dependent apoptotic response. PLoS One.2009;4:e4152.
-
(2009)
PLoS One
, vol.4
-
-
Chakraborty, A.1
Uechi, T.2
Higa, S.3
Torihara, H.4
Kenmochi, N.5
-
63
-
-
70350497397
-
Signaling to p53: Ribosomal proteins find their way
-
Zhang Y, Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell. 2009;16:369-77.
-
(2009)
Cancer Cell
, vol.16
, pp. 369-377
-
-
Zhang, Y.1
Lu, H.2
-
64
-
-
63649157049
-
How common are extraribosomal functions of ribosomal proteins?
-
Warner JR, McIntosh KB. How common are extraribosomal functions of ribosomal proteins? Mol Cell. 2009;34:3-11.
-
(2009)
Mol Cell
, vol.34
, pp. 3-11
-
-
Warner, J.R.1
McIntosh, K.B.2
-
65
-
-
31544457877
-
P53 ubiquitination: Mdm2 and beyond
-
Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell. 2006;21:307-15.
-
(2006)
Mol Cell
, vol.21
, pp. 307-315
-
-
Brooks, C.L.1
Gu, W.2
-
67
-
-
0031583962
-
Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53
-
Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997;420:25-7.
-
(1997)
FEBS Lett
, vol.420
, pp. 25-27
-
-
Honda, R.1
Tanaka, H.2
Yasuda, H.3
-
68
-
-
0034708458
-
Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53
-
Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000;275:8945-51.
-
(2000)
J Biol Chem
, vol.275
, pp. 8945-8951
-
-
Fang, S.1
Jensen, J.P.2
Ludwig, R.L.3
Vousden, K.H.4
Weissman, A.M.5
-
70
-
-
18344377030
-
The p53 pathway: Positive and negative feedback loops
-
Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene.2005;24:2899-908.
-
(2005)
Oncogene
, vol.24
, pp. 2899-2908
-
-
Harris, S.L.1
Levine, A.J.2
-
71
-
-
0028823020
-
Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53
-
Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995;378:203-6.
-
(1995)
Nature
, vol.378
, pp. 203-206
-
-
de Oca Luna, R.M.1
Wagner, D.S.2
Lozano, G.3
-
72
-
-
0028834902
-
Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53
-
Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995;378:206-8.
-
(1995)
Nature
, vol.378
, pp. 206-208
-
-
Jones, S.N.1
Roe, A.E.2
Donehower, L.A.3
Bradley, A.4
-
73
-
-
0027999512
-
The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes
-
Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol. 1994;14:7414-20.
-
(1994)
Mol Cell Biol
, vol.14
, pp. 7414-7420
-
-
Marechal, V.1
Elenbaas, B.2
Piette, J.3
Nicolas, J.C.4
Levine, A.J.5
-
74
-
-
0038724615
-
Regulation of HDM2 activity by the ribosomal protein L11
-
Lohrum MAE, Ludwig RL, Kubbutat MHG, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell. 2003;3:577-87.
-
(2003)
Cancer Cell
, vol.3
, pp. 577-587
-
-
Lohrum, M.A.E.1
Ludwig, R.L.2
Kubbutat, M.H.G.3
Hanlon, M.4
Vousden, K.H.5
-
75
-
-
0242721592
-
Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomalstress checkpoint pathway
-
Zhang Y, Wolf GW, Bhat K, et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomalstress checkpoint pathway. Mol Cell Biol. 2003;23: 8902-12.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 8902-8912
-
-
Zhang, Y.1
Wolf, G.W.2
Bhat, K.3
-
76
-
-
3242715867
-
Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation
-
Bhat KP, Itahana K, Jin A, Zhang Y. Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J. 2004;23:2402-12.
-
(2004)
EMBO J
, vol.23
, pp. 2402-2412
-
-
Bhat, K.P.1
Itahana, K.2
Jin, A.3
Zhang, Y.4
-
77
-
-
4344685939
-
Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition
-
Dai M, Zeng SX, Jin Y, Sun X, David L, Lu H. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol. 2004;24:7654-68.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 7654-7668
-
-
Dai, M.1
Zeng, S.X.2
Jin, Y.3
Sun, X.4
David, L.5
Lu, H.6
-
78
-
-
7244238177
-
Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5
-
Dai M, Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem. 2004;279:44475-82.
-
(2004)
J Biol Chem
, vol.279
, pp. 44475-44482
-
-
Dai, M.1
Lu, H.2
-
79
-
-
4344660471
-
Inhibition of HDM2 and activation of p53 by ribosomal protein L23
-
Jin A, Itahana K, O'Keefe K, Zhang Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol. 2004;24:7669-80.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 7669-7680
-
-
Jin, A.1
Itahana, K.2
O'Keefe, K.3
Zhang, Y.4
-
80
-
-
33846617807
-
Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation
-
Lindström MS, Jin A, Deisenroth C, White Wolf G, Zhang Y. Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol. 2007;27:1056-68.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 1056-1068
-
-
Lindström, M.S.1
Jin, A.2
Deisenroth, C.3
White, W.G.4
Zhang, Y.5
-
81
-
-
34547620115
-
Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: Binding to MDM2, stabilization of p53 protein, and activation of p53 function
-
Chen D, Zhang Z, Li M, et al. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene.2007;26:5029-37.
-
(2007)
Oncogene
, vol.26
, pp. 5029-5037
-
-
Chen, D.1
Zhang, Z.2
Li, M.3
-
82
-
-
68349160548
-
Ribosomal protein S7 is both a regulator and a substrate of MDM2
-
Zhu Y, Poyurovsky MV, Li Y, et al. Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell. 2009;35:316-26.
-
(2009)
Mol Cell
, vol.35
, pp. 316-326
-
-
Zhu, Y.1
Poyurovsky, M.V.2
Li, Y.3
-
83
-
-
70149087287
-
Ribosomal protein S3: A multifunctional protein that interacts with both p53 and MDM2 through its KH domain
-
Yadavilli S, Mayo LD, Higgins M, Lain S, Hegde V, Deutsch WA. Ribosomal protein S3: a multifunctional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair (Amst). 2009;8:1215-24.
-
(2009)
DNA Repair (Amst)
, vol.8
, pp. 1215-1224
-
-
Yadavilli, S.1
Mayo, L.D.2
Higgins, M.3
Lain, S.4
Hegde, V.5
Deutsch, W.A.6
-
84
-
-
34247204753
-
5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction
-
Sun X, Dai M, Lu H. 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J Biol Chem. 2007;282:8052-9.
-
(2007)
J Biol Chem
, vol.282
, pp. 8052-8059
-
-
Sun, X.1
Dai, M.2
Lu, H.3
-
85
-
-
45549098246
-
Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11
-
Sun X, Dai M, Lu H. Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11. J Biol Chem. 2008;283:12387-92.
-
(2008)
J Biol Chem
, vol.283
, pp. 12387-12392
-
-
Sun, X.1
Dai, M.2
Lu, H.3
-
86
-
-
33751573462
-
MDMX regulation of p53 response to ribosomal stress
-
Gilkes DM, Chen L, Chen J. MDMX regulation of p53 response to ribosomal stress. EMBO J.2006;25:5614-25.
-
(2006)
EMBO J
, vol.25
, pp. 5614-5625
-
-
Gilkes, D.M.1
Chen, L.2
Chen, J.3
-
87
-
-
53249142431
-
Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway
-
Horn HF, Vousden KH. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene. 2008;27:5774-84.
-
(2008)
Oncogene
, vol.27
, pp. 5774-5784
-
-
Horn, H.F.1
Vousden, K.H.2
-
88
-
-
0030898754
-
Point mutations and nucleotide insertions in the MDM2 zinc finger structure of human tumours
-
Schlott T, Reimer S, Jahns A, et al. Point mutations and nucleotide insertions in the MDM2 zinc finger structure of human tumours. J Pathol.1997;182:54-61.
-
(1997)
J Pathol
, vol.182
, pp. 54-61
-
-
Schlott, T.1
Reimer, S.2
Jahns, A.3
-
89
-
-
0142123127
-
HdmX stimulates Hdm2- mediated ubiquitination and degradation of p53
-
Linares LK, Hengstermann A, Ciechanover A, Müller S, Scheffner M. HdmX stimulates Hdm2- mediated ubiquitination and degradation of p53. Proc Natl Acad Sci U S A. 2003;100:12009-14.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 12009-12014
-
-
Linares, L.K.1
Hengstermann, A.2
Ciechanover, A.3
Müller, S.4
Scheffner, M.5
-
90
-
-
77952543499
-
The p53 orchestra: Mdm2 and Mdmx set the tone
-
Wade M, Wang YV, Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 2010;20:299-309.
-
(2010)
Trends Cell Biol
, vol.20
, pp. 299-309
-
-
Wade, M.1
Wang, Y.V.2
Wahl, G.M.3
-
91
-
-
33747819484
-
Divorcing ARF and p53: An unsettled case
-
Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer. 2006;6:663-73.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 663-673
-
-
Sherr, C.J.1
-
92
-
-
0033130010
-
Nucleolar Arf sequesters Mdm2 and activates p53
-
Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol. 1999;1:20-6.
-
(1999)
Nat Cell Biol
, vol.1
, pp. 20-26
-
-
Weber, J.D.1
Taylor, L.J.2
Roussel, M.F.3
Sherr, C.J.4
Bar-Sagi, D.5
-
93
-
-
0034744224
-
Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus
-
Llanos S, Clark PA, Rowe J, Peters G. Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat Cell Biol. 2001;3:445-52.
-
(2001)
Nat Cell Biol
, vol.3
, pp. 445-452
-
-
Llanos, S.1
Clark, P.A.2
Rowe, J.3
Peters, G.4
-
94
-
-
0036133108
-
ARF function does not require p53 stabilization or Mdm2 relocalization
-
Korgaonkar C, Zhao L, Modestou M, Quelle DE. ARF function does not require p53 stabilization or Mdm2 relocalization. Mol Cell Biol.2002;22:196-206.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 196-206
-
-
Korgaonkar, C.1
Zhao, L.2
Modestou, M.3
Quelle, D.E.4
-
95
-
-
55849125016
-
Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3
-
Kuo M, den Besten W, Thomas MC, Sherr CJ. Arf-induced turnover of the nucleolar nucleophosmin- associated SUMO-2/3 protease Senp3. Cell Cycle. 2008;7:3378-87.
-
(2008)
Cell Cycle
, vol.7
, pp. 3378-3387
-
-
Kuo, M.1
den Besten, W.2
Thomas, M.C.3
Sherr, C.J.4
-
96
-
-
1642499357
-
Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23
-
Bertwistle D, Sugimoto M, Sherr CJ. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol. 2004;24:985-96.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 985-996
-
-
Bertwistle, D.1
Sugimoto, M.2
Sherr, C.J.3
-
97
-
-
33846002755
-
Physical and functional interaction of the p14ARF tumor suppressor with ribosomes
-
Rizos H, McKenzie HA, Ayub AL, et al. Physical and functional interaction of the p14ARF tumor suppressor with ribosomes. J Biol Chem.2006;281:38080-8.
-
(2006)
J Biol Chem
, vol.281
, pp. 38080-38088
-
-
Rizos, H.1
McKenzie, H.A.2
Ayub, A.L.3
-
98
-
-
0037291204
-
Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing
-
Sugimoto M, Kuo M, Roussel MF, Sherr CJ. Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell. 2003;11: 415-24.
-
(2003)
Mol Cell
, vol.11
, pp. 415-424
-
-
Sugimoto, M.1
Kuo, M.2
Roussel, M.F.3
Sherr, C.J.4
-
99
-
-
0345276485
-
Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation
-
Itahana K, Bhat KP, Jin A, et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell. 2003;12:1151-64.
-
(2003)
Mol Cell
, vol.12
, pp. 1151-1164
-
-
Itahana, K.1
Bhat, K.P.2
Jin, A.3
-
100
-
-
24344437303
-
Role of nucleophosmin in embryonic development and tumorigenesis
-
Grisendi S, Bernardi R, Rossi M, et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature. 2005;437:147-53.
-
(2005)
Nature
, vol.437
, pp. 147-153
-
-
Grisendi, S.1
Bernardi, R.2
Rossi, M.3
-
101
-
-
0024966024
-
Major nucleolar proteins shuttle between nucleus and cytoplasm
-
Borer RA, Lehner CF, Eppenberger HM, Nigg EA. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989;56:379-90.
-
(1989)
Cell
, vol.56
, pp. 379-390
-
-
Borer, R.A.1
Lehner, C.F.2
Eppenberger, H.M.3
Nigg, E.A.4
-
102
-
-
47049120014
-
Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation
-
Lindström MS, Zhang Y. Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation. J Biol Chem. 2008;283: 15568-76.
-
(2008)
J Biol Chem
, vol.283
, pp. 15568-15576
-
-
Lindström, M.S.1
Zhang, Y.2
-
103
-
-
57349115332
-
Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome
-
Maggi LBJ, Kuchenruether M, Dadey DYA, et al. Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol. 2008;28:7050-65.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 7050-7065
-
-
Maggi, L.B.J.1
Kuchenruether, M.2
Dadey, D.Y.A.3
-
104
-
-
13444287955
-
Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function
-
Korgaonkar C, Hagen J, Tompkins V, et al. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol. 2005;25:1258-71.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 1258-1271
-
-
Korgaonkar, C.1
Hagen, J.2
Tompkins, V.3
-
105
-
-
3543148255
-
N-terminal polyubiquitination and degradation of the Arf tumor suppressor
-
Kuo M, den Besten W, Bertwistle D, Roussel MF, Sherr CJ. N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev.2004;18:1862-74.
-
(2004)
Genes Dev
, vol.18
, pp. 1862-1874
-
-
Kuo, M.1
den Besten, W.2
Bertwistle, D.3
Roussel, M.F.4
Sherr, C.J.5
-
106
-
-
6344288701
-
ARF impedes NPM/B23 shuttling in an Mdm2- sensitive tumor suppressor pathway
-
Brady SN, Yu Y, Maggi LBJ, Weber JD. ARF impedes NPM/B23 shuttling in an Mdm2- sensitive tumor suppressor pathway. Mol Cell Biol. 2004;24:9327-38.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 9327-9338
-
-
Brady, S.N.1
Yu, Y.2
Maggi, L.B.J.3
Weber, J.D.4
-
107
-
-
34547615407
-
Quantitative analyses reveal the importance of regulated Hdmx degradation for p53 activation
-
Wang YV, Wade M, Wong E, Li Y, Rodewald LW, Wahl GM. Quantitative analyses reveal the importance of regulated Hdmx degradation for p53 activation. Proc Natl Acad Sci U S A.2007;104:12365-70.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 12365-12370
-
-
Wang, Y.V.1
Wade, M.2
Wong, E.3
Li, Y.4
Rodewald, L.W.5
Wahl, G.M.6
-
108
-
-
0031724593
-
Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6
-
Freedman DA, Levine AJ. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol. 1998;18:7288-93.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 7288-7293
-
-
Freedman, D.A.1
Levine, A.J.2
-
109
-
-
0032980646
-
Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2- mediated degradation of p53
-
Tao W, Levine AJ. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2- mediated degradation of p53. Proc Natl Acad Sci U S A. 1999;96:3077-80.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 3077-3080
-
-
Tao, W.1
Levine, A.J.2
-
110
-
-
0042692785
-
Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination
-
O'Keefe K, Li H, Zhang Y. Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol Cell Biol. 2003;23:6396-405.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 6396-6405
-
-
O'Keefe, K.1
Li, H.2
Zhang, Y.3
-
111
-
-
3242690522
-
In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation
-
Erster S, Mihara M, Kim RH, Petrenko O, Moll UM. In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol. 2004;24: 6728-41.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 6728-6741
-
-
Erster, S.1
Mihara, M.2
Kim, R.H.3
Petrenko, O.4
Moll, U.M.5
-
112
-
-
33847276654
-
Monoubiquitylation promotes mitochondrial p53 translocation
-
Marchenko ND, Wolff S, Erster S, Becker K, Moll UM. Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J. 2007;26:923-34.
-
(2007)
EMBO J
, vol.26
, pp. 923-934
-
-
Marchenko, N.D.1
Wolff, S.2
Erster, S.3
Becker, K.4
Moll, U.M.5
-
114
-
-
0034282102
-
An intact HDM2 RING-finger domain is required for nuclear exclusion of p53
-
Boyd SD, Tsai KY, Jacks T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol. 2000;2:563-8.
-
(2000)
Nat Cell Biol
, vol.2
, pp. 563-568
-
-
Boyd, S.D.1
Tsai, K.Y.2
Jacks, T.3
-
115
-
-
0034282220
-
The MDM2 RINGfinger domain is required to promote p53 nuclear export
-
Geyer RK, Yu ZK, Maki CG. The MDM2 RINGfinger domain is required to promote p53 nuclear export. Nat Cell Biol. 2000;2:569-73.
-
(2000)
Nat Cell Biol
, vol.2
, pp. 569-573
-
-
Geyer, R.K.1
Yu, Z.K.2
Maki, C.G.3
-
116
-
-
0035201820
-
C-terminal ubiquitination of p53 contributes to nuclear export
-
Lohrum MA, Woods DB, Ludwig RL, Bálint E, Vousden KH. C-terminal ubiquitination of p53 contributes to nuclear export. Mol Cell Biol.2001;21:8521-32.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 8521-8532
-
-
Lohrum, M.A.1
Woods, D.B.2
Ludwig, R.L.3
Bálint, E.4
Vousden, K.H.5
-
117
-
-
26244459242
-
Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin
-
Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005;123:49-63.
-
(2005)
Cell
, vol.123
, pp. 49-63
-
-
Takagi, M.1
Absalon, M.J.2
McLure, K.G.3
Kastan, M.B.4
-
118
-
-
53949121380
-
Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26
-
Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell. 2008;32:180-9.
-
(2008)
Mol Cell
, vol.32
, pp. 180-189
-
-
Ofir-Rosenfeld, Y.1
Boggs, K.2
Michael, D.3
Kastan, M.B.4
Oren, M.5
-
119
-
-
2342447397
-
The ubiquitin ligase COP1 is a critical negative regulator of p53
-
Dornan D, Wertz I, Shimizu H, et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature. 2004;429:86-92.
-
(2004)
Nature
, vol.429
, pp. 86-92
-
-
Dornan, D.1
Wertz, I.2
Shimizu, H.3
-
120
-
-
0037459377
-
Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation
-
Leng RP, Lin Y, Ma W, et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell. 2003;112:779-91.
-
(2003)
Cell
, vol.112
, pp. 779-791
-
-
Leng, R.P.1
Lin, Y.2
Ma, W.3
-
121
-
-
21244451434
-
ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor
-
Chen D, Kon N, Li M, Zhang W, Qin J, Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell. 2005;121:1071-83.
-
(2005)
Cell
, vol.121
, pp. 1071-1083
-
-
Chen, D.1
Kon, N.2
Li, M.3
Zhang, W.4
Qin, J.5
Gu, W.6
-
122
-
-
33750834640
-
E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation
-
Le Cam L, Linares LK, Paul C, et al. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell.2006;127:775-88.
-
(2006)
Cell
, vol.127
, pp. 775-788
-
-
Le Cam, L.1
Linares, L.K.2
Paul, C.3
-
123
-
-
77951431225
-
Ribosomopathies: Human disorders of ribosome dysfunction
-
Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood.2010;115:3196-205.
-
(2010)
Blood
, vol.115
, pp. 3196-3205
-
-
Narla, A.1
Ebert, B.L.2
|