메뉴 건너뛰기




Volumn 19, Issue 11, 2013, Pages 643-654

The nucleolus: An emerging target for cancer therapy

Author keywords

Cancer therapy; Nucleolar stress; Nucleolus; P53; Ribosomal gene transcription; RNA polymerase I inhibitor

Indexed keywords

ANTINEOPLASTIC AGENT; BIOLOGICAL MARKER; CAMPTOTHECIN; CISPLATIN; CX 5461; DACTINOMYCIN; DOXORUBICIN; ELLIPTICINE; EVEROLIMUS; EXEMESTANE; FLAVOPIRIDOL; FLUOROURACIL; HOMOHARRINGTONINE; IRINOTECAN; MITOMYCIN; MITOXANTRONE; OXALIPLATIN; PROTEIN P53; QUARFLOXIN; RAPAMYCIN; RNA; ROSCOVITINE; TEMSIROLIMUS; TUMOR SUPPRESSOR PROTEIN; UNCLASSIFIED DRUG;

EID: 84886952042     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2013.07.005     Document Type: Review
Times cited : (207)

References (130)
  • 1
    • 0002471298 scopus 로고
    • Einige Bemerkungen und Fragen über das Keimbläschen (vesicular germinativa)
    • Wagner R. Einige Bemerkungen und Fragen über das Keimbläschen (vesicular germinativa). Müller's Archiv. Anat. Physiol. Wissenschaft. Med. 1835, 373-377.
    • (1835) Müller's Archiv. Anat. Physiol. Wissenschaft. Med. , pp. 373-377
    • Wagner, R.1
  • 2
    • 84886953158 scopus 로고
    • Repertorium für Anatomie und Physiologie
    • Valentin G. Repertorium für Anatomie und Physiologie. Verlag Veit Comp. Berl. 1836, 1:1-293.
    • (1836) Verlag Veit Comp. Berl. , vol.1 , pp. 1-293
    • Valentin, G.1
  • 3
    • 34347132830 scopus 로고
    • Nukleolar und chromosomen in der gattung
    • Heitz E. Nukleolar und chromosomen in der gattung. Vicia Planta 1931, 15:495-505.
    • (1931) Vicia Planta , vol.15 , pp. 495-505
    • Heitz, E.1
  • 4
    • 0000394947 scopus 로고
    • The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays
    • McClintock B. The relationship of a particular chromosomal element to the development of the nucleoli in Zea mays. Z. Zellforsch. Mikrosk. 1934, 21:294-398.
    • (1934) Z. Zellforsch. Mikrosk. , vol.21 , pp. 294-398
    • McClintock, B.1
  • 6
    • 0032535115 scopus 로고    scopus 로고
    • Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation
    • Heix J., et al. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J. 1998, 17:7373-7381.
    • (1998) EMBO J. , vol.17 , pp. 7373-7381
    • Heix, J.1
  • 7
    • 65349143672 scopus 로고    scopus 로고
    • What the nucleolus says to a tumour pathologist
    • Derenzini M., et al. What the nucleolus says to a tumour pathologist. Histopathology 2009, 54:753-762.
    • (2009) Histopathology , vol.54 , pp. 753-762
    • Derenzini, M.1
  • 8
    • 78649336111 scopus 로고    scopus 로고
    • The nucleolus under stress
    • Boulon S., et al. The nucleolus under stress. Mol. Cell 2010, 40:216-227.
    • (2010) Mol. Cell , vol.40 , pp. 216-227
    • Boulon, S.1
  • 9
    • 34250836327 scopus 로고    scopus 로고
    • The multifunctional nucleolus
    • Boisvert F.M., et al. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 2007, 8:574-585.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 574-585
    • Boisvert, F.M.1
  • 10
    • 84873055344 scopus 로고    scopus 로고
    • MDM2, MDMX and p53 in oncogenesis and cancer therapy
    • Wade M., et al. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 2013, 13:83-96.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 83-96
    • Wade, M.1
  • 11
    • 77955177254 scopus 로고    scopus 로고
    • Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway
    • Deisenroth C., Zhang Y. Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway. Oncogene 2010, 29:4253-4260.
    • (2010) Oncogene , vol.29 , pp. 4253-4260
    • Deisenroth, C.1    Zhang, Y.2
  • 12
    • 70350497397 scopus 로고    scopus 로고
    • Signaling to p53: ribosomal proteins find their way
    • Zhang Y., Lu H. Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009, 16:369-377.
    • (2009) Cancer Cell , vol.16 , pp. 369-377
    • Zhang, Y.1    Lu, H.2
  • 13
    • 84863736613 scopus 로고    scopus 로고
    • Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53
    • Bywater M.J., et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 2012, 22:51-65.
    • (2012) Cancer Cell , vol.22 , pp. 51-65
    • Bywater, M.J.1
  • 14
    • 0032169650 scopus 로고    scopus 로고
    • The plurifunctional nucleolus
    • Pederson T. The plurifunctional nucleolus. Nucleic Acids Res. 1998, 26:3871-3876.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 3871-3876
    • Pederson, T.1
  • 15
    • 0037039159 scopus 로고    scopus 로고
    • Directed proteomic analysis of the human nucleolus
    • Andersen J.S., et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 2002, 12:1-11.
    • (2002) Curr. Biol. , vol.12 , pp. 1-11
    • Andersen, J.S.1
  • 16
    • 58149197604 scopus 로고    scopus 로고
    • NOPdb: nucleolar proteome database - 2008 update
    • Ahmad Y., et al. NOPdb: nucleolar proteome database - 2008 update. Nucleic Acids Res. 2009, 37:181-184.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 181-184
    • Ahmad, Y.1
  • 17
    • 12144288857 scopus 로고    scopus 로고
    • Sensing cellular stress: another new function for the nucleolus?
    • Olson M.O.J. Sensing cellular stress: another new function for the nucleolus?. Sci. STKE 2004, 2004:pe10.
    • (2004) Sci. STKE , vol.2004
    • Olson, M.O.J.1
  • 18
    • 18744364184 scopus 로고    scopus 로고
    • The moving parts of the nucleolus
    • Olson M.O.J., Dundr M. The moving parts of the nucleolus. Histochem. Cell Biol. 2005, 123:203-216.
    • (2005) Histochem. Cell Biol. , vol.123 , pp. 203-216
    • Olson, M.O.J.1    Dundr, M.2
  • 19
    • 0036302062 scopus 로고    scopus 로고
    • Nucleophosmin regulates the stability and transcriptional activity of p53
    • Colombo E., et al. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat. Cell Biol 2002, 4:529-533.
    • (2002) Nat. Cell Biol , vol.4 , pp. 529-533
    • Colombo, E.1
  • 20
    • 0036315747 scopus 로고    scopus 로고
    • Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation
    • Daniely Y., et al. Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol. Cell. Biol. 2002, 22:6014-6022.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 6014-6022
    • Daniely, Y.1
  • 21
    • 33645714707 scopus 로고    scopus 로고
    • Regulation of p14ARF through subnuclear compartmentalization
    • Gjerset R.A., Bandyopadhyay K. Regulation of p14ARF through subnuclear compartmentalization. Cell Cycle 2006, 5:686-690.
    • (2006) Cell Cycle , vol.5 , pp. 686-690
    • Gjerset, R.A.1    Bandyopadhyay, K.2
  • 22
    • 18244366043 scopus 로고    scopus 로고
    • Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition
    • Shav-Tal Y., et al. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol. Biol. Cell 2005, 16:2395-2413.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 2395-2413
    • Shav-Tal, Y.1
  • 23
    • 0344011603 scopus 로고    scopus 로고
    • Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses
    • Rubbi C.P., Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 2003, 22:6068-6077.
    • (2003) EMBO J. , vol.22 , pp. 6068-6077
    • Rubbi, C.P.1    Milner, J.2
  • 24
    • 77649159264 scopus 로고    scopus 로고
    • A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage
    • Boisvert F.M., et al. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol. Cell. Proteomics 2010, 9:457-470.
    • (2010) Mol. Cell. Proteomics , vol.9 , pp. 457-470
    • Boisvert, F.M.1
  • 25
    • 78449284676 scopus 로고    scopus 로고
    • P53-Dependent subcellular proteome localization following DNA damage
    • Boisvert F.M., Lamond A.I. p53-Dependent subcellular proteome localization following DNA damage. Proteomics 2010, 54:4087-4097.
    • (2010) Proteomics , vol.54 , pp. 4087-4097
    • Boisvert, F.M.1    Lamond, A.I.2
  • 26
    • 77957200033 scopus 로고    scopus 로고
    • Elucidation of the avian nucleolar proteome by quantitative proteomics using SILAC and changes in cells infected with the coronavirus infectious bronchitis virus
    • Emmott E., et al. Elucidation of the avian nucleolar proteome by quantitative proteomics using SILAC and changes in cells infected with the coronavirus infectious bronchitis virus. Proteomics 2010, 10:3558-3562.
    • (2010) Proteomics , vol.10 , pp. 3558-3562
    • Emmott, E.1
  • 27
    • 76649129549 scopus 로고    scopus 로고
    • Proteomics analysis of the nucleolus in adenovirus-infected cells
    • Lam Y.W., et al. Proteomics analysis of the nucleolus in adenovirus-infected cells. Mol. Cell. Proteomics 2010, 9:117-130.
    • (2010) Mol. Cell. Proteomics , vol.9 , pp. 117-130
    • Lam, Y.W.1
  • 28
    • 80054043851 scopus 로고    scopus 로고
    • Quantitative proteomics and dynamic imaging of the nucleolus reveals distinct responses to UV and ionizing radiation
    • Moore H.M., et al. Quantitative proteomics and dynamic imaging of the nucleolus reveals distinct responses to UV and ionizing radiation. Mol. Cell. Proteomics 2011, 10:1-15.
    • (2011) Mol. Cell. Proteomics , vol.10 , pp. 1-15
    • Moore, H.M.1
  • 29
    • 0026649648 scopus 로고
    • The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation
    • Momand J., et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992, 69:1237-1245.
    • (1992) Cell , vol.69 , pp. 1237-1245
    • Momand, J.1
  • 30
    • 0027325132 scopus 로고
    • Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53
    • Oliner J.D., et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993, 362:857-860.
    • (1993) Nature , vol.362 , pp. 857-860
    • Oliner, J.D.1
  • 31
    • 0030905284 scopus 로고    scopus 로고
    • Mdm2 promotes the rapid degradation of p53
    • Haupt Y., et al. Mdm2 promotes the rapid degradation of p53. Nature 1997, 387:296-299.
    • (1997) Nature , vol.387 , pp. 296-299
    • Haupt, Y.1
  • 32
    • 0030965946 scopus 로고    scopus 로고
    • Regulation of p53 stability by Mdm2
    • Kubbutat M.H., et al. Regulation of p53 stability by Mdm2. Nature 1997, 387:299-303.
    • (1997) Nature , vol.387 , pp. 299-303
    • Kubbutat, M.H.1
  • 33
    • 77449155637 scopus 로고    scopus 로고
    • The multiple levels of regulation by p53 ubiquitination
    • Lee J.T., Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ. 2010, 17:86-92.
    • (2010) Cell Death Differ. , vol.17 , pp. 86-92
    • Lee, J.T.1    Gu, W.2
  • 34
    • 0027999512 scopus 로고
    • The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes
    • Marechal V., et al. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell. Biol. 1994, 14:7414-7420.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 7414-7420
    • Marechal, V.1
  • 35
    • 0026754644 scopus 로고
    • P53 is covalently linked to 5.8S rRNA
    • Fontoura B.M., et al. p53 is covalently linked to 5.8S rRNA. Mol. Cell. Biol. 1992, 12:5145-5151.
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 5145-5151
    • Fontoura, B.M.1
  • 36
    • 0038724615 scopus 로고    scopus 로고
    • Regulation of HDM2 activity by the ribosomal protein L11
    • Lohrum M.A., et al. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003, 3:577-587.
    • (2003) Cancer Cell , vol.3 , pp. 577-587
    • Lohrum, M.A.1
  • 37
    • 0242721592 scopus 로고    scopus 로고
    • Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway
    • Zhang Y.P., et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell. Biol. 2003, 23:8902-8912.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 8902-8912
    • Zhang, Y.P.1
  • 38
    • 3242715867 scopus 로고    scopus 로고
    • Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation
    • Bhat K.P., et al. Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J. 2004, 23:2402-2412.
    • (2004) EMBO J. , vol.23 , pp. 2402-2412
    • Bhat, K.P.1
  • 39
    • 7244238177 scopus 로고    scopus 로고
    • Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5
    • Dai M.S., Lu H. Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J. Biol. Chem. 2004, 279:44475-44482.
    • (2004) J. Biol. Chem. , vol.279 , pp. 44475-44482
    • Dai, M.S.1    Lu, H.2
  • 40
    • 4344685939 scopus 로고    scopus 로고
    • Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition
    • Dai M.S., et al. Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol. Cell. Biol. 2004, 24:7654-7668.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 7654-7668
    • Dai, M.S.1
  • 41
    • 70149087287 scopus 로고    scopus 로고
    • Ribosomal protein S3: a multi-functional protein that interacts with both p53 and MDM2 through its KH domain
    • Yadavilli S., et al. Ribosomal protein S3: a multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair (Amst.) 2009, 8:1215-1224.
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 1215-1224
    • Yadavilli, S.1
  • 42
    • 77956518791 scopus 로고    scopus 로고
    • An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 interaction
    • Macias E., et al. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 interaction. Cancer Cell 2010, 18:231-243.
    • (2010) Cancer Cell , vol.18 , pp. 231-243
    • Macias, E.1
  • 43
    • 80053001587 scopus 로고    scopus 로고
    • A critical role for noncoding 5S rRNA in regulating Mdmx stability
    • Li M., Gu W. A critical role for noncoding 5S rRNA in regulating Mdmx stability. Mol. Cell 2011, 43:1023-1032.
    • (2011) Mol. Cell , vol.43 , pp. 1023-1032
    • Li, M.1    Gu, W.2
  • 44
    • 34547620115 scopus 로고    scopus 로고
    • Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function
    • Chen D., et al. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 2007, 26:5029-5037.
    • (2007) Oncogene , vol.26 , pp. 5029-5037
    • Chen, D.1
  • 45
    • 84861170072 scopus 로고    scopus 로고
    • Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint
    • Fumagalli S., et al. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev. 2012, 26:1028-1040.
    • (2012) Genes Dev. , vol.26 , pp. 1028-1040
    • Fumagalli, S.1
  • 46
    • 68349160548 scopus 로고    scopus 로고
    • Ribosomal protein S7 is both a regulator and a substrate of MDM2
    • Zhu Y., et al. Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol. Cell 2009, 35:316-326.
    • (2009) Mol. Cell , vol.35 , pp. 316-326
    • Zhu, Y.1
  • 47
    • 79961145353 scopus 로고    scopus 로고
    • Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11
    • Sasaki M., et al. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat. Med. 2011, 17:944-951.
    • (2011) Nat. Med. , vol.17 , pp. 944-951
    • Sasaki, M.1
  • 48
    • 26244459242 scopus 로고    scopus 로고
    • Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin
    • Takagi M., et al. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 2005, 123:49-63.
    • (2005) Cell , vol.123 , pp. 49-63
    • Takagi, M.1
  • 49
    • 53949121380 scopus 로고    scopus 로고
    • Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26
    • Ofir-Rosenfeld Y., et al. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol. Cell 2008, 32:180-189.
    • (2008) Mol. Cell , vol.32 , pp. 180-189
    • Ofir-Rosenfeld, Y.1
  • 50
    • 70449697971 scopus 로고    scopus 로고
    • Regulation of nucleolar signalling to p53 through NEDDylation of L11
    • Sundqvist A., et al. Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep. 2009, 10:1132-1139.
    • (2009) EMBO Rep. , vol.10 , pp. 1132-1139
    • Sundqvist, A.1
  • 51
    • 64049107857 scopus 로고    scopus 로고
    • Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction
    • Fumagalli S., et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat. Cell. Biol. 2009, 11:501-508.
    • (2009) Nat. Cell. Biol. , vol.11 , pp. 501-508
    • Fumagalli, S.1
  • 52
    • 84877102329 scopus 로고    scopus 로고
    • The nucleolus stress response is coupled to an ATR-Chk1-mediated G2 arrest
    • Ma H., Pederson T. The nucleolus stress response is coupled to an ATR-Chk1-mediated G2 arrest. Mol. Biol. Cell 2013, 24:1334-1342.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 1334-1342
    • Ma, H.1    Pederson, T.2
  • 53
    • 84876884110 scopus 로고    scopus 로고
    • Dysregulation of the basal RNA polymerase transcription apparatus in cancer
    • Bywater M.J., et al. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat. Rev. Cancer 2013, 13:299-314.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 299-314
    • Bywater, M.J.1
  • 54
    • 84875234347 scopus 로고    scopus 로고
    • Dysregulation of RNA polymerase I transcription during disease
    • Hannan K.M., et al. Dysregulation of RNA polymerase I transcription during disease. Biochim. Biophys. Acta 2013, 1829:342-360.
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 342-360
    • Hannan, K.M.1
  • 55
    • 34547676848 scopus 로고    scopus 로고
    • Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias
    • Falini B., et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica 2007, 92:519-532.
    • (2007) Haematologica , vol.92 , pp. 519-532
    • Falini, B.1
  • 56
    • 33846876123 scopus 로고    scopus 로고
    • Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features
    • Falini B., et al. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2007, 109:874-885.
    • (2007) Blood , vol.109 , pp. 874-885
    • Falini, B.1
  • 57
    • 33745534443 scopus 로고    scopus 로고
    • Nucleophosmin and cancer
    • Grisendi S., et al. Nucleophosmin and cancer. Nat. Rev. Cancer 2006, 6:493-505.
    • (2006) Nat. Rev. Cancer , vol.6 , pp. 493-505
    • Grisendi, S.1
  • 58
    • 79958273714 scopus 로고    scopus 로고
    • Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases
    • Colombo E., et al. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011, 30:2595-2609.
    • (2011) Oncogene , vol.30 , pp. 2595-2609
    • Colombo, E.1
  • 59
    • 51349135433 scopus 로고    scopus 로고
    • Nucleophosmin is a binding partner of nucleostemin in human osteosarcoma cells
    • Ma H., Pederson T. Nucleophosmin is a binding partner of nucleostemin in human osteosarcoma cells. Mol. Biol. Cell 2008, 19:2870-2875.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2870-2875
    • Ma, H.1    Pederson, T.2
  • 60
    • 57749116048 scopus 로고    scopus 로고
    • Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation
    • Li Z., et al. Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:18794-18799.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 18794-18799
    • Li, Z.1
  • 61
    • 0032806264 scopus 로고    scopus 로고
    • In vivo interaction of nucleophosmin/B23 and protein C23 during cell cycle progression in HeLa cells
    • Liu H.T., Yung B.Y. In vivo interaction of nucleophosmin/B23 and protein C23 during cell cycle progression in HeLa cells. Cancer Lett. 1999, 144:45-54.
    • (1999) Cancer Lett. , vol.144 , pp. 45-54
    • Liu, H.T.1    Yung, B.Y.2
  • 62
    • 1642499357 scopus 로고    scopus 로고
    • Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23
    • Bertwistle D., et al. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol. Cell. Biol. 2004, 24:985-996.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 985-996
    • Bertwistle, D.1
  • 63
    • 12344269133 scopus 로고    scopus 로고
    • Nucleophosmin, HDM2 and p53: players in UV damage incited nucleolar stress response
    • Kurki S., et al. Nucleophosmin, HDM2 and p53: players in UV damage incited nucleolar stress response. Cell Cycle 2004, 3:976-979.
    • (2004) Cell Cycle , vol.3 , pp. 976-979
    • Kurki, S.1
  • 64
    • 43249087852 scopus 로고    scopus 로고
    • Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity
    • Murano K., et al. Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol. Cell. Biol. 2008, 28:3114-3126.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 3114-3126
    • Murano, K.1
  • 65
    • 77951248778 scopus 로고    scopus 로고
    • Chemotherapeutic drugs inhibit ribosome biogenesis at various levels
    • Burger K., et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J. Biol. Chem. 2010, 285:12416-12425.
    • (2010) J. Biol. Chem. , vol.285 , pp. 12416-12425
    • Burger, K.1
  • 66
    • 77949495196 scopus 로고    scopus 로고
    • The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer
    • Drygin D., et al. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu. Rev. Pharmacol. Toxicol. 2010, 50:131-156.
    • (2010) Annu. Rev. Pharmacol. Toxicol. , vol.50 , pp. 131-156
    • Drygin, D.1
  • 67
    • 34247204753 scopus 로고    scopus 로고
    • 5-Fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction
    • Sun X.X., et al. 5-Fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J. Biol. Chem. 2007, 282:8052-8059.
    • (2007) J. Biol. Chem. , vol.282 , pp. 8052-8059
    • Sun, X.X.1
  • 68
    • 84874025639 scopus 로고    scopus 로고
    • Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription
    • Andrews W.J., et al. Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription. J. Biol. Chem. 2013, 288:4567-4582.
    • (2013) J. Biol. Chem. , vol.288 , pp. 4567-4582
    • Andrews, W.J.1
  • 69
    • 0014784791 scopus 로고
    • Methoxy-9-ellipticine lactate. 3. Clinical screening: its action in acute myeloblastic leukaemia
    • Mathe G., et al. Methoxy-9-ellipticine lactate. 3. Clinical screening: its action in acute myeloblastic leukaemia. Eur. J. Clin. Biol. Res. 1970, 15:541-545.
    • (1970) Eur. J. Clin. Biol. Res. , vol.15 , pp. 541-545
    • Mathe, G.1
  • 70
    • 70350220557 scopus 로고    scopus 로고
    • Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis
    • Drygin D., et al. Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 2009, 69:7653-7661.
    • (2009) Cancer Res. , vol.69 , pp. 7653-7661
    • Drygin, D.1
  • 71
    • 0021770882 scopus 로고
    • Processing of the external transcribed spacer of murine rRNA and site of action of actinomycin D
    • Fetherston J., et al. Processing of the external transcribed spacer of murine rRNA and site of action of actinomycin D. Nucleic Acids Res. 1984, 12:7187-7198.
    • (1984) Nucleic Acids Res. , vol.12 , pp. 7187-7198
    • Fetherston, J.1
  • 72
    • 0004820949 scopus 로고
    • Actinomycin and DNA transcription
    • Sobell H.M. Actinomycin and DNA transcription. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:5328-5331.
    • (1985) Proc. Natl. Acad. Sci. U.S.A. , vol.82 , pp. 5328-5331
    • Sobell, H.M.1
  • 73
    • 79951847459 scopus 로고    scopus 로고
    • Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth
    • Drygin D., et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res. 2011, 71:1418-1430.
    • (2011) Cancer Res. , vol.71 , pp. 1418-1430
    • Drygin, D.1
  • 74
    • 48749090278 scopus 로고    scopus 로고
    • Therapy-related myeloid leukemia
    • Godley L.A., Larson R.A. Therapy-related myeloid leukemia. Semin. Oncol. 2008, 35:418-429.
    • (2008) Semin. Oncol. , vol.35 , pp. 418-429
    • Godley, L.A.1    Larson, R.A.2
  • 75
    • 10744221485 scopus 로고    scopus 로고
    • In vivo activation of the p53 pathway by small-molecule antagonists of MDM2
    • Vassilev L.T., et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004, 303:844-848.
    • (2004) Science , vol.303 , pp. 844-848
    • Vassilev, L.T.1
  • 76
    • 84876914265 scopus 로고    scopus 로고
    • MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models
    • Tovar C., et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 2013, 73:2587-2597.
    • (2013) Cancer Res. , vol.73 , pp. 2587-2597
    • Tovar, C.1
  • 77
    • 84886948762 scopus 로고    scopus 로고
    • Clinical pharmacology characterization of RG7112, an MDM2 antagonist, in patients with advanced solid tumors
    • LB-20
    • Patnaik A., et al. Clinical pharmacology characterization of RG7112, an MDM2 antagonist, in patients with advanced solid tumors. AACR Annu. Meet. 2013, LB-20.
    • (2013) AACR Annu. Meet.
    • Patnaik, A.1
  • 78
    • 84859171807 scopus 로고    scopus 로고
    • MYC on the path to cancer
    • Dang C.V. MYC on the path to cancer. Cell 2012, 149:22-35.
    • (2012) Cell , vol.149 , pp. 22-35
    • Dang, C.V.1
  • 79
    • 78149295090 scopus 로고    scopus 로고
    • High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli
    • van Koningsbruggen S., et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 2010, 21:3735-3748.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 3735-3748
    • van Koningsbruggen, S.1
  • 80
    • 77950375276 scopus 로고    scopus 로고
    • Initial genomics of the human nucleolus
    • Nemeth A., et al. Initial genomics of the human nucleolus. PLoS Genet. 2010, 6:11.
    • (2010) PLoS Genet. , vol.6 , pp. 11
    • Nemeth, A.1
  • 81
    • 63249085869 scopus 로고    scopus 로고
    • The perinucleolar compartment is directly associated with DNA
    • Norton J.T., et al. The perinucleolar compartment is directly associated with DNA. J. Biol. Chem. 2009, 284:4090-4101.
    • (2009) J. Biol. Chem. , vol.284 , pp. 4090-4101
    • Norton, J.T.1
  • 82
    • 34249006523 scopus 로고    scopus 로고
    • Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing
    • Zhang L.F., et al. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 2007, 129:693-706.
    • (2007) Cell , vol.129 , pp. 693-706
    • Zhang, L.F.1
  • 83
    • 84886950811 scopus 로고    scopus 로고
    • Inhibition of RNA polymerase I transcription by CX-5461 as a therapeutic strategy for the cancer-specific activation of p53 in MLL-rearranged acute myeloid leukaemias
    • American Society of Hematology, Abstract 118
    • Hein N., et al. Inhibition of RNA polymerase I transcription by CX-5461 as a therapeutic strategy for the cancer-specific activation of p53 in MLL-rearranged acute myeloid leukaemias. Blood 2011, American Society of Hematology, Abstract 118.
    • (2011) Blood
    • Hein, N.1
  • 84
    • 0035930330 scopus 로고    scopus 로고
    • An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF
    • Stefanovsky V.Y., et al. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol. Cell 2001, 8:1063-1073.
    • (2001) Mol. Cell , vol.8 , pp. 1063-1073
    • Stefanovsky, V.Y.1
  • 85
    • 0037291736 scopus 로고    scopus 로고
    • ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth
    • Zhao J., et al. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol. Cell 2003, 11:405-413.
    • (2003) Mol. Cell , vol.11 , pp. 405-413
    • Zhao, J.1
  • 86
    • 0033082892 scopus 로고    scopus 로고
    • Ras enhances Myc protein stability
    • Sears R., et al. Ras enhances Myc protein stability. Mol. Cell 1999, 3:169-179.
    • (1999) Mol. Cell , vol.3 , pp. 169-179
    • Sears, R.1
  • 87
    • 0242637318 scopus 로고    scopus 로고
    • MTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF
    • Hannan K.M., et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 2003, 23:8862-8877.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 8862-8877
    • Hannan, K.M.1
  • 88
    • 80052282364 scopus 로고    scopus 로고
    • AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer
    • Chan J.C., et al. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci. Signal. 2011, 4:ra56.
    • (2011) Sci. Signal. , vol.4
    • Chan, J.C.1
  • 89
    • 14744284578 scopus 로고    scopus 로고
    • C-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I
    • Grandori C., et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat. Cell Biol. 2005, 7:311-318.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 311-318
    • Grandori, C.1
  • 90
    • 20044375377 scopus 로고    scopus 로고
    • C-Myc associates with ribosomal DNA and activates RNA polymerase I transcription
    • Arabi A., et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat. Cell Biol. 2005, 7:303-310.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 303-310
    • Arabi, A.1
  • 91
    • 20844440353 scopus 로고    scopus 로고
    • MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation
    • Poortinga G., et al. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J. 2004, 23:3325-3335.
    • (2004) EMBO J. , vol.23 , pp. 3325-3335
    • Poortinga, G.1
  • 92
    • 79955603839 scopus 로고    scopus 로고
    • C-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation
    • Poortinga G., et al. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res. 2011, 39:3267-3281.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 3267-3281
    • Poortinga, G.1
  • 93
    • 0344442399 scopus 로고    scopus 로고
    • A role for c-Myc in the regulation of ribosomal RNA processing
    • Schlosser I., et al. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res. 2003, 31:6148-6156.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 6148-6156
    • Schlosser, I.1
  • 94
    • 0035930544 scopus 로고    scopus 로고
    • Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation
    • Zeller K.I., et al. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J. Biol. Chem. 2001, 276:48285-48291.
    • (2001) J. Biol. Chem. , vol.276 , pp. 48285-48291
    • Zeller, K.I.1
  • 95
    • 77949920493 scopus 로고    scopus 로고
    • MYC as a regulator of ribosome biogenesis and protein synthesis
    • van Riggelen J., et al. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 2010, 10:301-309.
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 301-309
    • van Riggelen, J.1
  • 96
    • 0347721764 scopus 로고    scopus 로고
    • Direct activation of RNA polymerase III transcription by c-Myc
    • Gomez-Roman N., et al. Direct activation of RNA polymerase III transcription by c-Myc. Nature 2003, 421:290-294.
    • (2003) Nature , vol.421 , pp. 290-294
    • Gomez-Roman, N.1
  • 97
    • 35448990859 scopus 로고    scopus 로고
    • TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription
    • Kenneth N.S., et al. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14917-14922.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 14917-14922
    • Kenneth, N.S.1
  • 98
    • 0036894648 scopus 로고    scopus 로고
    • A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells
    • Tsai R.Y.L., McKay R.D.G. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. 2002, 16:2991-3003.
    • (2002) Genes Dev. , vol.16 , pp. 2991-3003
    • Tsai, R.Y.L.1    McKay, R.D.G.2
  • 99
    • 64149101835 scopus 로고    scopus 로고
    • Critical role of nucleostemin in pre-rRNA processing
    • Romanova L., et al. Critical role of nucleostemin in pre-rRNA processing. J. Biol. Chem. 2009, 284:4968-4977.
    • (2009) J. Biol. Chem. , vol.284 , pp. 4968-4977
    • Romanova, L.1
  • 100
    • 59449094492 scopus 로고    scopus 로고
    • The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar-organizing regions at mitotic chromosomes
    • Bakshi R., et al. The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar-organizing regions at mitotic chromosomes. J. Cell Sci. 2008, 121:3981-3990.
    • (2008) J. Cell Sci. , vol.121 , pp. 3981-3990
    • Bakshi, R.1
  • 101
    • 84864874108 scopus 로고    scopus 로고
    • Nucleolar localization of a netrin-1 isoform enhances tumor cell proliferation
    • Delloye-Bourgeois C., et al. Nucleolar localization of a netrin-1 isoform enhances tumor cell proliferation. Sci. Signal. 2012, 5:ra57.
    • (2012) Sci. Signal. , vol.5
    • Delloye-Bourgeois, C.1
  • 102
    • 0029961789 scopus 로고    scopus 로고
    • A common path to tumor growth
    • Bartek J., et al. A common path to tumor growth. Oncol. Rep. 1996, 3:237-240.
    • (1996) Oncol. Rep. , vol.3 , pp. 237-240
    • Bartek, J.1
  • 104
    • 0028911033 scopus 로고
    • Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product
    • Cavanaugh A.H., et al. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 1995, 374:177-180.
    • (1995) Nature , vol.374 , pp. 177-180
    • Cavanaugh, A.H.1
  • 105
    • 0034641878 scopus 로고    scopus 로고
    • Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1
    • Hannan K.M., et al. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene 2000, 19:4988-4999.
    • (2000) Oncogene , vol.19 , pp. 4988-4999
    • Hannan, K.M.1
  • 106
    • 0034691675 scopus 로고    scopus 로고
    • RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest
    • Hannan K.M., et al. RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest. Oncogene 2000, 19:3487-3497.
    • (2000) Oncogene , vol.19 , pp. 3487-3497
    • Hannan, K.M.1
  • 107
    • 0029901988 scopus 로고    scopus 로고
    • Repression of RNA polymerase III transcription by the retinoblastoma protein
    • White R.J., et al. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 1996, 382:88-90.
    • (1996) Nature , vol.382 , pp. 88-90
    • White, R.J.1
  • 108
    • 0030992490 scopus 로고    scopus 로고
    • RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2
    • Chu W.M., et al. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J. Biol. Chem. 1997, 272:14755-14761.
    • (1997) J. Biol. Chem. , vol.272 , pp. 14755-14761
    • Chu, W.M.1
  • 109
    • 0033867975 scopus 로고    scopus 로고
    • Repression of RNA polymerase I transcription by the tumor suppressor p53
    • Zhai W., Comai L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol. Cell. Biol. 2000, 20:5930-5938.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5930-5938
    • Zhai, W.1    Comai, L.2
  • 110
    • 0038521256 scopus 로고    scopus 로고
    • P53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB
    • Crighton D., et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 2003, 22:2810-2820.
    • (2003) EMBO J. , vol.22 , pp. 2810-2820
    • Crighton, D.1
  • 111
    • 0033611568 scopus 로고    scopus 로고
    • P53 represses ribosomal gene transcription
    • Budde A., Grummt I. p53 represses ribosomal gene transcription. Oncogene 1999, 18:1119-1124.
    • (1999) Oncogene , vol.18 , pp. 1119-1124
    • Budde, A.1    Grummt, I.2
  • 112
    • 0037103914 scopus 로고    scopus 로고
    • Several regions of p53 are involved in repression of RNA polymerase III transcription
    • Stein T., et al. Several regions of p53 are involved in repression of RNA polymerase III transcription. Oncogene 2002, 21:5540-5547.
    • (2002) Oncogene , vol.21 , pp. 5540-5547
    • Stein, T.1
  • 113
    • 6344288701 scopus 로고    scopus 로고
    • ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway
    • Brady S.N., et al. ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol. Cell. Biol. 2004, 24:9327-9338.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 9327-9338
    • Brady, S.N.1
  • 114
    • 33845545430 scopus 로고    scopus 로고
    • Human tumor suppressor p14ARF negatively regulates rRNA transcription and inhibits UBF1 transcription factor phosphorylation
    • Ayrault O., et al. Human tumor suppressor p14ARF negatively regulates rRNA transcription and inhibits UBF1 transcription factor phosphorylation. Oncogene 2006, 25:7577-7586.
    • (2006) Oncogene , vol.25 , pp. 7577-7586
    • Ayrault, O.1
  • 115
    • 0032189707 scopus 로고    scopus 로고
    • Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease
    • Savkur R.S., Olson M.O. Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res. 1998, 26:4508-4515.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 4508-4515
    • Savkur, R.S.1    Olson, M.O.2
  • 116
    • 38549104216 scopus 로고    scopus 로고
    • A non-tumor suppressor role for basal p19ARF in maintaining nucleolar structure and function
    • Apicelli A.J., et al. A non-tumor suppressor role for basal p19ARF in maintaining nucleolar structure and function. Mol. Cell. Biol. 2008, 28:1068-1080.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 1068-1080
    • Apicelli, A.J.1
  • 117
    • 33846489816 scopus 로고    scopus 로고
    • Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2
    • Young D.W., et al. Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature 2007, 445:442-446.
    • (2007) Nature , vol.445 , pp. 442-446
    • Young, D.W.1
  • 118
    • 34250022502 scopus 로고    scopus 로고
    • The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks
    • Kruhlak M., et al. The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 2007, 447:730-734.
    • (2007) Nature , vol.447 , pp. 730-734
    • Kruhlak, M.1
  • 119
    • 77955271025 scopus 로고    scopus 로고
    • Runx2 in normal tissues and cancer cells: a developing story
    • Blyth K., et al. Runx2 in normal tissues and cancer cells: a developing story. Blood Cells Mol. Dis. 2010, 45:117-123.
    • (2010) Blood Cells Mol. Dis. , vol.45 , pp. 117-123
    • Blyth, K.1
  • 120
    • 84864965580 scopus 로고    scopus 로고
    • A RUNX2-HDAC1 co-repressor complex regulates rRNA gene expression by modulating UBF acetylation
    • Ali S.A., et al. A RUNX2-HDAC1 co-repressor complex regulates rRNA gene expression by modulating UBF acetylation. J. Cell Sci. 2012, 125:2732-2739.
    • (2012) J. Cell Sci. , vol.125 , pp. 2732-2739
    • Ali, S.A.1
  • 121
    • 84864567160 scopus 로고    scopus 로고
    • Epigenetic mechanisms in leukemia
    • Zaidi S.K., et al. Epigenetic mechanisms in leukemia. Adv. Biol. Regul. 2012, 52:369-376.
    • (2012) Adv. Biol. Regul. , vol.52 , pp. 369-376
    • Zaidi, S.K.1
  • 122
    • 0027374418 scopus 로고
    • Induction and removal of interstrand crosslinks in the ribosomal RNA genes of lymphoblastoid cell lines from patients with Fanconi anemia
    • Rey J.P., et al. Induction and removal of interstrand crosslinks in the ribosomal RNA genes of lymphoblastoid cell lines from patients with Fanconi anemia. Mutat. Res. 1993, 289:171-180.
    • (1993) Mutat. Res. , vol.289 , pp. 171-180
    • Rey, J.P.1
  • 123
    • 0032526319 scopus 로고    scopus 로고
    • Cisplatin inhibits synthesis of ribosomal RNA in vivo
    • Jordan P., Carmo-Fonseca M. Cisplatin inhibits synthesis of ribosomal RNA in vivo. Nucleic Acids Res. 1998, 26:2831-2836.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 2831-2836
    • Jordan, P.1    Carmo-Fonseca, M.2
  • 124
    • 0018943536 scopus 로고
    • Antitumor activity of platinum(II) complexes of 1,2-diamino-cyclohexane isomers
    • Kidani Y., et al. Antitumor activity of platinum(II) complexes of 1,2-diamino-cyclohexane isomers. Gann 1980, 71:637-643.
    • (1980) Gann , vol.71 , pp. 637-643
    • Kidani, Y.1
  • 125
    • 0019207519 scopus 로고
    • Phase I clinical trial f mitoxantrone: a new anthracenedione anticancer drug
    • Alberts D.S., et al. Phase I clinical trial f mitoxantrone: a new anthracenedione anticancer drug. Cancer Chemother. Pharmacol. 1980, 5:11-15.
    • (1980) Cancer Chemother. Pharmacol. , vol.5 , pp. 11-15
    • Alberts, D.S.1
  • 126
    • 0014473575 scopus 로고
    • Adriamycin (NSC-123,127): a new antibiotic with antitumor activity
    • Di Marco A., et al. Adriamycin (NSC-123,127): a new antibiotic with antitumor activity. Cancer Chemother. Rep. 1 1969, 53:33-37.
    • (1969) Cancer Chemother. Rep. 1 , vol.53 , pp. 33-37
    • Di Marco, A.1
  • 127
    • 0015044313 scopus 로고
    • Studies on the antitumor activity, mechanism of action, and cell cycle effects of camptothecin
    • Gallo R.C., et al. Studies on the antitumor activity, mechanism of action, and cell cycle effects of camptothecin. J. Natl. Cancer Inst. 1971, 46:789-795.
    • (1971) J. Natl. Cancer Inst. , vol.46 , pp. 789-795
    • Gallo, R.C.1
  • 128
    • 0027931137 scopus 로고
    • Modulation of transcription of rRNA genes by rapamycin
    • Mahajan P.B. Modulation of transcription of rRNA genes by rapamycin. Int. J. Immunopharmacol. 1994, 16:711-721.
    • (1994) Int. J. Immunopharmacol. , vol.16 , pp. 711-721
    • Mahajan, P.B.1
  • 129
    • 0030739913 scopus 로고    scopus 로고
    • An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug
    • Ghoshal K., Jacob S.T. An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug. Biochem. Pharmacol. 1997, 53:1569-1575.
    • (1997) Biochem. Pharmacol. , vol.53 , pp. 1569-1575
    • Ghoshal, K.1    Jacob, S.T.2
  • 130
    • 0019298689 scopus 로고
    • The use of herbs as anticancer agents
    • Hsu B. The use of herbs as anticancer agents. Am. J. Chin. Med. 1980, 8:301-306.
    • (1980) Am. J. Chin. Med. , vol.8 , pp. 301-306
    • Hsu, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.