메뉴 건너뛰기




Volumn 13, Issue 11, 2014, Pages 828-851

Drugging the undruggable RAS: Mission Possible?

Author keywords

[No Author keywords available]

Indexed keywords

2 AMINO 8 [4 (2 HYDROXYETHOXY)CYCLOHEXYL] 6 (6 METHOXY 3 PYRIDINYL) 4 METHYLPYRIDO[2,3 D]PYRIMIDIN 7(8H) ONE; 3 (2 AMINO 5 BENZOXAZOLYL) 1 ISOPROPYL 1H PYRAZOLO[3,4 D]PYRIMIDIN 4 AMINE; 4 (4 AMINO 5 (7 METHOXY 1H INDOL 2 YL)IMIDAZO[5,1 F][1,2,4]TRIAZIN 7 YL)CYCLOHEXANECARBOXYLIC ACID; APITOLISIB; AZD 2014; AZD 8055; BGT 226; BUPARLISIB; COPANLISIB; DACTOLISIB; DS 7423; EVEROLIMUS; GEDATOLISIB; LY 3023414; OMIPALISIB; PHOSPHATIDYLINOSITOL 3 KINASE INHIBITOR; PROTEIN INHIBITOR; RAPAMYCIN; RAS PROTEIN; RAS PROTEIN INHIBITOR; RIDAFOROLIMUS; SCH 53239; SCH 54292; SULINDAC; TEMSIROLIMUS; UNCLASSIFIED DRUG; UNINDEXED DRUG; VS 5584; VU 0460009; XL 765; [1 (4 OXO 8 PHENYL 4H 1 BENZOPYRAN 2 YL)MORPHOLINIO]METHOXYSUCCINYLARGINYLGLYCYLASPARTYLSERINE ACETATE; ANTINEOPLASTIC AGENT; ONCOPROTEIN;

EID: 84908491115     PISSN: 14741776     EISSN: 14741784     Source Type: Journal    
DOI: 10.1038/nrd4389     Document Type: Review
Times cited : (1501)

References (231)
  • 1
    • 78649474147 scopus 로고    scopus 로고
    • RAS history: The saga continues
    • Cox, A. D. & Der, C. J. RAS history: The saga continues. Small GTPases 1, 2-27 (2010).
    • (2010) Small GTPases , vol.1 , pp. 2-27
    • Cox, A.D.1    Der, C.J.2
  • 2
    • 84875490185 scopus 로고    scopus 로고
    • Cancer genome landscapes
    • Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546-1558 (2013).
    • (2013) Science , vol.339 , pp. 1546-1558
    • Vogelstein, B.1
  • 3
    • 84886745490 scopus 로고    scopus 로고
    • US National Cancer Institute's new RAS project targets an old foe
    • Thompson, H. US National Cancer Institute's new RAS project targets an old foe. Nature Med. 19, 949-950 (2013).
    • (2013) Nature Med. , vol.19 , pp. 949-950
    • Thompson, H.1
  • 4
    • 80054866000 scopus 로고    scopus 로고
    • Targeting protein prenylation for cancer therapy
    • Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nature Rev. Cancer 11, 775-791 (2011).
    • (2011) Nature Rev. Cancer , vol.11 , pp. 775-791
    • Berndt, N.1    Hamilton, A.D.2    Sebti, S.M.3
  • 5
    • 19344362405 scopus 로고    scopus 로고
    • Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
    • Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469-483 (2005).
    • (2005) Cancer Cell , vol.7 , pp. 469-483
    • Hingorani, S.R.1
  • 6
    • 34547926839 scopus 로고    scopus 로고
    • LKB1 modulates lung cancer differentiation and metastasis
    • Ji, H. et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807-810 (2007).
    • (2007) Nature , vol.448 , pp. 807-810
    • Ji, H.1
  • 7
    • 42649125571 scopus 로고    scopus 로고
    • Differential effects of oncogenic KRAS and NRAS on proliferation, differentiation and tumor progression in the colon
    • Haigis, K. M. et al. Differential effects of oncogenic KRAS and NRAS on proliferation, differentiation and tumor progression in the colon. Nature Genet. 40, 600-608 (2008).
    • (2008) Nature Genet. , vol.40 , pp. 600-608
    • Haigis, K.M.1
  • 8
    • 0036726313 scopus 로고    scopus 로고
    • Stable suppression of tumorigenicity by virus-mediated RNA interference
    • Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243-247 (2002).
    • (2002) Cancer Cell , vol.2 , pp. 243-247
    • Brummelkamp, T.R.1    Bernards, R.2    Agami, R.3
  • 9
    • 27644556527 scopus 로고    scopus 로고
    • Reduction in the requirement of oncogenic RAS signaling to activation of PI3K/AKT pathway during tumor maintenance
    • Lim, K. H. & Counter, C. M. Reduction in the requirement of oncogenic RAS signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell 8, 381-392 (2005).
    • (2005) Cancer Cell , vol.8 , pp. 381-392
    • Lim, K.H.1    Counter, C.M.2
  • 10
    • 65649108558 scopus 로고    scopus 로고
    • A gene expression signature associated with "kRAS addiction" reveals regulators of EMT and tumor cell survival
    • Singh, A. et al. A gene expression signature associated with "KRAS addiction" reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489-500 (2009).
    • (2009) Cancer Cell , vol.15 , pp. 489-500
    • Singh, A.1
  • 11
    • 0033614962 scopus 로고    scopus 로고
    • Essential role for oncogenic RAS in tumour maintenance
    • Chin, L. et al. Essential role for oncogenic RAS in tumour maintenance. Nature 400, 468-472 (1999).
    • (1999) Nature , vol.400 , pp. 468-472
    • Chin, L.1
  • 12
    • 84870709449 scopus 로고    scopus 로고
    • Metastatic pancreatic cancer is dependent on oncogenic KRAS in mice
    • Collins, M. A. et al. Metastatic pancreatic cancer is dependent on oncogenic KRAS in mice. PLoS ONE 7, e49707 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e49707
    • Collins, M.A.1
  • 13
    • 0035893318 scopus 로고    scopus 로고
    • Induction and apoptotic regression of lung adenocarcinomas by regulation of a KRAS transgene in the presence and absence of tumor suppressor genes
    • Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a KRAS transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15, 3249-3262 (2001).
    • (2001) Genes Dev. , vol.15 , pp. 3249-3262
    • Fisher, G.H.1
  • 14
    • 84870289371 scopus 로고    scopus 로고
    • Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma
    • Kwong, L. N. et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nature Med. 18, 1503-1510 (2012).
    • (2012) Nature Med. , vol.18 , pp. 1503-1510
    • Kwong, L.N.1
  • 15
    • 84860321700 scopus 로고    scopus 로고
    • Oncogenic KRAS maintains pancreatic tumors through regulation of anabolic glucose metabolism
    • Ying, H. et al. Oncogenic KRAS maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670 (2012).
    • (2012) Cell , vol.149 , pp. 656-670
    • Ying, H.1
  • 16
    • 34249018367 scopus 로고    scopus 로고
    • GEFs and GAPs: Critical elements in the control of small G proteins
    • Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877 (2007).
    • (2007) Cell , vol.129 , pp. 865-877
    • Bos, J.L.1    Rehmann, H.2    Wittinghofer, A.3
  • 19
    • 0025194466 scopus 로고
    • Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides
    • Reiss, Y., Goldstein, J. L., Seabra, M. C., Casey, P. J. & Brown, M. S. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 62, 81-88 (1990).
    • (1990) Cell , vol.62 , pp. 81-88
    • Reiss, Y.1    Goldstein, J.L.2    Seabra, M.C.3    Casey, P.J.4    Brown, M.S.5
  • 20
    • 0028958919 scopus 로고
    • Polylysine and CVIM sequences of KRASB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro
    • James, G. L., Goldstein, J. L. & Brown, M. S. Polylysine and CVIM sequences of KRASB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J. Biol. Chem. 270, 6221-6226 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 6221-6226
    • James, G.L.1    Goldstein, J.L.2    Brown, M.S.3
  • 21
    • 0030923192 scopus 로고    scopus 로고
    • K-and N-RAS are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors
    • Whyte, D. B. et al. K-and N-RAS are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14459-14464 (1997).
    • (1997) J. Biol. Chem. , vol.272 , pp. 14459-14464
    • Whyte, D.B.1
  • 22
    • 0030968859 scopus 로고    scopus 로고
    • Direct demonstration of geranylgeranylation and farnesylation of Ki-RAS in vivo
    • Rowell, C. A., Kowalczyk, J. J., Lewis, M. D. & Garcia, A. M. Direct demonstration of geranylgeranylation and farnesylation of Ki-RAS in vivo. J. Biol. Chem. 272, 14093-14097 (1997).
    • (1997) J. Biol. Chem. , vol.272 , pp. 14093-14097
    • Rowell, C.A.1    Kowalczyk, J.J.2    Lewis, M.D.3    Garcia, A.M.4
  • 23
    • 78649487698 scopus 로고    scopus 로고
    • RAS superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nature Rev
    • Vigil, D., Cherfils, J., Rossman, K. L. & Der, C. J. RAS superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nature Rev. Cancer 10, 842-857 (2010).
    • (2010) Cancer , vol.10 , pp. 842-857
    • Vigil, D.1    Cherfils, J.2    Rossman, K.L.3    Der, C.J.4
  • 24
    • 80055034617 scopus 로고    scopus 로고
    • Novel allosteric sites on RAS for lead generation
    • Grant, B. J. et al. Novel allosteric sites on RAS for lead generation. PLoS ONE 6, e25711 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e25711
    • Grant, B.J.1
  • 25
    • 80054860512 scopus 로고    scopus 로고
    • Analysis of binding site hot spots on the surface of RAS GTPase
    • Buhrman, G. et al. Analysis of binding site hot spots on the surface of RAS GTPase. J. Mol. Biol. 413, 773-789 (2011).
    • (2011) J. Mol. Biol. , vol.413 , pp. 773-789
    • Buhrman, G.1
  • 26
    • 84865463399 scopus 로고    scopus 로고
    • RAS inhibition via direct RAS binding-is there a path forward?
    • Wang, W., Fang, G. & Rudolph, J. RAS inhibition via direct RAS binding-is there a path forward? Bioorg. Med. Chem. Lett. 22, 5766-5776 (2012).
    • (2012) Bioorg. Med. Chem. Lett. , vol.22 , pp. 5766-5776
    • Wang, W.1    Fang, G.2    Rudolph, J.3
  • 27
    • 0031012426 scopus 로고    scopus 로고
    • RAS oncoprotein inhibitors: The discovery of potent RAS nucleotide exchange inhibitors and the structural determination of a drug-protein complex
    • Taveras, A. G. et al. RAS oncoprotein inhibitors: the discovery of potent, RAS nucleotide exchange inhibitors and the structural determination of a drug-protein complex. Bioorg. Med. Chem. 5, 125-133 (1997).
    • (1997) Bioorg. Med. Chem. , vol.5 , pp. 125-133
    • Taveras, A.G.1
  • 28
    • 26944480768 scopus 로고    scopus 로고
    • Design, synthesis and biological evaluation of sugar-derived RAS inhibitors
    • Peri, F. et al. Design, synthesis and biological evaluation of sugar-derived RAS inhibitors. Chembiochem 6, 1839-1848 (2005).
    • (2005) Chembiochem , vol.6 , pp. 1839-1848
    • Peri, F.1
  • 29
    • 0032497698 scopus 로고    scopus 로고
    • Sulindac sulfide inhibits RAS signaling
    • Herrmann, C. et al. Sulindac sulfide inhibits RAS signaling. Oncogene 17, 1769-1776 (1998).
    • (1998) Oncogene , vol.17 , pp. 1769-1776
    • Herrmann, C.1
  • 30
    • 0842285880 scopus 로고    scopus 로고
    • Sulindac-derived RAS pathway inhibitors target the RAS-RAF interaction and downstream effectors in the RAS pathway
    • Waldmann, H. et al. Sulindac-derived RAS pathway inhibitors target the RAS-RAF interaction and downstream effectors in the RAS pathway. Angew. Chem. Int. Ed Engl. 43, 454-458 (2004).
    • (2004) Angew. Chem. Int. Ed Engl. , vol.43 , pp. 454-458
    • Waldmann, H.1
  • 31
    • 0037088262 scopus 로고    scopus 로고
    • The new sulindac derivative IND 12 reverses RAS-induced cell transformation
    • Karaguni, I. M. et al. The new sulindac derivative IND 12 reverses RAS-induced cell transformation. Cancer Res. 62, 1718-1723 (2002).
    • (2002) Cancer Res. , vol.62 , pp. 1718-1723
    • Karaguni, I.M.1
  • 32
    • 0037169997 scopus 로고    scopus 로고
    • New indene-derivatives with anti-proliferative properties
    • Karaguni, I. M. et al. New indene-derivatives with anti-proliferative properties. Bioorg. Med. Chem. Lett. 12, 709-713 (2002).
    • (2002) Bioorg. Med. Chem. Lett. , vol.12 , pp. 709-713
    • Karaguni, I.M.1
  • 33
    • 77649325767 scopus 로고    scopus 로고
    • Genetic and functional characterization of putative RAS/RAF interaction inhibitors in Celegans and mammalian cells
    • Gonzalez-Perez, V. et al. Genetic and functional characterization of putative RAS/RAF interaction inhibitors in C. Elegans and mammalian cells. J. Mol. Signal. 5, 2 (2010).
    • (2010) J. Mol. Signal. , vol.5 , pp. 2
    • Gonzalez-Perez, V.1
  • 34
    • 0037195142 scopus 로고    scopus 로고
    • Inhibitors of RAS/RAF1 interaction identified by two-hybrid screening revert RAS-dependent transformation phenotypes in human cancer cells
    • Kato-Stankiewicz, J. et al. Inhibitors of RAS/RAF1 interaction identified by two-hybrid screening revert RAS-dependent transformation phenotypes in human cancer cells. Proc. Natl Acad. Sci. USA 99, 14398-14403 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 14398-14403
    • Kato-Stankiewicz, J.1
  • 35
    • 77952650846 scopus 로고    scopus 로고
    • Stabilizing a weak binding state for effectors in the human RAS protein by cyclen complexes
    • Rosnizeck, I. C. et al. Stabilizing a weak binding state for effectors in the human RAS protein by cyclen complexes. Angew. Chem. Int. Ed Engl. 49, 3830-3833 (2010).
    • (2010) Angew. Chem. Int. Ed Engl. , vol.49 , pp. 3830-3833
    • Rosnizeck, I.C.1
  • 37
    • 84883432191 scopus 로고    scopus 로고
    • Stapled α-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy
    • Chang, Y. S. et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl Acad. Sci. USA 110, E3445-E3454 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. E3445-E3454
    • Chang, Y.S.1
  • 38
    • 84859463451 scopus 로고    scopus 로고
    • Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity
    • Maurer, T. et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc. Natl Acad. Sci. USA 109, 5299-5304 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 5299-5304
    • Maurer, T.1
  • 39
    • 84862649997 scopus 로고    scopus 로고
    • Discovery of small molecules that bind to KRAS and inhibit SOS-mediated activation
    • Sun, Q. et al. Discovery of small molecules that bind to KRAS and inhibit SOS-mediated activation. Angew. Chem. Int. Ed Engl. 51, 6140-6143 (2012).
    • (2012) Angew. Chem. Int. Ed Engl. , vol.51 , pp. 6140-6143
    • Sun, Q.1
  • 40
    • 84877863454 scopus 로고    scopus 로고
    • In silico discovery of small-molecule RAS inhibitors that display antitumor activity by blocking the RAS-effector interaction
    • Shima, F. et al. In silico discovery of small-molecule RAS inhibitors that display antitumor activity by blocking the RAS-effector interaction. Proc. Natl Acad. Sci. USA 110, 8182-8187 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 8182-8187
    • Shima, F.1
  • 41
    • 84888639050 scopus 로고    scopus 로고
    • KRAS (G12C) inhibitors allosterically control GTP affinity and effector interactions
    • Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. KRAS (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548-551 (2013).
    • (2013) Nature , vol.503 , pp. 548-551
    • Ostrem, J.M.1    Peters, U.2    Sos, M.L.3    Wells, J.A.4    Shokat, K.M.5
  • 42
    • 84863230071 scopus 로고    scopus 로고
    • A novel class of highly potent irreversible hepatitis C virus NS5B polymerase inhibitors
    • Chen, K. X. et al. A novel class of highly potent irreversible hepatitis C virus NS5B polymerase inhibitors. J. Med. Chem. 55, 2089-2101 (2012).
    • (2012) J. Med. Chem. , vol.55 , pp. 2089-2101
    • Chen, K.X.1
  • 43
    • 84884243421 scopus 로고    scopus 로고
    • Structure-and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR)
    • Ward, R. A. et al. Structure-and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR). J. Med. Chem. 56, 7025-7048 (2013).
    • (2013) J. Med. Chem. , vol.56 , pp. 7025-7048
    • Ward, R.A.1
  • 44
    • 84890947640 scopus 로고    scopus 로고
    • Therapeutic targeting of oncogenic KRAS by a covalent catalytic site inhibitor
    • Lim, S. M. et al. Therapeutic targeting of oncogenic KRAS by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed Engl. 53, 199-204 (2014).
    • (2014) Angew. Chem. Int. Ed Engl. , vol.53 , pp. 199-204
    • Lim, S.M.1
  • 45
    • 84895834287 scopus 로고    scopus 로고
    • Approach for targeting RAS with small molecules that activate SOS-mediated nucleotide exchange
    • Burns, M. C. et al. Approach for targeting RAS with small molecules that activate SOS-mediated nucleotide exchange. Proc. Natl Acad. Sci. USA 111, 3401-3406 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 3401-3406
    • Burns, M.C.1
  • 46
    • 84887521253 scopus 로고    scopus 로고
    • Transformation by HrasG12V is consistently associated with mutant allele copy gains and is reversed by farnesyl transferase inhibition
    • Chen, X., Makarewicz, J. M., Knauf, J. A., Johnson, L. K. & Fagin, J. A. Transformation by HrasG12V is consistently associated with mutant allele copy gains and is reversed by farnesyl transferase inhibition. Oncogene http://dx.doi.org/10.1038/onc.2013.489 (2013).
    • (2013) Oncogene
    • Chen, X.1    Makarewicz, J.M.2    Knauf, J.A.3    Johnson, L.K.4    Fagin, J.A.5
  • 47
    • 77950904083 scopus 로고    scopus 로고
    • Targeting the protein prenyltransferases efficiently reduces tumor development in mice with KRAS-induced lung cancer
    • Liu, M. et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with KRAS-induced lung cancer. Proc. Natl Acad. Sci. USA 107, 6471-6476 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 6471-6476
    • Liu, M.1
  • 48
    • 0028981375 scopus 로고
    • Selective inhibition of RAS-dependent cell growth by farnesylthiosalisylic acid
    • Marom, M. et al. Selective inhibition of RAS-dependent cell growth by farnesylthiosalisylic acid. J. Biol. Chem. 270, 22263-22270 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 22263-22270
    • Marom, M.1
  • 49
    • 0031590420 scopus 로고    scopus 로고
    • The RAS antagonist S-farnesylthiosalicylic acid induces inhibition of MAPK activation
    • Gana-Weisz, M. et al. The RAS antagonist S-farnesylthiosalicylic acid induces inhibition of MAPK activation. Biochem. Biophys. Res. Commun. 239, 900-904 (1997).
    • (1997) Biochem. Biophys. Res. Commun. , vol.239 , pp. 900-904
    • Gana-Weisz, M.1
  • 50
    • 0032477606 scopus 로고    scopus 로고
    • Dislodgment and accelerated degradation of RAS
    • Haklai, R. et al. Dislodgment and accelerated degradation of RAS. Biochemistry 37, 1306-1314 (1998).
    • (1998) Biochemistry , vol.37 , pp. 1306-1314
    • Haklai, R.1
  • 51
    • 84856111964 scopus 로고    scopus 로고
    • Farnesylthiosalicylic acid (salirasib) inhibits RHEB in TSC2-null ELT3 cells: A potential treatment for lymphangioleiomyomatosis
    • Makovski, V., Haklai, R. & Kloog, Y. Farnesylthiosalicylic acid (salirasib) inhibits RHEB in TSC2-null ELT3 cells: a potential treatment for lymphangioleiomyomatosis. Int. J. Cancer 130, 1420-1429 (2012).
    • (2012) Int. J. Cancer , vol.130 , pp. 1420-1429
    • Makovski, V.1    Haklai, R.2    Kloog, Y.3
  • 52
    • 11244264754 scopus 로고    scopus 로고
    • Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-Raptor complex
    • McMahon, L. P., Yue, W., Santen, R. J. & Lawrence, J. C. Jr. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-Raptor complex. Mol. Endocrinol. 19, 175-183 (2005).
    • (2005) Mol. Endocrinol. , vol.19 , pp. 175-183
    • McMahon, L.P.1    Yue, W.2    Santen, R.J.3    Lawrence, J.C.4
  • 53
    • 75149142796 scopus 로고    scopus 로고
    • Differential requirement of CAAX-mediated posttranslational processing for RHEB localization and signaling
    • Hanker, A. B. et al. Differential requirement of CAAX-mediated posttranslational processing for RHEB localization and signaling. Oncogene 29, 380-391 (2010).
    • (2010) Oncogene , vol.29 , pp. 380-391
    • Hanker, A.B.1
  • 54
    • 0013227128 scopus 로고    scopus 로고
    • A new functional RAS antagonist inhibits human pancreatic tumor growth in nude mice
    • Weisz, B. et al. A new functional RAS antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene 18, 2579-2588 (1999).
    • (1999) Oncogene , vol.18 , pp. 2579-2588
    • Weisz, B.1
  • 55
    • 34848874825 scopus 로고    scopus 로고
    • Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice
    • Haklai, R., Elad-Sfadia, G., Egozi, Y. & Kloog, Y. Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice. Cancer Chemother. Pharmacol. 61, 89-96 (2008).
    • (2008) Cancer Chemother. Pharmacol. , vol.61 , pp. 89-96
    • Haklai, R.1    Elad-Sfadia, G.2    Egozi, Y.3    Kloog, Y.4
  • 56
    • 84875534210 scopus 로고    scopus 로고
    • Integrated preclinical and clinical development of S-trans, trans-farnesylthiosalicylic Acid (FTS, Salirasib) in pancreatic cancer
    • Laheru, D. et al. Integrated preclinical and clinical development of S-trans, trans-farnesylthiosalicylic Acid (FTS, Salirasib) in pancreatic cancer. Invest. New Drugs 30, 2391-2399 (2012).
    • (2012) Invest. New Drugs , vol.30 , pp. 2391-2399
    • Laheru, D.1
  • 57
    • 33846191877 scopus 로고    scopus 로고
    • Rce1 deficiency accelerates the development of KRAS-induced myeloproliferative disease
    • Wahlstrom, A. M. et al. Rce1 deficiency accelerates the development of KRAS-induced myeloproliferative disease. Blood 109, 763-768 (2007).
    • (2007) Blood , vol.109 , pp. 763-768
    • Wahlstrom, A.M.1
  • 58
    • 51649099589 scopus 로고    scopus 로고
    • Inactivating Icmt ameliorates KRAS-induced myeloproliferative disease
    • Wahlstrom, A. M. et al. Inactivating Icmt ameliorates KRAS-induced myeloproliferative disease. Blood 112, 1357-1365 (2008).
    • (2008) Blood , vol.112 , pp. 1357-1365
    • Wahlstrom, A.M.1
  • 59
    • 84887433950 scopus 로고    scopus 로고
    • Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression
    • Court, H. et al. Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression. J. Clin. Invest. 123, 4681-4694 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 4681-4694
    • Court, H.1
  • 60
    • 84855202806 scopus 로고    scopus 로고
    • Amide-modified prenylcysteine based ICMT inhibitors: Structure-activity relationships, kinetic analysis and cellular characterization
    • Majmudar, J. D. et al. Amide-modified prenylcysteine based ICMT inhibitors: structure-activity relationships, kinetic analysis and cellular characterization. Bioorg. Med. Chem. 20, 283-295 (2012).
    • (2012) Bioorg. Med. Chem. , vol.20 , pp. 283-295
    • Majmudar, J.D.1
  • 62
    • 20144365360 scopus 로고    scopus 로고
    • A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells
    • Winter-Vann, A. M. et al. A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells. Proc. Natl Acad. Sci. USA 102, 4336-4341 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 4336-4341
    • Winter-Vann, A.M.1
  • 63
    • 0036091925 scopus 로고    scopus 로고
    • RAS signalling on the endoplasmic reticulum and the Golgi
    • Chiu, V. K. et al. RAS signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol. 4, 343-350 (2002).
    • (2002) Nature Cell Biol. , vol.4 , pp. 343-350
    • Chiu, V.K.1
  • 64
    • 77951729960 scopus 로고    scopus 로고
    • Palmitoylation of oncogenic NRAS is essential for leukemogenesis
    • Cuiffo, B. & Ren, R. Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood 115, 3598-3605 (2010).
    • (2010) Blood , vol.115 , pp. 3598-3605
    • Cuiffo, B.1    Ren, R.2
  • 65
    • 24744466287 scopus 로고    scopus 로고
    • DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H-and N-RAS
    • Swarthout, J. T. et al. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H-and N-RAS. J. Biol. Chem. 280, 31141-31148 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 31141-31148
    • Swarthout, J.T.1
  • 66
    • 22944460791 scopus 로고    scopus 로고
    • Depalmitoylated RAS traffics to and from the Golgi complex via a nonvesicular pathway
    • Goodwin, J. S. et al. Depalmitoylated RAS traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170, 261-272 (2005).
    • (2005) J. Cell Biol. , vol.170 , pp. 261-272
    • Goodwin, J.S.1
  • 67
    • 77951913833 scopus 로고    scopus 로고
    • The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins
    • Rocks, O. et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141, 458-471 (2010).
    • (2010) Cell , vol.141 , pp. 458-471
    • Rocks, O.1
  • 68
    • 20144375061 scopus 로고    scopus 로고
    • An acylation cycle regulates localization and activity of palmitoylated RAS isoforms
    • Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated RAS isoforms. Science 307, 1746-1752 (2005).
    • (2005) Science , vol.307 , pp. 1746-1752
    • Rocks, O.1
  • 69
    • 77952541156 scopus 로고    scopus 로고
    • Small-molecule inhibition of APT1 affects RAS localization and signaling
    • Dekker, F. J. et al. Small-molecule inhibition of APT1 affects RAS localization and signaling. Nature Chem. Biol. 6, 449-456 (2010).
    • (2010) Nature Chem. Biol. , vol.6 , pp. 449-456
    • Dekker, F.J.1
  • 70
    • 84859341928 scopus 로고    scopus 로고
    • Targeting protein lipidation in disease
    • Resh, M. D. Targeting protein lipidation in disease. Trends Mol. Med. 18, 206-214 (2012).
    • (2012) Trends Mol. Med. , vol.18 , pp. 206-214
    • Resh, M.D.1
  • 71
    • 32444441115 scopus 로고    scopus 로고
    • PKC regulates a farnesyl-electrostatic switch on KRAS that promotes its association with BCL-XL on mitochondria and induces apoptosis
    • Bivona, T. G. et al. PKC regulates a farnesyl-electrostatic switch on KRAS that promotes its association with BCL-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481-493 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 481-493
    • Bivona, T.G.1
  • 72
    • 84890835716 scopus 로고    scopus 로고
    • Phosphorylated KRAS limits cell survival by blocking BCL-XL sensitization of inositol trisphosphate receptors
    • Sung, P. J. et al. Phosphorylated KRAS limits cell survival by blocking BCL-XL sensitization of inositol trisphosphate receptors. Proc. Natl Acad. Sci. USA 110, 20593-20598 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 20593-20598
    • Sung, P.J.1
  • 73
    • 84891799728 scopus 로고    scopus 로고
    • Marine natural products: Bryostatins in preclinical and clinical studies
    • Kollar, P., Rajchard, J., Balounova, Z. & Pazourek, J. Marine natural products: bryostatins in preclinical and clinical studies. Pharm. Biol. 52, 237-242 (2013).
    • (2013) Pharm. Biol. , vol.52 , pp. 237-242
    • Kollar, P.1    Rajchard, J.2    Balounova, Z.3    Pazourek, J.4
  • 74
    • 84894236975 scopus 로고    scopus 로고
    • Phosphorylation at Ser181 of oncogenic KRAS is required for tumor growth
    • Barcelo, C. et al. Phosphorylation at Ser181 of oncogenic KRAS is required for tumor growth. Cancer Res. 74, 1190-1199 (2013).
    • (2013) Cancer Res. , vol.74 , pp. 1190-1199
    • Barcelo, C.1
  • 76
    • 84865714641 scopus 로고    scopus 로고
    • Targeting eNOS in pancreatic cancer
    • Lampson, B. L. et al. Targeting eNOS in pancreatic cancer. Cancer Res. 72, 4472-4482 (2012).
    • (2012) Cancer Res. , vol.72 , pp. 4472-4482
    • Lampson, B.L.1
  • 77
    • 84871737427 scopus 로고    scopus 로고
    • The prenyl-binding protein PrBP/δ: A chaperone participating in intracellular trafficking
    • Zhang, H., Constantine, R., Frederick, J. M. & Baehr, W. The prenyl-binding protein PrBP/δ: a chaperone participating in intracellular trafficking. Vision Res. 75, 19-25 (2012).
    • (2012) Vision Res. , vol.75 , pp. 19-25
    • Zhang, H.1    Constantine, R.2    Frederick, J.M.3    Baehr, W.4
  • 78
    • 84856492497 scopus 로고    scopus 로고
    • The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of RAS family proteins
    • Chandra, A. et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of RAS family proteins. Nature Cell Biol. 14, 148-158 (2012).
    • (2012) Nature Cell Biol. , vol.14 , pp. 148-158
    • Chandra, A.1
  • 79
    • 84878401236 scopus 로고    scopus 로고
    • Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling
    • Zimmermann, G. et al. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638-642 (2013).
    • (2013) Nature , vol.497 , pp. 638-642
    • Zimmermann, G.1
  • 80
    • 84856497818 scopus 로고    scopus 로고
    • RAS hitchhikes on PDE6δ
    • Philips, M. R. RAS hitchhikes on PDE6δ. Nature Cell Biol. 14, 128-129 (2012).
    • (2012) Nature Cell Biol. , vol.14 , pp. 128-129
    • Philips, M.R.1
  • 81
    • 33344475413 scopus 로고    scopus 로고
    • Differential modification of RAS proteins by ubiquitination
    • Jura, N., Scotto-Lavino, E., Sobczyk, A. & Bar-Sagi, D. Differential modification of RAS proteins by ubiquitination. Mol. Cell 21, 679-687 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 679-687
    • Jura, N.1    Scotto-Lavino, E.2    Sobczyk, A.3    Bar-Sagi, D.4
  • 82
    • 79952551201 scopus 로고    scopus 로고
    • Ubiquitination of KRAS enhances activation and facilitates binding to select downstream effectors
    • Sasaki, A. T. et al. Ubiquitination of KRAS enhances activation and facilitates binding to select downstream effectors. Sci. Signal 4, ra13 (2011).
    • (2011) Sci. Signal , vol.4 , pp. ra13
    • Sasaki, A.T.1
  • 83
    • 84894209891 scopus 로고    scopus 로고
    • Degradation of activated KRAS orthologue via KRAS-specific lysine residues is required for cytokinesis
    • Sumita, K. et al. Degradation of activated KRAS orthologue via KRAS-specific lysine residues is required for cytokinesis. J. Biol. Chem. 289, 3950-3959 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 3950-3959
    • Sumita, K.1
  • 84
    • 84883555139 scopus 로고    scopus 로고
    • HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant KRAS
    • Yang, M. H. et al. HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant KRAS. Mol. Cancer Res. 11, 1072-1077 (2013).
    • (2013) Mol. Cancer Res. , vol.11 , pp. 1072-1077
    • Yang, M.H.1
  • 85
    • 80054936061 scopus 로고    scopus 로고
    • Inhibition of RAS for cancer treatment: The search continues
    • Baines, A. T., Xu, D. & Der, C. J. Inhibition of RAS for cancer treatment: the search continues. Future Med. Chem. 3, 1787-1808 (2011).
    • (2011) Future Med. Chem. , vol.3 , pp. 1787-1808
    • Baines, A.T.1    Xu, D.2    Der, C.J.3
  • 86
    • 79955980366 scopus 로고    scopus 로고
    • CRAF, but not BRAF, is essential for development of KRAS oncogene-driven non-small cell lung carcinoma
    • Blasco, R. B. et al. CRAF, but not BRAF, is essential for development of KRAS oncogene-driven non-small cell lung carcinoma. Cancer Cell 19, 652-663 (2011).
    • (2011) Cancer Cell , vol.19 , pp. 652-663
    • Blasco, R.B.1
  • 87
    • 84866242663 scopus 로고    scopus 로고
    • A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma
    • Collisson, E. A. et al. A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov. 2, 685-693 (2012).
    • (2012) Cancer Discov. , vol.2 , pp. 685-693
    • Collisson, E.A.1
  • 88
    • 84862294189 scopus 로고    scopus 로고
    • ERK1/2 MAP kinases: Structure, function, and regulation
    • Roskoski, R. Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66, 105-143 (2012).
    • (2012) Pharmacol. Res. , vol.66 , pp. 105-143
    • Roskoski, R.1
  • 90
    • 4944249117 scopus 로고    scopus 로고
    • BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis
    • Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099-7109 (2004).
    • (2004) Cancer Res. , vol.64 , pp. 7099-7109
    • Wilhelm, S.M.1
  • 91
    • 84887478023 scopus 로고    scopus 로고
    • Tumor adaptation and resistance to RAF inhibitors
    • Lito, P., Rosen, N. & Solit, D. B. Tumor adaptation and resistance to RAF inhibitors. Nature Med. 19, 1401-1409 (2013).
    • (2013) Nature Med. , vol.19 , pp. 1401-1409
    • Lito, P.1    Rosen, N.2    Solit, D.B.3
  • 92
    • 77949685981 scopus 로고    scopus 로고
    • RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth
    • Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431-435 (2010).
    • (2010) Nature , vol.464 , pp. 431-435
    • Hatzivassiliou, G.1
  • 93
    • 74849109743 scopus 로고    scopus 로고
    • Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF
    • Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209-221 (2010).
    • (2010) Cell , vol.140 , pp. 209-221
    • Heidorn, S.J.1
  • 94
    • 77949732073 scopus 로고    scopus 로고
    • RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF
    • Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427-430 (2010).
    • (2010) Nature , vol.464 , pp. 427-430
    • Poulikakos, P.I.1    Zhang, C.2    Bollag, G.3    Shokat, K.M.4    Rosen, N.5
  • 95
    • 0033179479 scopus 로고    scopus 로고
    • Paradoxical activation of RAF by a novel RAF inhibitor
    • Hall-Jackson, C. A. et al. Paradoxical activation of RAF by a novel RAF inhibitor. Chem. Biol. 6, 559-568 (1999).
    • (1999) Chem. Biol. , vol.6 , pp. 559-568
    • Hall-Jackson, C.A.1
  • 96
    • 84862908526 scopus 로고    scopus 로고
    • RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors
    • Oberholzer, P. A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316-321 (2012).
    • (2012) J. Clin. Oncol. , vol.30 , pp. 316-321
    • Oberholzer, P.A.1
  • 97
    • 84862908097 scopus 로고    scopus 로고
    • RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors
    • Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207-215 (2012).
    • (2012) N. Engl. J. Med. , vol.366 , pp. 207-215
    • Su, F.1
  • 98
    • 84874225181 scopus 로고    scopus 로고
    • Effects of RAF dimerization and its inhibition on normal and disease-associated RAF signaling
    • Freeman, A. K., Ritt, D. A. & Morrison, D. K. Effects of RAF dimerization and its inhibition on normal and disease-associated RAF signaling. Mol. Cell 49, 751-758 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 751-758
    • Freeman, A.K.1    Ritt, D.A.2    Morrison, D.K.3
  • 99
    • 79952261716 scopus 로고    scopus 로고
    • GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition
    • Gilmartin, A. G. et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin. Cancer Res. 17, 989-1000 (2011).
    • (2011) Clin. Cancer Res. , vol.17 , pp. 989-1000
    • Gilmartin, A.G.1
  • 100
    • 57349194139 scopus 로고    scopus 로고
    • Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers
    • Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med. 14, 1351-1356 (2008).
    • (2008) Nature Med. , vol.14 , pp. 1351-1356
    • Engelman, J.A.1
  • 101
    • 84884127318 scopus 로고    scopus 로고
    • Mechanism of MEK inhibition determines efficacy in mutant KRAS-versus BRAF-driven cancers
    • Hatzivassiliou, G. et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS-versus BRAF-driven cancers. Nature 501, 232-236 (2013).
    • (2013) Nature , vol.501 , pp. 232-236
    • Hatzivassiliou, G.1
  • 102
    • 84880064248 scopus 로고    scopus 로고
    • Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity
    • Ishii, N. et al. Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity. Cancer Res. 73, 4050-4060 (2013).
    • (2013) Cancer Res. , vol.73 , pp. 4050-4060
    • Ishii, N.1
  • 103
    • 84859765844 scopus 로고    scopus 로고
    • Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer
    • Duncan, J. S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307-321 (2012).
    • (2012) Cell , vol.149 , pp. 307-321
    • Duncan, J.S.1
  • 104
    • 79953240219 scopus 로고    scopus 로고
    • Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells
    • Little, A. S. et al. Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci. Signal. 4, ra17 (2011).
    • (2011) Sci. Signal. , vol.4 , pp. ra17
    • Little, A.S.1
  • 105
    • 77956513286 scopus 로고    scopus 로고
    • Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma
    • Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596-599 (2010).
    • (2010) Nature , vol.467 , pp. 596-599
    • Bollag, G.1
  • 106
    • 84880254869 scopus 로고    scopus 로고
    • Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors
    • Morris, E. J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 3, 742-750 (2013).
    • (2013) Cancer Discov. , vol.3 , pp. 742-750
    • Morris, E.J.1
  • 107
    • 34249026448 scopus 로고    scopus 로고
    • Binding of RAS to phosphoinositide 3-kinase p110 α is required for RAS-driven tumorigenesis in mice
    • Gupta, S. et al. Binding of RAS to phosphoinositide 3-kinase p110 α is required for RAS-driven tumorigenesis in mice. Cell 129, 957-968 (2007).
    • (2007) Cell , vol.129 , pp. 957-968
    • Gupta, S.1
  • 108
    • 84887532497 scopus 로고    scopus 로고
    • Requirement for interaction of PI3-kinase p110α with RAS in lung tumor maintenance
    • Castellano, E. et al. Requirement for interaction of PI3-kinase p110α with RAS in lung tumor maintenance. Cancer Cell 24, 617-630 (2013).
    • (2013) Cancer Cell , vol.24 , pp. 617-630
    • Castellano, E.1
  • 109
    • 80555157475 scopus 로고    scopus 로고
    • Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers
    • Ebi, H. et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J. Clin. Invest. 121, 4311-4321 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 4311-4321
    • Ebi, H.1
  • 110
    • 84878652051 scopus 로고    scopus 로고
    • PI3K and MEK inhibitor combinations: Examining the evidence in selected tumor types
    • Britten, C. D. PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother. Pharmacol. 71, 1395-1409 (2013).
    • (2013) Cancer Chemother. Pharmacol. , vol.71 , pp. 1395-1409
    • Britten, C.D.1
  • 111
    • 38849147752 scopus 로고    scopus 로고
    • RAL GTPases and cancer: Linchpin support of the tumorigenic platform
    • Bodemann, B. O. & White, M. A. RAL GTPases and cancer: linchpin support of the tumorigenic platform. Nature Rev. Cancer 8, 133-140 (2008).
    • (2008) Nature Rev. Cancer , vol.8 , pp. 133-140
    • Bodemann, B.O.1    White, M.A.2
  • 112
    • 79960069763 scopus 로고    scopus 로고
    • The RALGEF-RAL effector signaling network: The road less traveled for anti-RAS drug discovery
    • Neel, N. F. et al. The RALGEF-RAL effector signaling network: the road less traveled for anti-RAS drug discovery. Genes Cancer 2, 275-287 (2011).
    • (2011) Genes Cancer , vol.2 , pp. 275-287
    • Neel, N.F.1
  • 113
    • 17644408725 scopus 로고    scopus 로고
    • RALGDS is required for tumor formation in a model of skin carcinogenesis
    • Gonzalez-Garcia, A. et al. RALGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7, 219-226 (2005).
    • (2005) Cancer Cell , vol.7 , pp. 219-226
    • Gonzalez-Garcia, A.1
  • 114
    • 78049370949 scopus 로고    scopus 로고
    • Aberrant overexpression of the RGL2 RAL small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through RAL-dependent and RAL-independent mechanisms
    • Vigil, D. et al. Aberrant overexpression of the RGL2 RAL small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through RAL-dependent and RAL-independent mechanisms. J. Biol. Chem. 285, 34729-34740 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 34729-34740
    • Vigil, D.1
  • 115
    • 33845448647 scopus 로고    scopus 로고
    • Divergent roles for RALA and RALB in malignant growth of human pancreatic carcinoma cells
    • Lim, K. H. et al. Divergent roles for RALA and RALB in malignant growth of human pancreatic carcinoma cells. Curr. Biol. 16, 2385-2394 (2006).
    • (2006) Curr. Biol. , vol.16 , pp. 2385-2394
    • Lim, K.H.1
  • 116
    • 84868593574 scopus 로고    scopus 로고
    • Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis
    • Peschard, P. et al. Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr. Biol. 22, 2063-2068 (2012).
    • (2012) Curr. Biol. , vol.22 , pp. 2063-2068
    • Peschard, P.1
  • 117
    • 20144373746 scopus 로고    scopus 로고
    • Identification of V23RALA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening
    • Wu, J. C. et al. Identification of V23RALA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J. Biol. Chem. 280, 9013-9022 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 9013-9022
    • Wu, J.C.1
  • 118
    • 73549119929 scopus 로고    scopus 로고
    • Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA
    • Lim, K. H. et al. Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. Mol. Cell. Biol. 30, 508-523 (2010).
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 508-523
    • Lim, K.H.1
  • 119
    • 78449292864 scopus 로고    scopus 로고
    • Phosphorylation of RALB is important for bladder cancer cell growth and metastasis
    • Wang, H. et al. Phosphorylation of RALB is important for bladder cancer cell growth and metastasis. Cancer Res. 70, 8760-8769 (2010).
    • (2010) Cancer Res. , vol.70 , pp. 8760-8769
    • Wang, H.1
  • 120
    • 84862084695 scopus 로고    scopus 로고
    • Phosphorylation by protein kinase Cα regulates RALB small GTPase protein activation, subcellular localization, and effector utilization
    • Martin, T. D., Mitin, N., Cox, A. D., Yeh, J. J. & Der, C. J. Phosphorylation by protein kinase Cα regulates RALB small GTPase protein activation, subcellular localization, and effector utilization. J. Biol. Chem. 287, 14827-14836 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 14827-14836
    • Martin, T.D.1    Mitin, N.2    Cox, A.D.3    Yeh, J.J.4    Der, C.J.5
  • 121
    • 33749165933 scopus 로고    scopus 로고
    • RALB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival
    • Chien, Y. et al. RALB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127, 157-170 (2006).
    • (2006) Cell , vol.127 , pp. 157-170
    • Chien, Y.1
  • 122
    • 84892853050 scopus 로고    scopus 로고
    • RAL and RHEB GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion
    • Martin, T. D. et al. RAL and RHEB GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol. Cell 53, 209-220 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 209-220
    • Martin, T.D.1
  • 123
    • 0037142034 scopus 로고    scopus 로고
    • Mice deficient in the RAC activator TIAM1 are resistant to RAS-induced skin tumours
    • Malliri, A. et al. Mice deficient in the RAC activator TIAM1 are resistant to RAS-induced skin tumours. Nature 417, 867-871 (2002).
    • (2002) Nature , vol.417 , pp. 867-871
    • Malliri, A.1
  • 124
    • 0036051325 scopus 로고    scopus 로고
    • TIAM1 mediates RAS activation of RAC by a PI(3)K-independent mechanism
    • Lambert, J. M. et al. TIAM1 mediates RAS activation of RAC by a PI(3)K-independent mechanism. Nature Cell Biol. 4, 621-625 (2002).
    • (2002) Nature Cell Biol. , vol.4 , pp. 621-625
    • Lambert, J.M.1
  • 125
    • 0037155727 scopus 로고    scopus 로고
    • P-REX1 a PtdIns 3 4,5)P3-and Gβγ-regulated guanine-nucleotide exchange factor for RAC
    • Welch, H. C. et al. P-REX1, a PtdIns(3,4,5)P3-and Gβγ-regulated guanine-nucleotide exchange factor for RAC. Cell 108, 809-821 (2002).
    • (2002) Cell , vol.108 , pp. 809-821
    • Welch, H.C.1
  • 126
    • 84864258996 scopus 로고    scopus 로고
    • A landscape of driver mutations in melanoma
    • Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251-263 (2012).
    • (2012) Cell , vol.150 , pp. 251-263
    • Hodis, E.1
  • 127
    • 84865684161 scopus 로고    scopus 로고
    • Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma
    • Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genet. 44, 1006-1014 (2012).
    • (2012) Nature Genet. , vol.44 , pp. 1006-1014
    • Krauthammer, M.1
  • 128
    • 34548583283 scopus 로고    scopus 로고
    • Requirement for RAC1 in a KRAS induced lung cancer in the mouse
    • Kissil, J. L. et al. Requirement for RAC1 in a KRAS induced lung cancer in the mouse. Cancer Res. 67, 8089-8094 (2007).
    • (2007) Cancer Res. , vol.67 , pp. 8089-8094
    • Kissil, J.L.1
  • 129
    • 80051540959 scopus 로고    scopus 로고
    • Early requirement of RAC1 in a mouse model of pancreatic cancer
    • Heid, I. et al. Early requirement of RAC1 in a mouse model of pancreatic cancer. Gastroenterol 141, 719-730.e7 (2011).
    • (2011) Gastroenterol , vol.141 , pp. 719-719e7
    • Heid, I.1
  • 130
    • 84904128480 scopus 로고    scopus 로고
    • Preclinical development of novel RAC1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines
    • Cardama, G. A. et al. Preclinical development of novel RAC1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents Med. Chem. 14, 840-851 (2013).
    • (2013) Anticancer Agents Med. Chem. , vol.14 , pp. 840-851
    • Cardama, G.A.1
  • 131
    • 2442664118 scopus 로고    scopus 로고
    • Rational design and characterization of a RAC GTPase-specific small molecule inhibitor
    • Gao, Y., Dickerson, J. B., Guo, F., Zheng, J. & Zheng, Y. Rational design and characterization of a RAC GTPase-specific small molecule inhibitor. Proc. Natl Acad. Sci. USA 101, 7618-7623 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 7618-7623
    • Gao, Y.1    Dickerson, J.B.2    Guo, F.3    Zheng, J.4    Zheng, Y.5
  • 132
    • 84869225094 scopus 로고    scopus 로고
    • P21-activated kinase 1 is required for efficient tumor formation and progression in a RAS-mediated skin cancer model
    • Chow, H. Y. et al. p21-activated kinase 1 is required for efficient tumor formation and progression in a RAS-mediated skin cancer model. Cancer Res. 72, 5966-5975 (2012).
    • (2012) Cancer Res. , vol.72 , pp. 5966-5975
    • Chow, H.Y.1
  • 133
    • 84878288766 scopus 로고    scopus 로고
    • RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms
    • Fritsch, R. et al. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell 153, 1050-1063 (2013).
    • (2013) Cell , vol.153 , pp. 1050-1063
    • Fritsch, R.1
  • 134
    • 84885831339 scopus 로고    scopus 로고
    • PLCε and the RASSF family in tumour suppression and other functions
    • Chan, J. J. & Katan, M. PLCε and the RASSF family in tumour suppression and other functions. Adv. Biol. Regul. 53, 258-279 (2013).
    • (2013) Adv. Biol. Regul. , vol.53 , pp. 258-279
    • Chan, J.J.1    Katan, M.2
  • 135
    • 0035830860 scopus 로고    scopus 로고
    • Principles for the buffering of genetic variation
    • Hartman, J. L. 4th, Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001-1004 (2001).
    • (2001) Science , vol.291 , pp. 1001-1004
    • Hartman, J.L.1    Garvik, B.2    Hartwell, L.3
  • 136
    • 25444497278 scopus 로고    scopus 로고
    • The concept of synthetic lethality in the context of anticancer therapy
    • Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689-698 (2005).
    • (2005) Nature Rev. Cancer , vol.5 , pp. 689-698
    • Kaelin, W.G.1
  • 137
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57-70 (2000).
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 138
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011).
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 139
    • 61449182121 scopus 로고    scopus 로고
    • Principles of cancer therapy: Oncogene and non-oncogene addiction
    • Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823-837 (2009).
    • (2009) Cell , vol.136 , pp. 823-837
    • Luo, J.1    Solimini, N.L.2    Elledge, S.J.3
  • 141
    • 1642553461 scopus 로고    scopus 로고
    • The dark side of RAS: Regulation of apoptosis
    • Cox, A. D. & Der, C. J. The dark side of RAS: regulation of apoptosis. Oncogene 22, 8999-9006 (2003).
    • (2003) Oncogene , vol.22 , pp. 8999-9006
    • Cox, A.D.1    Der, C.J.2
  • 142
    • 84860319361 scopus 로고    scopus 로고
    • The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer
    • Kumar, M. S. et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149 642-655 (2012).
    • (2012) Cell , vol.149 , pp. 642-655
    • Kumar, M.S.1
  • 143
    • 66149091940 scopus 로고    scopus 로고
    • A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the RAS oncogene
    • Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the RAS oncogene. Cell 137, 835-848 (2009).
    • (2009) Cell , vol.137 , pp. 835-848
    • Luo, J.1
  • 144
    • 70449091786 scopus 로고    scopus 로고
    • Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
    • Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108-112 (2009).
    • (2009) Nature , vol.462 , pp. 108-112
    • Barbie, D.A.1
  • 145
    • 84865015653 scopus 로고    scopus 로고
    • Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies
    • Steckel, M. et al. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Res. 22, 1227-1245 (2012).
    • (2012) Cell Res. , vol.22 , pp. 1227-1245
    • Steckel, M.1
  • 146
    • 77953238558 scopus 로고    scopus 로고
    • Integrative genomic and proteomic analyses identify targets for LKB1-deficient metastatic lung tumors
    • Carretero, J. et al. Integrative genomic and proteomic analyses identify targets for LKB1-deficient metastatic lung tumors. Cancer Cell 17, 547-559 (2010).
    • (2010) Cancer Cell , vol.17 , pp. 547-559
    • Carretero, J.1
  • 147
    • 84886787846 scopus 로고    scopus 로고
    • Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer
    • Kim, H. S. et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 155, 552-566 (2013).
    • (2013) Cell , vol.155 , pp. 552-566
    • Kim, H.S.1
  • 148
    • 33746565431 scopus 로고    scopus 로고
    • Lineage dependency and lineage-survival oncogenes in human cancer
    • Garraway, L. A. & Sellers, W. R. Lineage dependency and lineage-survival oncogenes in human cancer. Nature Rev. Cancer 6, 593-602 (2006).
    • (2006) Nature Rev. Cancer , vol.6 , pp. 593-602
    • Garraway, L.A.1    Sellers, W.R.2
  • 149
    • 84903984143 scopus 로고    scopus 로고
    • YAP1 activation enables bypass of oncogenic KRAS addiction in pancreatic cancer
    • Kapoor, A. et al. YAP1 activation enables bypass of oncogenic KRAS addiction in pancreatic cancer. Cell 158, 185-197 (2014).
    • (2014) Cell , vol.158 , pp. 185-197
    • Kapoor, A.1
  • 150
    • 84904024982 scopus 로고    scopus 로고
    • KRAS and YAP1 converge to regulate EMT and tumor survival
    • Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171-184 (2014).
    • (2014) Cell , vol.158 , pp. 171-184
    • Shao, D.D.1
  • 151
    • 79961062492 scopus 로고    scopus 로고
    • Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer
    • Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372-12377 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 12372-12377
    • Cheung, H.W.1
  • 152
    • 84865202966 scopus 로고    scopus 로고
    • Essential gene profiles in breast, pancreatic, and ovarian cancer cells
    • Marcotte, R. et al. Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov. 2, 172-189 (2012).
    • (2012) Cancer Discov. , vol.2 , pp. 172-189
    • Marcotte, R.1
  • 153
    • 84859169877 scopus 로고    scopus 로고
    • The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    • Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607 (2012).
    • (2012) Nature , vol.483 , pp. 603-607
    • Barretina, J.1
  • 154
    • 35148869637 scopus 로고    scopus 로고
    • A high-throughput soft agar assay for identification of anticancer compound
    • Anderson, S. N., Towne, D. L., Burns, D. J. & Warrior, U. A high-throughput soft agar assay for identification of anticancer compound. J. Biomol. Screen 12, 938-945 (2007).
    • (2007) J. Biomol. Screen , vol.12 , pp. 938-945
    • Anderson, S.N.1    Towne, D.L.2    Burns, D.J.3    Warrior, U.4
  • 155
    • 70349536006 scopus 로고    scopus 로고
    • In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression
    • Meacham, C. E., Ho, E. E., Dubrovsky, E., Gertler, F. B. & Hemann, M. T. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nature Genet. 41, 1133-1137 (2009).
    • (2009) Nature Genet. , vol.41 , pp. 1133-1137
    • Meacham, C.E.1    Ho, E.E.2    Dubrovsky, E.3    Gertler, F.B.4    Hemann, M.T.5
  • 156
    • 80051513341 scopus 로고    scopus 로고
    • An integrated approach to dissecting oncogene addiction implicates a MYB-coordinated self-renewal program as essential for leukemia maintenance
    • Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a MYB-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628-1640 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 1628-1640
    • Zuber, J.1
  • 157
    • 80051923932 scopus 로고    scopus 로고
    • Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
    • Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346-350 (2011).
    • (2011) Nature , vol.476 , pp. 346-350
    • Possemato, R.1
  • 158
    • 84895821357 scopus 로고    scopus 로고
    • An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor
    • Murugaesu, N. et al. An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov. 4, 304-317 (2014).
    • (2014) Cancer Discov. , vol.4 , pp. 304-317
    • Murugaesu, N.1
  • 159
    • 84892594373 scopus 로고    scopus 로고
    • Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas
    • Schramek, D. et al. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science 343, 309-313 (2014).
    • (2014) Science , vol.343 , pp. 309-313
    • Schramek, D.1
  • 160
    • 56349121125 scopus 로고    scopus 로고
    • An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer
    • Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852-864 (2008).
    • (2008) Cell , vol.135 , pp. 852-864
    • Zender, L.1
  • 161
    • 84860319361 scopus 로고    scopus 로고
    • The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer
    • Kumar, M. S. et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149, 642-655 (2012).
    • (2012) Cell , vol.149 , pp. 642-655
    • Kumar, M.S.1
  • 162
    • 84857422433 scopus 로고    scopus 로고
    • STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability
    • Luo, T. et al. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability. Proc. Natl Acad. Sci. USA 109, 2860-2865 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 2860-2865
    • Luo, T.1
  • 163
    • 84904258149 scopus 로고    scopus 로고
    • Evaluating TBK1 as a therapeutic target in cancers with activated IRF3
    • Muvaffak, A. et al. Evaluating TBK1 as a therapeutic target in cancers with activated IRF3. Mol. Cancer Res. 12, 1055-1066 (2014).
    • (2014) Mol. Cancer Res. , vol.12 , pp. 1055-1066
    • Muvaffak, A.1
  • 164
    • 84897950139 scopus 로고    scopus 로고
    • Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit
    • Zhu, Z. et al. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov. 4, 452-465 (2014).
    • (2014) Cancer Discov. , vol.4 , pp. 452-465
    • Zhu, Z.1
  • 165
    • 84872387485 scopus 로고    scopus 로고
    • Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models
    • Corcoran, R. B. et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 23, 121-128 (2013).
    • (2013) Cancer Cell , vol.23 , pp. 121-128
    • Corcoran, R.B.1
  • 166
    • 84887010498 scopus 로고    scopus 로고
    • Genome engineering using the CRISPR-Cas9 system
    • Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nature Protoc. 8, 2281-2308 (2013).
    • (2013) Nature Protoc. , vol.8 , pp. 2281-2308
    • Ran, F.A.1
  • 167
    • 84892765883 scopus 로고    scopus 로고
    • Genome-scale CRISPR-Cas9 knockout screening in human cells
    • Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84-87 (2014).
    • (2014) Science , vol.343 , pp. 84-87
    • Shalem, O.1
  • 168
    • 84892749369 scopus 로고    scopus 로고
    • Genetic screens in human cells using the CRISPR-Cas9 system
    • Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84 (2014).
    • (2014) Science , vol.343 , pp. 80-84
    • Wang, T.1    Wei, J.J.2    Sabatini, D.M.3    Lander, E.S.4
  • 169
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 (2009).
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 170
    • 84858414020 scopus 로고    scopus 로고
    • Cellular metabolism and disease: What do metabolic outliers teach us?
    • DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132-1144 (2012).
    • (2012) Cell , vol.148 , pp. 1132-1144
    • Deberardinis, R.J.1    Thompson, C.B.2
  • 171
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
    • Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441-464 (2011).
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 172
    • 84888611992 scopus 로고    scopus 로고
    • Stress eating and tuning out: Cancer cells re-wire metabolism to counter stress
    • Stine, Z. E. & Dang, C. V. Stress eating and tuning out: cancer cells re-wire metabolism to counter stress. Crit. Rev. Biochem. Mol. Biol. 48, 609-619 (2013).
    • (2013) Crit. Rev. Biochem. Mol. Biol. , vol.48 , pp. 609-619
    • Stine, Z.E.1    Dang, C.V.2
  • 173
    • 78649711427 scopus 로고    scopus 로고
    • The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
    • Levine, A. J. & Puzio-Kuter, A. M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340-1344 (2010).
    • (2010) Science , vol.330 , pp. 1340-1344
    • Levine, A.J.1    Puzio-Kuter, A.M.2
  • 174
    • 0022364146 scopus 로고
    • Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes
    • Racker, E., Resnick, R. J. & Feldman, R. Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc. Natl Acad. Sci. USA 82, 3535-3538 (1985).
    • (1985) Proc. Natl Acad. Sci. USA , vol.82 , pp. 3535-3538
    • Racker, E.1    Resnick, R.J.2    Feldman, R.3
  • 175
    • 57749088701 scopus 로고    scopus 로고
    • MYC regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
    • Wise, D. R. et al. MYC regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782-18787 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 18782-18787
    • Wise, D.R.1
  • 176
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
    • Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105 (2013).
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1
  • 177
    • 84885357137 scopus 로고    scopus 로고
    • Exploiting the bad eating habits of RAS-driven cancers
    • White, E. Exploiting the bad eating habits of RAS-driven cancers. Genes Dev. 27, 2065-2071 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 2065-2071
    • White, E.1
  • 178
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: A history of macroautophagy
    • Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nature Cell Biol. 12, 814-822 (2010).
    • (2010) Nature Cell Biol. , vol.12 , pp. 814-822
    • Yang, Z.1    Klionsky, D.J.2
  • 179
    • 80053634368 scopus 로고    scopus 로고
    • The dynamic nature of autophagy in cancer
    • Kimmelman, A. C. The dynamic nature of autophagy in cancer. Genes Dev. 25, 1999-2010 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 1999-2010
    • Kimmelman, A.C.1
  • 181
    • 84861526009 scopus 로고    scopus 로고
    • Deconvoluting the context-dependent role for autophagy in cancer
    • White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nature Rev. Cancer 12, 401-410 (2012).
    • (2012) Nature Rev. Cancer , vol.12 , pp. 401-410
    • White, E.1
  • 182
    • 79952228407 scopus 로고    scopus 로고
    • Activated RAS requires autophagy to maintain oxidative metabolism and tumorigenesis
    • Guo, J. Y. et al. Activated RAS requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460-470 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 460-470
    • Guo, J.Y.1
  • 183
    • 84879777723 scopus 로고    scopus 로고
    • Autophagy suppresses progression of KRAS-induced lung tumors to oncocytomas and maintains lipid homeostasis
    • Guo, J. Y. et al. Autophagy suppresses progression of KRAS-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447-1461 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 1447-1461
    • Guo, J.Y.1
  • 184
    • 78751511180 scopus 로고    scopus 로고
    • Autophagy facilitates glycolysis during RAS-mediated oncogenic transformation
    • Lock, R. et al. Autophagy facilitates glycolysis during RAS-mediated oncogenic transformation. Mol. Biol. Cell 22, 165-178 (2011).
    • (2011) Mol. Biol. Cell , vol.22 , pp. 165-178
    • Lock, R.1
  • 185
    • 79952229430 scopus 로고    scopus 로고
    • Pancreatic cancers require autophagy for tumor growth
    • Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717-729 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 717-729
    • Yang, S.1
  • 186
    • 84892882660 scopus 로고    scopus 로고
    • A dual role for autophagy in a murine model of lung cancer
    • Rao, S. et al. A dual role for autophagy in a murine model of lung cancer. Nature Commun. 5, 3056 (2014).
    • (2014) Nature Commun. , vol.5 , pp. 3056
    • Rao, S.1
  • 187
    • 84890432985 scopus 로고    scopus 로고
    • P53 status determines the role of autophagy in pancreatic tumour development
    • Rosenfeldt, M. T. et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296-300 (2013).
    • (2013) Nature , vol.504 , pp. 296-300
    • Rosenfeldt, M.T.1
  • 188
    • 84905499163 scopus 로고    scopus 로고
    • Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations
    • Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905-913 (2014).
    • (2014) Cancer Discov. , vol.4 , pp. 905-913
    • Yang, A.1
  • 189
    • 79951847989 scopus 로고    scopus 로고
    • Principles and current strategies for targeting autophagy for cancer treatment
    • Amaravadi, R. K. et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 17, 654-666 (2011).
    • (2011) Clin. Cancer Res. , vol.17 , pp. 654-666
    • Amaravadi, R.K.1
  • 190
    • 84859562694 scopus 로고    scopus 로고
    • Targeting autophagy addiction in cancer
    • Mancias, J. D. & Kimmelman, A. C. Targeting autophagy addiction in cancer. Oncotarget 2, 1302-1306 (2011).
    • (2011) Oncotarget , vol.2 , pp. 1302-1306
    • Mancias, J.D.1    Kimmelman, A.C.2
  • 191
    • 84861147473 scopus 로고    scopus 로고
    • A comprehensive survey of RAS mutations in cancer
    • Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of RAS mutations in cancer. Cancer Res. 72, 2457-2467 (2012).
    • (2012) Cancer Res. , vol.72 , pp. 2457-2467
    • Prior, I.A.1    Lewis, P.D.2    Mattos, C.3
  • 192
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: Core molecular machinery and signaling regulation
    • Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124-131 (2010).
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 124-131
    • Yang, Z.1    Klionsky, D.J.2
  • 193
    • 0022470480 scopus 로고
    • Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins
    • Bar-Sagi, D. & Feramisco, J. R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233, 1061-1068 (1986).
    • (1986) Science , vol.233 , pp. 1061-1068
    • Bar-Sagi, D.1    Feramisco, J.R.2
  • 194
    • 80855144226 scopus 로고    scopus 로고
    • Macropinocytosis: An endocytic pathway for internalising large gulps
    • Lim, J. P. & Gleeson, P. A. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89, 836-843 (2011).
    • (2011) Immunol. Cell Biol. , vol.89 , pp. 836-843
    • Lim, J.P.1    Gleeson, P.A.2
  • 195
    • 84878396462 scopus 로고    scopus 로고
    • Macropinocytosis of protein is an amino acid supply route in RAS-transformed cells
    • Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in RAS-transformed cells. Nature 497, 633-637 (2013).
    • (2013) Nature , vol.497 , pp. 633-637
    • Commisso, C.1
  • 196
    • 84878464291 scopus 로고    scopus 로고
    • Hypoxic and RAS-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
    • Kamphorst, J. J. et al. Hypoxic and RAS-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882-8887 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 8882-8887
    • Kamphorst, J.J.1
  • 197
    • 70349331678 scopus 로고    scopus 로고
    • Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells
    • Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555-1559 (2009).
    • (2009) Science , vol.325 , pp. 1555-1559
    • Yun, J.1
  • 198
    • 84874025568 scopus 로고    scopus 로고
    • Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas
    • McCleland, M. L. et al. Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas. Clin. Cancer Res. 19, 773-784 (2013).
    • (2013) Clin. Cancer Res. , vol.19 , pp. 773-784
    • McCleland, M.L.1
  • 199
    • 84881557242 scopus 로고    scopus 로고
    • Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
    • Patra, K. C. et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24, 213-228 (2013).
    • (2013) Cancer Cell , vol.24 , pp. 213-228
    • Patra, K.C.1
  • 200
    • 80051866908 scopus 로고    scopus 로고
    • Oncogenic KRAS decouples glucose and glutamine metabolism to support cancer cell growth
    • Gaglio, D. et al. Oncogenic KRAS decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523 (2011).
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 523
    • Gaglio, D.1
  • 201
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for KRAS-mediated tumorigenicity
    • Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for KRAS-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788-8793 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 8788-8793
    • Weinberg, F.1
  • 202
    • 84870982915 scopus 로고    scopus 로고
    • Design, synthesis and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors
    • Shukla, K. et al. Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J. Med. Chem. 55, 10551-10563 (2012).
    • (2012) J. Med. Chem. , vol.55 , pp. 10551-10563
    • Shukla, K.1
  • 203
    • 59449083179 scopus 로고    scopus 로고
    • Targeting aspartate aminotransferase in breast cancer
    • Thornburg, J. M. et al. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res. 10, R84 (2008).
    • (2008) Breast Cancer Res. , vol.10 , pp. R84
    • Thornburg, J.M.1
  • 204
    • 67649402187 scopus 로고    scopus 로고
    • The NRF2-antioxidant response element signaling pathway and its activation by oxidative stress
    • Nguyen, T., Nioi, P. & Pickett, C. B. The NRF2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284, 13291-13295 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 13291-13295
    • Nguyen, T.1    Nioi, P.2    Pickett, C.B.3
  • 205
    • 79960060305 scopus 로고    scopus 로고
    • Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
    • DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109 (2011).
    • (2011) Nature , vol.475 , pp. 106-109
    • Denicola, G.M.1
  • 206
    • 52949118488 scopus 로고    scopus 로고
    • Kras regulatory elements and exon 4A determine mutation specificity in lung cancer
    • To, M. D. et al. Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nature Genet. 40, 1240-1244 (2008).
    • (2008) Nature Genet. , vol.40 , pp. 1240-1244
    • To, M.D.1
  • 207
    • 84872107552 scopus 로고    scopus 로고
    • Rare codons regulate KRAS oncogenesis
    • Lampson, B. L. et al. Rare codons regulate KRAS oncogenesis. Curr. Biol. 23, 70-75 (2013).
    • (2013) Curr. Biol. , vol.23 , pp. 70-75
    • Lampson, B.L.1
  • 208
    • 72249091662 scopus 로고    scopus 로고
    • Prognostic significance of alterations in KRAS isoforms KRAS4A/4B and KRAS mutations in colorectal carcinoma
    • Abubaker, J. et al. Prognostic significance of alterations in KRAS isoforms KRAS4A/4B and KRAS mutations in colorectal carcinoma. J. Pathol. 219, 435-445 (2009).
    • (2009) J. Pathol. , vol.219 , pp. 435-445
    • Abubaker, J.1
  • 209
    • 78049341541 scopus 로고    scopus 로고
    • Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab
    • De Roock, W. et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304, 1812-1820 (2010).
    • (2010) JAMA , vol.304 , pp. 1812-1820
    • De Roock, W.1
  • 210
    • 84867117207 scopus 로고    scopus 로고
    • Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab
    • Tejpar, S. et al. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J. Clin. Oncol. 30, 3570-3577 (2012).
    • (2012) J. Clin. Oncol. , vol.30 , pp. 3570-3577
    • Tejpar, S.1
  • 211
    • 84863116014 scopus 로고    scopus 로고
    • Effect of KRAS oncogene substitutions on protein behavior: Implications for signaling and clinical outcome
    • Ihle, N. T. et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J. Natl Cancer Inst. 104, 228-239 (2012).
    • (2012) J. Natl Cancer Inst. , vol.104 , pp. 228-239
    • Ihle, N.T.1
  • 212
    • 17944369909 scopus 로고    scopus 로고
    • Wildtype Kras2 can inhibit lung carcinogenesis in mice
    • Zhang, Z. et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nature Genet. 29, 25-33 (2001).
    • (2001) Nature Genet. , vol.29 , pp. 25-33
    • Zhang, Z.1
  • 213
    • 0025365140 scopus 로고
    • Genetic changes in skin tumor progression: Correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7
    • Bremner, R. & Balmain, A. Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61, 407-417 (1990).
    • (1990) Cell , vol.61 , pp. 407-417
    • Bremner, R.1    Balmain, A.2
  • 214
    • 33947526086 scopus 로고    scopus 로고
    • Growth inhibitory effect of wild-type KRAS2 gene on a colonic adenocarcinoma cell line
    • Li, H. et al. Growth inhibitory effect of wild-type KRAS2 gene on a colonic adenocarcinoma cell line. World J. Gastroenterol. 13, 934-938 (2007).
    • (2007) World J. Gastroenterol. , vol.13 , pp. 934-938
    • Li, H.1
  • 215
    • 84862833377 scopus 로고    scopus 로고
    • Disruption of p16 and activation of KRAS in pancreas increase ductal adenocarcinoma formation and metastasis in vivo
    • Qiu, W. et al. Disruption of p16 and activation of KRAS in pancreas increase ductal adenocarcinoma formation and metastasis in vivo. Oncotarget 2, 862-873 (2011).
    • (2011) Oncotarget , vol.2 , pp. 862-873
    • Qiu, W.1
  • 216
    • 84896840047 scopus 로고    scopus 로고
    • HRAS forms dimers on membrane surfaces via a protein-protein interface
    • Lin, W. C. et al. HRAS forms dimers on membrane surfaces via a protein-protein interface. Proc. Natl Acad. Sci. USA 111, 2996-3001 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 2996-3001
    • Lin, W.C.1
  • 217
    • 84885224619 scopus 로고    scopus 로고
    • Dominant role of oncogene dosage and absence of tumor suppressor activity in NRAS-driven hematopoietic transformation
    • Xu, J. et al. Dominant role of oncogene dosage and absence of tumor suppressor activity in NRAS-driven hematopoietic transformation. Cancer Discov. 3, 993-1001 (2013).
    • (2013) Cancer Discov. , vol.3 , pp. 993-1001
    • Xu, J.1
  • 218
    • 84893622205 scopus 로고    scopus 로고
    • Wild-type H-and N-RAS promote mutant KRAS-driven tumorigenesis by modulating the DNA damage response
    • Grabocka, E. et al. Wild-type H-and N-RAS promote mutant KRAS-driven tumorigenesis by modulating the DNA damage response. Cancer Cell 25, 243-256 (2014).
    • (2014) Cancer Cell , vol.25 , pp. 243-256
    • Grabocka, E.1
  • 219
    • 84872853570 scopus 로고    scopus 로고
    • Oncogenic and wild-type RAS play divergent roles in the regulation of mitogen-activated protein kinase signaling
    • Young, A., Lou, D. & McCormick, F. Oncogenic and wild-type RAS play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov. 3, 112-123 (2013).
    • (2013) Cancer Discov. , vol.3 , pp. 112-123
    • Young, A.1    Lou, D.2    McCormick, F.3
  • 220
    • 84883818170 scopus 로고    scopus 로고
    • Immunotherapy at large: The road to personalized cancer vaccines
    • Vonderheide, R. H. & Nathanson, K. L. Immunotherapy at large: the road to personalized cancer vaccines. Nature Med. 19, 1098-1100 (2013).
    • (2013) Nature Med. , vol.19 , pp. 1098-1100
    • Vonderheide, R.H.1    Nathanson, K.L.2
  • 221
    • 84862150896 scopus 로고    scopus 로고
    • Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer
    • Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822-835 (2012).
    • (2012) Cancer Cell , vol.21 , pp. 822-835
    • Bayne, L.J.1
  • 222
    • 84862147254 scopus 로고    scopus 로고
    • Oncogenic KRAS-induced GM-CSF production promotes the development of pancreatic neoplasia
    • Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic KRAS-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836-847 (2012).
    • (2012) Cancer Cell , vol.21 , pp. 836-847
    • Pylayeva-Gupta, Y.1    Lee, K.E.2    Hajdu, C.H.3    Miller, G.4    Bar-Sagi, D.5
  • 224
    • 0031035593 scopus 로고    scopus 로고
    • Sulfone metabolite of sulindac inhibits mammary carcinogenesis
    • Thompson, H. J. et al. Sulfone metabolite of sulindac inhibits mammary carcinogenesis. Cancer Res. 57, 267-271 (1997).
    • (1997) Cancer Res. , vol.57 , pp. 267-271
    • Thompson, H.J.1
  • 225
    • 33846846261 scopus 로고    scopus 로고
    • Survivin depletion preferentially reduces the survival of activated KRAS-transformed cells
    • Sarthy, A. V. et al. Survivin depletion preferentially reduces the survival of activated KRAS-transformed cells. Mol. Cancer Ther. 6, 269-276 (2007).
    • (2007) Mol. Cancer Ther. , vol.6 , pp. 269-276
    • Sarthy, A.V.1
  • 226
    • 34249285532 scopus 로고    scopus 로고
    • Identification of RAS-related nuclear protein, targeting protein for Xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen
    • Morgan-Lappe, S. E. et al. Identification of RAS-related nuclear protein, targeting protein for Xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res. 67, 4390-4398 (2007).
    • (2007) Cancer Res. , vol.67 , pp. 4390-4398
    • Morgan-Lappe, S.E.1
  • 227
    • 65849111219 scopus 로고    scopus 로고
    • Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells
    • Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137, 821-834 (2009).
    • (2009) Cell , vol.137 , pp. 821-834
    • Scholl, C.1
  • 228
    • 78049418533 scopus 로고    scopus 로고
    • Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models
    • Vicent, S. et al. Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J. Clin. Invest. 120, 3940-3952 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 3940-3952
    • Vicent, S.1
  • 229
    • 77955918876 scopus 로고    scopus 로고
    • Critical role for transcriptional repressor SNAIL2 in transformation by oncogenic RAS in colorectal carcinoma cells
    • Wang, Y. et al. Critical role for transcriptional repressor SNAIL2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 29, 4658-4670 (2010).
    • (2010) Oncogene , vol.29 , pp. 4658-4670
    • Wang, Y.1
  • 230
    • 84863419728 scopus 로고    scopus 로고
    • TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers
    • Singh, A. et al. TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell 148, 639-650 (2012).
    • (2012) Cell , vol.148 , pp. 639-650
    • Singh, A.1
  • 231
    • 84893610509 scopus 로고    scopus 로고
    • The RHOGEF GEF-H1 is required for oncogenic RAS signaling via KSR1
    • Cullis, J. et al. The RHOGEF GEF-H1 is required for oncogenic RAS signaling via KSR1. Cancer Cell 25, 181-195 (2014).
    • (2014) Cancer Cell , vol.25 , pp. 181-195
    • Cullis, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.