-
1
-
-
78649474147
-
RAS history: The saga continues
-
Cox, A. D. & Der, C. J. RAS history: The saga continues. Small GTPases 1, 2-27 (2010).
-
(2010)
Small GTPases
, vol.1
, pp. 2-27
-
-
Cox, A.D.1
Der, C.J.2
-
2
-
-
84875490185
-
Cancer genome landscapes
-
Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546-1558 (2013).
-
(2013)
Science
, vol.339
, pp. 1546-1558
-
-
Vogelstein, B.1
-
3
-
-
84886745490
-
US National Cancer Institute's new RAS project targets an old foe
-
Thompson, H. US National Cancer Institute's new RAS project targets an old foe. Nature Med. 19, 949-950 (2013).
-
(2013)
Nature Med.
, vol.19
, pp. 949-950
-
-
Thompson, H.1
-
4
-
-
80054866000
-
Targeting protein prenylation for cancer therapy
-
Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nature Rev. Cancer 11, 775-791 (2011).
-
(2011)
Nature Rev. Cancer
, vol.11
, pp. 775-791
-
-
Berndt, N.1
Hamilton, A.D.2
Sebti, S.M.3
-
5
-
-
19344362405
-
Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
-
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469-483 (2005).
-
(2005)
Cancer Cell
, vol.7
, pp. 469-483
-
-
Hingorani, S.R.1
-
6
-
-
34547926839
-
LKB1 modulates lung cancer differentiation and metastasis
-
Ji, H. et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807-810 (2007).
-
(2007)
Nature
, vol.448
, pp. 807-810
-
-
Ji, H.1
-
7
-
-
42649125571
-
Differential effects of oncogenic KRAS and NRAS on proliferation, differentiation and tumor progression in the colon
-
Haigis, K. M. et al. Differential effects of oncogenic KRAS and NRAS on proliferation, differentiation and tumor progression in the colon. Nature Genet. 40, 600-608 (2008).
-
(2008)
Nature Genet.
, vol.40
, pp. 600-608
-
-
Haigis, K.M.1
-
8
-
-
0036726313
-
Stable suppression of tumorigenicity by virus-mediated RNA interference
-
Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243-247 (2002).
-
(2002)
Cancer Cell
, vol.2
, pp. 243-247
-
-
Brummelkamp, T.R.1
Bernards, R.2
Agami, R.3
-
9
-
-
27644556527
-
Reduction in the requirement of oncogenic RAS signaling to activation of PI3K/AKT pathway during tumor maintenance
-
Lim, K. H. & Counter, C. M. Reduction in the requirement of oncogenic RAS signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell 8, 381-392 (2005).
-
(2005)
Cancer Cell
, vol.8
, pp. 381-392
-
-
Lim, K.H.1
Counter, C.M.2
-
10
-
-
65649108558
-
A gene expression signature associated with "kRAS addiction" reveals regulators of EMT and tumor cell survival
-
Singh, A. et al. A gene expression signature associated with "KRAS addiction" reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489-500 (2009).
-
(2009)
Cancer Cell
, vol.15
, pp. 489-500
-
-
Singh, A.1
-
11
-
-
0033614962
-
Essential role for oncogenic RAS in tumour maintenance
-
Chin, L. et al. Essential role for oncogenic RAS in tumour maintenance. Nature 400, 468-472 (1999).
-
(1999)
Nature
, vol.400
, pp. 468-472
-
-
Chin, L.1
-
12
-
-
84870709449
-
Metastatic pancreatic cancer is dependent on oncogenic KRAS in mice
-
Collins, M. A. et al. Metastatic pancreatic cancer is dependent on oncogenic KRAS in mice. PLoS ONE 7, e49707 (2012).
-
(2012)
PLoS ONE
, vol.7
, pp. e49707
-
-
Collins, M.A.1
-
13
-
-
0035893318
-
Induction and apoptotic regression of lung adenocarcinomas by regulation of a KRAS transgene in the presence and absence of tumor suppressor genes
-
Fisher, G. H. et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a KRAS transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15, 3249-3262 (2001).
-
(2001)
Genes Dev.
, vol.15
, pp. 3249-3262
-
-
Fisher, G.H.1
-
14
-
-
84870289371
-
Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma
-
Kwong, L. N. et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nature Med. 18, 1503-1510 (2012).
-
(2012)
Nature Med.
, vol.18
, pp. 1503-1510
-
-
Kwong, L.N.1
-
15
-
-
84860321700
-
Oncogenic KRAS maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying, H. et al. Oncogenic KRAS maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670 (2012).
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
-
16
-
-
34249018367
-
GEFs and GAPs: Critical elements in the control of small G proteins
-
Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877 (2007).
-
(2007)
Cell
, vol.129
, pp. 865-877
-
-
Bos, J.L.1
Rehmann, H.2
Wittinghofer, A.3
-
17
-
-
84896090174
-
Dragging RAS back in the ring
-
Stephen, A. G., Esposito, D., Bagni, R. K. & McCormick, F. Dragging RAS back in the ring. Cancer Cell 25, 272-281 (2014).
-
(2014)
Cancer Cell
, vol.25
, pp. 272-281
-
-
Stephen, A.G.1
Esposito, D.2
Bagni, R.K.3
McCormick, F.4
-
18
-
-
84255195028
-
Regulating the regulator: Post-translational modification of RAS
-
Ahearn, I. M., Haigis, K., Bar-Sagi, D. & Philips, M. R. Regulating the regulator: post-translational modification of RAS. Nature Rev. Mol. Cell Biol. 13, 39-51 (2012).
-
(2012)
Nature Rev. Mol. Cell Biol.
, vol.13
, pp. 39-51
-
-
Ahearn, I.M.1
Haigis, K.2
Bar-Sagi, D.3
Philips, M.R.4
-
19
-
-
0025194466
-
Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides
-
Reiss, Y., Goldstein, J. L., Seabra, M. C., Casey, P. J. & Brown, M. S. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 62, 81-88 (1990).
-
(1990)
Cell
, vol.62
, pp. 81-88
-
-
Reiss, Y.1
Goldstein, J.L.2
Seabra, M.C.3
Casey, P.J.4
Brown, M.S.5
-
20
-
-
0028958919
-
Polylysine and CVIM sequences of KRASB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro
-
James, G. L., Goldstein, J. L. & Brown, M. S. Polylysine and CVIM sequences of KRASB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J. Biol. Chem. 270, 6221-6226 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 6221-6226
-
-
James, G.L.1
Goldstein, J.L.2
Brown, M.S.3
-
21
-
-
0030923192
-
K-and N-RAS are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors
-
Whyte, D. B. et al. K-and N-RAS are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J. Biol. Chem. 272, 14459-14464 (1997).
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 14459-14464
-
-
Whyte, D.B.1
-
22
-
-
0030968859
-
Direct demonstration of geranylgeranylation and farnesylation of Ki-RAS in vivo
-
Rowell, C. A., Kowalczyk, J. J., Lewis, M. D. & Garcia, A. M. Direct demonstration of geranylgeranylation and farnesylation of Ki-RAS in vivo. J. Biol. Chem. 272, 14093-14097 (1997).
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 14093-14097
-
-
Rowell, C.A.1
Kowalczyk, J.J.2
Lewis, M.D.3
Garcia, A.M.4
-
23
-
-
78649487698
-
RAS superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nature Rev
-
Vigil, D., Cherfils, J., Rossman, K. L. & Der, C. J. RAS superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nature Rev. Cancer 10, 842-857 (2010).
-
(2010)
Cancer
, vol.10
, pp. 842-857
-
-
Vigil, D.1
Cherfils, J.2
Rossman, K.L.3
Der, C.J.4
-
24
-
-
80055034617
-
Novel allosteric sites on RAS for lead generation
-
Grant, B. J. et al. Novel allosteric sites on RAS for lead generation. PLoS ONE 6, e25711 (2011).
-
(2011)
PLoS ONE
, vol.6
, pp. e25711
-
-
Grant, B.J.1
-
25
-
-
80054860512
-
Analysis of binding site hot spots on the surface of RAS GTPase
-
Buhrman, G. et al. Analysis of binding site hot spots on the surface of RAS GTPase. J. Mol. Biol. 413, 773-789 (2011).
-
(2011)
J. Mol. Biol.
, vol.413
, pp. 773-789
-
-
Buhrman, G.1
-
26
-
-
84865463399
-
RAS inhibition via direct RAS binding-is there a path forward?
-
Wang, W., Fang, G. & Rudolph, J. RAS inhibition via direct RAS binding-is there a path forward? Bioorg. Med. Chem. Lett. 22, 5766-5776 (2012).
-
(2012)
Bioorg. Med. Chem. Lett.
, vol.22
, pp. 5766-5776
-
-
Wang, W.1
Fang, G.2
Rudolph, J.3
-
27
-
-
0031012426
-
RAS oncoprotein inhibitors: The discovery of potent RAS nucleotide exchange inhibitors and the structural determination of a drug-protein complex
-
Taveras, A. G. et al. RAS oncoprotein inhibitors: the discovery of potent, RAS nucleotide exchange inhibitors and the structural determination of a drug-protein complex. Bioorg. Med. Chem. 5, 125-133 (1997).
-
(1997)
Bioorg. Med. Chem.
, vol.5
, pp. 125-133
-
-
Taveras, A.G.1
-
28
-
-
26944480768
-
Design, synthesis and biological evaluation of sugar-derived RAS inhibitors
-
Peri, F. et al. Design, synthesis and biological evaluation of sugar-derived RAS inhibitors. Chembiochem 6, 1839-1848 (2005).
-
(2005)
Chembiochem
, vol.6
, pp. 1839-1848
-
-
Peri, F.1
-
29
-
-
0032497698
-
Sulindac sulfide inhibits RAS signaling
-
Herrmann, C. et al. Sulindac sulfide inhibits RAS signaling. Oncogene 17, 1769-1776 (1998).
-
(1998)
Oncogene
, vol.17
, pp. 1769-1776
-
-
Herrmann, C.1
-
30
-
-
0842285880
-
Sulindac-derived RAS pathway inhibitors target the RAS-RAF interaction and downstream effectors in the RAS pathway
-
Waldmann, H. et al. Sulindac-derived RAS pathway inhibitors target the RAS-RAF interaction and downstream effectors in the RAS pathway. Angew. Chem. Int. Ed Engl. 43, 454-458 (2004).
-
(2004)
Angew. Chem. Int. Ed Engl.
, vol.43
, pp. 454-458
-
-
Waldmann, H.1
-
31
-
-
0037088262
-
The new sulindac derivative IND 12 reverses RAS-induced cell transformation
-
Karaguni, I. M. et al. The new sulindac derivative IND 12 reverses RAS-induced cell transformation. Cancer Res. 62, 1718-1723 (2002).
-
(2002)
Cancer Res.
, vol.62
, pp. 1718-1723
-
-
Karaguni, I.M.1
-
32
-
-
0037169997
-
New indene-derivatives with anti-proliferative properties
-
Karaguni, I. M. et al. New indene-derivatives with anti-proliferative properties. Bioorg. Med. Chem. Lett. 12, 709-713 (2002).
-
(2002)
Bioorg. Med. Chem. Lett.
, vol.12
, pp. 709-713
-
-
Karaguni, I.M.1
-
33
-
-
77649325767
-
Genetic and functional characterization of putative RAS/RAF interaction inhibitors in Celegans and mammalian cells
-
Gonzalez-Perez, V. et al. Genetic and functional characterization of putative RAS/RAF interaction inhibitors in C. Elegans and mammalian cells. J. Mol. Signal. 5, 2 (2010).
-
(2010)
J. Mol. Signal.
, vol.5
, pp. 2
-
-
Gonzalez-Perez, V.1
-
34
-
-
0037195142
-
Inhibitors of RAS/RAF1 interaction identified by two-hybrid screening revert RAS-dependent transformation phenotypes in human cancer cells
-
Kato-Stankiewicz, J. et al. Inhibitors of RAS/RAF1 interaction identified by two-hybrid screening revert RAS-dependent transformation phenotypes in human cancer cells. Proc. Natl Acad. Sci. USA 99, 14398-14403 (2002).
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 14398-14403
-
-
Kato-Stankiewicz, J.1
-
35
-
-
77952650846
-
Stabilizing a weak binding state for effectors in the human RAS protein by cyclen complexes
-
Rosnizeck, I. C. et al. Stabilizing a weak binding state for effectors in the human RAS protein by cyclen complexes. Angew. Chem. Int. Ed Engl. 49, 3830-3833 (2010).
-
(2010)
Angew. Chem. Int. Ed Engl.
, vol.49
, pp. 3830-3833
-
-
Rosnizeck, I.C.1
-
36
-
-
84860390239
-
An orthosteric inhibitor of the RAS-SOS interaction
-
Patgiri, A., Yadav, K. K., Arora, P. S. & Bar-Sagi, D. An orthosteric inhibitor of the RAS-SOS interaction. Nature Chem. Biol. 7, 585-587 (2011).
-
(2011)
Nature Chem. Biol.
, vol.7
, pp. 585-587
-
-
Patgiri, A.1
Yadav, K.K.2
Arora, P.S.3
Bar-Sagi, D.4
-
37
-
-
84883432191
-
Stapled α-helical peptide drug development: A potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy
-
Chang, Y. S. et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl Acad. Sci. USA 110, E3445-E3454 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. E3445-E3454
-
-
Chang, Y.S.1
-
38
-
-
84859463451
-
Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity
-
Maurer, T. et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc. Natl Acad. Sci. USA 109, 5299-5304 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 5299-5304
-
-
Maurer, T.1
-
39
-
-
84862649997
-
Discovery of small molecules that bind to KRAS and inhibit SOS-mediated activation
-
Sun, Q. et al. Discovery of small molecules that bind to KRAS and inhibit SOS-mediated activation. Angew. Chem. Int. Ed Engl. 51, 6140-6143 (2012).
-
(2012)
Angew. Chem. Int. Ed Engl.
, vol.51
, pp. 6140-6143
-
-
Sun, Q.1
-
40
-
-
84877863454
-
In silico discovery of small-molecule RAS inhibitors that display antitumor activity by blocking the RAS-effector interaction
-
Shima, F. et al. In silico discovery of small-molecule RAS inhibitors that display antitumor activity by blocking the RAS-effector interaction. Proc. Natl Acad. Sci. USA 110, 8182-8187 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 8182-8187
-
-
Shima, F.1
-
41
-
-
84888639050
-
KRAS (G12C) inhibitors allosterically control GTP affinity and effector interactions
-
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. KRAS (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548-551 (2013).
-
(2013)
Nature
, vol.503
, pp. 548-551
-
-
Ostrem, J.M.1
Peters, U.2
Sos, M.L.3
Wells, J.A.4
Shokat, K.M.5
-
42
-
-
84863230071
-
A novel class of highly potent irreversible hepatitis C virus NS5B polymerase inhibitors
-
Chen, K. X. et al. A novel class of highly potent irreversible hepatitis C virus NS5B polymerase inhibitors. J. Med. Chem. 55, 2089-2101 (2012).
-
(2012)
J. Med. Chem.
, vol.55
, pp. 2089-2101
-
-
Chen, K.X.1
-
43
-
-
84884243421
-
Structure-and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR)
-
Ward, R. A. et al. Structure-and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR). J. Med. Chem. 56, 7025-7048 (2013).
-
(2013)
J. Med. Chem.
, vol.56
, pp. 7025-7048
-
-
Ward, R.A.1
-
44
-
-
84890947640
-
Therapeutic targeting of oncogenic KRAS by a covalent catalytic site inhibitor
-
Lim, S. M. et al. Therapeutic targeting of oncogenic KRAS by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed Engl. 53, 199-204 (2014).
-
(2014)
Angew. Chem. Int. Ed Engl.
, vol.53
, pp. 199-204
-
-
Lim, S.M.1
-
45
-
-
84895834287
-
Approach for targeting RAS with small molecules that activate SOS-mediated nucleotide exchange
-
Burns, M. C. et al. Approach for targeting RAS with small molecules that activate SOS-mediated nucleotide exchange. Proc. Natl Acad. Sci. USA 111, 3401-3406 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 3401-3406
-
-
Burns, M.C.1
-
46
-
-
84887521253
-
Transformation by HrasG12V is consistently associated with mutant allele copy gains and is reversed by farnesyl transferase inhibition
-
Chen, X., Makarewicz, J. M., Knauf, J. A., Johnson, L. K. & Fagin, J. A. Transformation by HrasG12V is consistently associated with mutant allele copy gains and is reversed by farnesyl transferase inhibition. Oncogene http://dx.doi.org/10.1038/onc.2013.489 (2013).
-
(2013)
Oncogene
-
-
Chen, X.1
Makarewicz, J.M.2
Knauf, J.A.3
Johnson, L.K.4
Fagin, J.A.5
-
47
-
-
77950904083
-
Targeting the protein prenyltransferases efficiently reduces tumor development in mice with KRAS-induced lung cancer
-
Liu, M. et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with KRAS-induced lung cancer. Proc. Natl Acad. Sci. USA 107, 6471-6476 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 6471-6476
-
-
Liu, M.1
-
48
-
-
0028981375
-
Selective inhibition of RAS-dependent cell growth by farnesylthiosalisylic acid
-
Marom, M. et al. Selective inhibition of RAS-dependent cell growth by farnesylthiosalisylic acid. J. Biol. Chem. 270, 22263-22270 (1995).
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 22263-22270
-
-
Marom, M.1
-
49
-
-
0031590420
-
The RAS antagonist S-farnesylthiosalicylic acid induces inhibition of MAPK activation
-
Gana-Weisz, M. et al. The RAS antagonist S-farnesylthiosalicylic acid induces inhibition of MAPK activation. Biochem. Biophys. Res. Commun. 239, 900-904 (1997).
-
(1997)
Biochem. Biophys. Res. Commun.
, vol.239
, pp. 900-904
-
-
Gana-Weisz, M.1
-
50
-
-
0032477606
-
Dislodgment and accelerated degradation of RAS
-
Haklai, R. et al. Dislodgment and accelerated degradation of RAS. Biochemistry 37, 1306-1314 (1998).
-
(1998)
Biochemistry
, vol.37
, pp. 1306-1314
-
-
Haklai, R.1
-
51
-
-
84856111964
-
Farnesylthiosalicylic acid (salirasib) inhibits RHEB in TSC2-null ELT3 cells: A potential treatment for lymphangioleiomyomatosis
-
Makovski, V., Haklai, R. & Kloog, Y. Farnesylthiosalicylic acid (salirasib) inhibits RHEB in TSC2-null ELT3 cells: a potential treatment for lymphangioleiomyomatosis. Int. J. Cancer 130, 1420-1429 (2012).
-
(2012)
Int. J. Cancer
, vol.130
, pp. 1420-1429
-
-
Makovski, V.1
Haklai, R.2
Kloog, Y.3
-
52
-
-
11244264754
-
Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-Raptor complex
-
McMahon, L. P., Yue, W., Santen, R. J. & Lawrence, J. C. Jr. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-Raptor complex. Mol. Endocrinol. 19, 175-183 (2005).
-
(2005)
Mol. Endocrinol.
, vol.19
, pp. 175-183
-
-
McMahon, L.P.1
Yue, W.2
Santen, R.J.3
Lawrence, J.C.4
-
53
-
-
75149142796
-
Differential requirement of CAAX-mediated posttranslational processing for RHEB localization and signaling
-
Hanker, A. B. et al. Differential requirement of CAAX-mediated posttranslational processing for RHEB localization and signaling. Oncogene 29, 380-391 (2010).
-
(2010)
Oncogene
, vol.29
, pp. 380-391
-
-
Hanker, A.B.1
-
54
-
-
0013227128
-
A new functional RAS antagonist inhibits human pancreatic tumor growth in nude mice
-
Weisz, B. et al. A new functional RAS antagonist inhibits human pancreatic tumor growth in nude mice. Oncogene 18, 2579-2588 (1999).
-
(1999)
Oncogene
, vol.18
, pp. 2579-2588
-
-
Weisz, B.1
-
55
-
-
34848874825
-
Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice
-
Haklai, R., Elad-Sfadia, G., Egozi, Y. & Kloog, Y. Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice. Cancer Chemother. Pharmacol. 61, 89-96 (2008).
-
(2008)
Cancer Chemother. Pharmacol.
, vol.61
, pp. 89-96
-
-
Haklai, R.1
Elad-Sfadia, G.2
Egozi, Y.3
Kloog, Y.4
-
56
-
-
84875534210
-
Integrated preclinical and clinical development of S-trans, trans-farnesylthiosalicylic Acid (FTS, Salirasib) in pancreatic cancer
-
Laheru, D. et al. Integrated preclinical and clinical development of S-trans, trans-farnesylthiosalicylic Acid (FTS, Salirasib) in pancreatic cancer. Invest. New Drugs 30, 2391-2399 (2012).
-
(2012)
Invest. New Drugs
, vol.30
, pp. 2391-2399
-
-
Laheru, D.1
-
57
-
-
33846191877
-
Rce1 deficiency accelerates the development of KRAS-induced myeloproliferative disease
-
Wahlstrom, A. M. et al. Rce1 deficiency accelerates the development of KRAS-induced myeloproliferative disease. Blood 109, 763-768 (2007).
-
(2007)
Blood
, vol.109
, pp. 763-768
-
-
Wahlstrom, A.M.1
-
58
-
-
51649099589
-
Inactivating Icmt ameliorates KRAS-induced myeloproliferative disease
-
Wahlstrom, A. M. et al. Inactivating Icmt ameliorates KRAS-induced myeloproliferative disease. Blood 112, 1357-1365 (2008).
-
(2008)
Blood
, vol.112
, pp. 1357-1365
-
-
Wahlstrom, A.M.1
-
59
-
-
84887433950
-
Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression
-
Court, H. et al. Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression. J. Clin. Invest. 123, 4681-4694 (2013).
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 4681-4694
-
-
Court, H.1
-
60
-
-
84855202806
-
Amide-modified prenylcysteine based ICMT inhibitors: Structure-activity relationships, kinetic analysis and cellular characterization
-
Majmudar, J. D. et al. Amide-modified prenylcysteine based ICMT inhibitors: structure-activity relationships, kinetic analysis and cellular characterization. Bioorg. Med. Chem. 20, 283-295 (2012).
-
(2012)
Bioorg. Med. Chem.
, vol.20
, pp. 283-295
-
-
Majmudar, J.D.1
-
61
-
-
35148833800
-
Small-molecule inhibitors of the RCE1P CAAX protease
-
Manandhar, S. P., Hildebrandt, E. R. & Schmidt, W. K. Small-molecule inhibitors of the RCE1P CAAX protease. J. Biomol. Screen 12, 983-993 (2007).
-
(2007)
J. Biomol. Screen
, vol.12
, pp. 983-993
-
-
Manandhar, S.P.1
Hildebrandt, E.R.2
Schmidt, W.K.3
-
62
-
-
20144365360
-
A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells
-
Winter-Vann, A. M. et al. A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells. Proc. Natl Acad. Sci. USA 102, 4336-4341 (2005).
-
(2005)
Proc. Natl Acad. Sci. USA
, vol.102
, pp. 4336-4341
-
-
Winter-Vann, A.M.1
-
63
-
-
0036091925
-
RAS signalling on the endoplasmic reticulum and the Golgi
-
Chiu, V. K. et al. RAS signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biol. 4, 343-350 (2002).
-
(2002)
Nature Cell Biol.
, vol.4
, pp. 343-350
-
-
Chiu, V.K.1
-
64
-
-
77951729960
-
Palmitoylation of oncogenic NRAS is essential for leukemogenesis
-
Cuiffo, B. & Ren, R. Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood 115, 3598-3605 (2010).
-
(2010)
Blood
, vol.115
, pp. 3598-3605
-
-
Cuiffo, B.1
Ren, R.2
-
65
-
-
24744466287
-
DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H-and N-RAS
-
Swarthout, J. T. et al. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H-and N-RAS. J. Biol. Chem. 280, 31141-31148 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 31141-31148
-
-
Swarthout, J.T.1
-
66
-
-
22944460791
-
Depalmitoylated RAS traffics to and from the Golgi complex via a nonvesicular pathway
-
Goodwin, J. S. et al. Depalmitoylated RAS traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170, 261-272 (2005).
-
(2005)
J. Cell Biol.
, vol.170
, pp. 261-272
-
-
Goodwin, J.S.1
-
67
-
-
77951913833
-
The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins
-
Rocks, O. et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141, 458-471 (2010).
-
(2010)
Cell
, vol.141
, pp. 458-471
-
-
Rocks, O.1
-
68
-
-
20144375061
-
An acylation cycle regulates localization and activity of palmitoylated RAS isoforms
-
Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated RAS isoforms. Science 307, 1746-1752 (2005).
-
(2005)
Science
, vol.307
, pp. 1746-1752
-
-
Rocks, O.1
-
69
-
-
77952541156
-
Small-molecule inhibition of APT1 affects RAS localization and signaling
-
Dekker, F. J. et al. Small-molecule inhibition of APT1 affects RAS localization and signaling. Nature Chem. Biol. 6, 449-456 (2010).
-
(2010)
Nature Chem. Biol.
, vol.6
, pp. 449-456
-
-
Dekker, F.J.1
-
70
-
-
84859341928
-
Targeting protein lipidation in disease
-
Resh, M. D. Targeting protein lipidation in disease. Trends Mol. Med. 18, 206-214 (2012).
-
(2012)
Trends Mol. Med.
, vol.18
, pp. 206-214
-
-
Resh, M.D.1
-
71
-
-
32444441115
-
PKC regulates a farnesyl-electrostatic switch on KRAS that promotes its association with BCL-XL on mitochondria and induces apoptosis
-
Bivona, T. G. et al. PKC regulates a farnesyl-electrostatic switch on KRAS that promotes its association with BCL-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481-493 (2006).
-
(2006)
Mol. Cell
, vol.21
, pp. 481-493
-
-
Bivona, T.G.1
-
72
-
-
84890835716
-
Phosphorylated KRAS limits cell survival by blocking BCL-XL sensitization of inositol trisphosphate receptors
-
Sung, P. J. et al. Phosphorylated KRAS limits cell survival by blocking BCL-XL sensitization of inositol trisphosphate receptors. Proc. Natl Acad. Sci. USA 110, 20593-20598 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 20593-20598
-
-
Sung, P.J.1
-
73
-
-
84891799728
-
Marine natural products: Bryostatins in preclinical and clinical studies
-
Kollar, P., Rajchard, J., Balounova, Z. & Pazourek, J. Marine natural products: bryostatins in preclinical and clinical studies. Pharm. Biol. 52, 237-242 (2013).
-
(2013)
Pharm. Biol.
, vol.52
, pp. 237-242
-
-
Kollar, P.1
Rajchard, J.2
Balounova, Z.3
Pazourek, J.4
-
74
-
-
84894236975
-
Phosphorylation at Ser181 of oncogenic KRAS is required for tumor growth
-
Barcelo, C. et al. Phosphorylation at Ser181 of oncogenic KRAS is required for tumor growth. Cancer Res. 74, 1190-1199 (2013).
-
(2013)
Cancer Res.
, vol.74
, pp. 1190-1199
-
-
Barcelo, C.1
-
75
-
-
41649108639
-
Tumour maintenance is mediated by eNOS
-
Lim, K. H., Ancrile, B. B., Kashatus, D. F. & Counter, C. M. Tumour maintenance is mediated by eNOS. Nature 452, 646-649 (2008).
-
(2008)
Nature
, vol.452
, pp. 646-649
-
-
Lim, K.H.1
Ancrile, B.B.2
Kashatus, D.F.3
Counter, C.M.4
-
76
-
-
84865714641
-
Targeting eNOS in pancreatic cancer
-
Lampson, B. L. et al. Targeting eNOS in pancreatic cancer. Cancer Res. 72, 4472-4482 (2012).
-
(2012)
Cancer Res.
, vol.72
, pp. 4472-4482
-
-
Lampson, B.L.1
-
77
-
-
84871737427
-
The prenyl-binding protein PrBP/δ: A chaperone participating in intracellular trafficking
-
Zhang, H., Constantine, R., Frederick, J. M. & Baehr, W. The prenyl-binding protein PrBP/δ: a chaperone participating in intracellular trafficking. Vision Res. 75, 19-25 (2012).
-
(2012)
Vision Res.
, vol.75
, pp. 19-25
-
-
Zhang, H.1
Constantine, R.2
Frederick, J.M.3
Baehr, W.4
-
78
-
-
84856492497
-
The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of RAS family proteins
-
Chandra, A. et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of RAS family proteins. Nature Cell Biol. 14, 148-158 (2012).
-
(2012)
Nature Cell Biol.
, vol.14
, pp. 148-158
-
-
Chandra, A.1
-
79
-
-
84878401236
-
Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling
-
Zimmermann, G. et al. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638-642 (2013).
-
(2013)
Nature
, vol.497
, pp. 638-642
-
-
Zimmermann, G.1
-
80
-
-
84856497818
-
RAS hitchhikes on PDE6δ
-
Philips, M. R. RAS hitchhikes on PDE6δ. Nature Cell Biol. 14, 128-129 (2012).
-
(2012)
Nature Cell Biol.
, vol.14
, pp. 128-129
-
-
Philips, M.R.1
-
81
-
-
33344475413
-
Differential modification of RAS proteins by ubiquitination
-
Jura, N., Scotto-Lavino, E., Sobczyk, A. & Bar-Sagi, D. Differential modification of RAS proteins by ubiquitination. Mol. Cell 21, 679-687 (2006).
-
(2006)
Mol. Cell
, vol.21
, pp. 679-687
-
-
Jura, N.1
Scotto-Lavino, E.2
Sobczyk, A.3
Bar-Sagi, D.4
-
82
-
-
79952551201
-
Ubiquitination of KRAS enhances activation and facilitates binding to select downstream effectors
-
Sasaki, A. T. et al. Ubiquitination of KRAS enhances activation and facilitates binding to select downstream effectors. Sci. Signal 4, ra13 (2011).
-
(2011)
Sci. Signal
, vol.4
, pp. ra13
-
-
Sasaki, A.T.1
-
83
-
-
84894209891
-
Degradation of activated KRAS orthologue via KRAS-specific lysine residues is required for cytokinesis
-
Sumita, K. et al. Degradation of activated KRAS orthologue via KRAS-specific lysine residues is required for cytokinesis. J. Biol. Chem. 289, 3950-3959 (2014).
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 3950-3959
-
-
Sumita, K.1
-
84
-
-
84883555139
-
HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant KRAS
-
Yang, M. H. et al. HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant KRAS. Mol. Cancer Res. 11, 1072-1077 (2013).
-
(2013)
Mol. Cancer Res.
, vol.11
, pp. 1072-1077
-
-
Yang, M.H.1
-
85
-
-
80054936061
-
Inhibition of RAS for cancer treatment: The search continues
-
Baines, A. T., Xu, D. & Der, C. J. Inhibition of RAS for cancer treatment: the search continues. Future Med. Chem. 3, 1787-1808 (2011).
-
(2011)
Future Med. Chem.
, vol.3
, pp. 1787-1808
-
-
Baines, A.T.1
Xu, D.2
Der, C.J.3
-
86
-
-
79955980366
-
CRAF, but not BRAF, is essential for development of KRAS oncogene-driven non-small cell lung carcinoma
-
Blasco, R. B. et al. CRAF, but not BRAF, is essential for development of KRAS oncogene-driven non-small cell lung carcinoma. Cancer Cell 19, 652-663 (2011).
-
(2011)
Cancer Cell
, vol.19
, pp. 652-663
-
-
Blasco, R.B.1
-
87
-
-
84866242663
-
A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma
-
Collisson, E. A. et al. A central role for RAF→MEK→ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov. 2, 685-693 (2012).
-
(2012)
Cancer Discov.
, vol.2
, pp. 685-693
-
-
Collisson, E.A.1
-
88
-
-
84862294189
-
ERK1/2 MAP kinases: Structure, function, and regulation
-
Roskoski, R. Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol. Res. 66, 105-143 (2012).
-
(2012)
Pharmacol. Res.
, vol.66
, pp. 105-143
-
-
Roskoski, R.1
-
89
-
-
0034784725
-
Discovery of a novel RAF kinase inhibitor
-
Lyons, J. F., Wilhelm, S., Hibner, B. & Bollag, G. Discovery of a novel RAF kinase inhibitor. Endocr. Relat. Cancer 8, 219-225 (2001).
-
(2001)
Endocr. Relat. Cancer
, vol.8
, pp. 219-225
-
-
Lyons, J.F.1
Wilhelm, S.2
Hibner, B.3
Bollag, G.4
-
90
-
-
4944249117
-
BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis
-
Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099-7109 (2004).
-
(2004)
Cancer Res.
, vol.64
, pp. 7099-7109
-
-
Wilhelm, S.M.1
-
91
-
-
84887478023
-
Tumor adaptation and resistance to RAF inhibitors
-
Lito, P., Rosen, N. & Solit, D. B. Tumor adaptation and resistance to RAF inhibitors. Nature Med. 19, 1401-1409 (2013).
-
(2013)
Nature Med.
, vol.19
, pp. 1401-1409
-
-
Lito, P.1
Rosen, N.2
Solit, D.B.3
-
92
-
-
77949685981
-
RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth
-
Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431-435 (2010).
-
(2010)
Nature
, vol.464
, pp. 431-435
-
-
Hatzivassiliou, G.1
-
93
-
-
74849109743
-
Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF
-
Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140, 209-221 (2010).
-
(2010)
Cell
, vol.140
, pp. 209-221
-
-
Heidorn, S.J.1
-
94
-
-
77949732073
-
RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF
-
Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. & Rosen, N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427-430 (2010).
-
(2010)
Nature
, vol.464
, pp. 427-430
-
-
Poulikakos, P.I.1
Zhang, C.2
Bollag, G.3
Shokat, K.M.4
Rosen, N.5
-
95
-
-
0033179479
-
Paradoxical activation of RAF by a novel RAF inhibitor
-
Hall-Jackson, C. A. et al. Paradoxical activation of RAF by a novel RAF inhibitor. Chem. Biol. 6, 559-568 (1999).
-
(1999)
Chem. Biol.
, vol.6
, pp. 559-568
-
-
Hall-Jackson, C.A.1
-
96
-
-
84862908526
-
RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors
-
Oberholzer, P. A. et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J. Clin. Oncol. 30, 316-321 (2012).
-
(2012)
J. Clin. Oncol.
, vol.30
, pp. 316-321
-
-
Oberholzer, P.A.1
-
97
-
-
84862908097
-
RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors
-
Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207-215 (2012).
-
(2012)
N. Engl. J. Med.
, vol.366
, pp. 207-215
-
-
Su, F.1
-
98
-
-
84874225181
-
Effects of RAF dimerization and its inhibition on normal and disease-associated RAF signaling
-
Freeman, A. K., Ritt, D. A. & Morrison, D. K. Effects of RAF dimerization and its inhibition on normal and disease-associated RAF signaling. Mol. Cell 49, 751-758 (2013).
-
(2013)
Mol. Cell
, vol.49
, pp. 751-758
-
-
Freeman, A.K.1
Ritt, D.A.2
Morrison, D.K.3
-
99
-
-
79952261716
-
GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition
-
Gilmartin, A. G. et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin. Cancer Res. 17, 989-1000 (2011).
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 989-1000
-
-
Gilmartin, A.G.1
-
100
-
-
57349194139
-
Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers
-
Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med. 14, 1351-1356 (2008).
-
(2008)
Nature Med.
, vol.14
, pp. 1351-1356
-
-
Engelman, J.A.1
-
101
-
-
84884127318
-
Mechanism of MEK inhibition determines efficacy in mutant KRAS-versus BRAF-driven cancers
-
Hatzivassiliou, G. et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS-versus BRAF-driven cancers. Nature 501, 232-236 (2013).
-
(2013)
Nature
, vol.501
, pp. 232-236
-
-
Hatzivassiliou, G.1
-
102
-
-
84880064248
-
Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity
-
Ishii, N. et al. Enhanced inhibition of ERK signaling by a novel allosteric MEK inhibitor, CH5126766, that suppresses feedback reactivation of RAF activity. Cancer Res. 73, 4050-4060 (2013).
-
(2013)
Cancer Res.
, vol.73
, pp. 4050-4060
-
-
Ishii, N.1
-
103
-
-
84859765844
-
Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer
-
Duncan, J. S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307-321 (2012).
-
(2012)
Cell
, vol.149
, pp. 307-321
-
-
Duncan, J.S.1
-
104
-
-
79953240219
-
Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells
-
Little, A. S. et al. Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci. Signal. 4, ra17 (2011).
-
(2011)
Sci. Signal.
, vol.4
, pp. ra17
-
-
Little, A.S.1
-
105
-
-
77956513286
-
Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma
-
Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596-599 (2010).
-
(2010)
Nature
, vol.467
, pp. 596-599
-
-
Bollag, G.1
-
106
-
-
84880254869
-
Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors
-
Morris, E. J. et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 3, 742-750 (2013).
-
(2013)
Cancer Discov.
, vol.3
, pp. 742-750
-
-
Morris, E.J.1
-
107
-
-
34249026448
-
Binding of RAS to phosphoinositide 3-kinase p110 α is required for RAS-driven tumorigenesis in mice
-
Gupta, S. et al. Binding of RAS to phosphoinositide 3-kinase p110 α is required for RAS-driven tumorigenesis in mice. Cell 129, 957-968 (2007).
-
(2007)
Cell
, vol.129
, pp. 957-968
-
-
Gupta, S.1
-
108
-
-
84887532497
-
Requirement for interaction of PI3-kinase p110α with RAS in lung tumor maintenance
-
Castellano, E. et al. Requirement for interaction of PI3-kinase p110α with RAS in lung tumor maintenance. Cancer Cell 24, 617-630 (2013).
-
(2013)
Cancer Cell
, vol.24
, pp. 617-630
-
-
Castellano, E.1
-
109
-
-
80555157475
-
Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers
-
Ebi, H. et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J. Clin. Invest. 121, 4311-4321 (2011).
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4311-4321
-
-
Ebi, H.1
-
110
-
-
84878652051
-
PI3K and MEK inhibitor combinations: Examining the evidence in selected tumor types
-
Britten, C. D. PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother. Pharmacol. 71, 1395-1409 (2013).
-
(2013)
Cancer Chemother. Pharmacol.
, vol.71
, pp. 1395-1409
-
-
Britten, C.D.1
-
111
-
-
38849147752
-
RAL GTPases and cancer: Linchpin support of the tumorigenic platform
-
Bodemann, B. O. & White, M. A. RAL GTPases and cancer: linchpin support of the tumorigenic platform. Nature Rev. Cancer 8, 133-140 (2008).
-
(2008)
Nature Rev. Cancer
, vol.8
, pp. 133-140
-
-
Bodemann, B.O.1
White, M.A.2
-
112
-
-
79960069763
-
The RALGEF-RAL effector signaling network: The road less traveled for anti-RAS drug discovery
-
Neel, N. F. et al. The RALGEF-RAL effector signaling network: the road less traveled for anti-RAS drug discovery. Genes Cancer 2, 275-287 (2011).
-
(2011)
Genes Cancer
, vol.2
, pp. 275-287
-
-
Neel, N.F.1
-
113
-
-
17644408725
-
RALGDS is required for tumor formation in a model of skin carcinogenesis
-
Gonzalez-Garcia, A. et al. RALGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7, 219-226 (2005).
-
(2005)
Cancer Cell
, vol.7
, pp. 219-226
-
-
Gonzalez-Garcia, A.1
-
114
-
-
78049370949
-
Aberrant overexpression of the RGL2 RAL small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through RAL-dependent and RAL-independent mechanisms
-
Vigil, D. et al. Aberrant overexpression of the RGL2 RAL small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through RAL-dependent and RAL-independent mechanisms. J. Biol. Chem. 285, 34729-34740 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 34729-34740
-
-
Vigil, D.1
-
115
-
-
33845448647
-
Divergent roles for RALA and RALB in malignant growth of human pancreatic carcinoma cells
-
Lim, K. H. et al. Divergent roles for RALA and RALB in malignant growth of human pancreatic carcinoma cells. Curr. Biol. 16, 2385-2394 (2006).
-
(2006)
Curr. Biol.
, vol.16
, pp. 2385-2394
-
-
Lim, K.H.1
-
116
-
-
84868593574
-
Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis
-
Peschard, P. et al. Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr. Biol. 22, 2063-2068 (2012).
-
(2012)
Curr. Biol.
, vol.22
, pp. 2063-2068
-
-
Peschard, P.1
-
117
-
-
20144373746
-
Identification of V23RALA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening
-
Wu, J. C. et al. Identification of V23RALA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J. Biol. Chem. 280, 9013-9022 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 9013-9022
-
-
Wu, J.C.1
-
118
-
-
73549119929
-
Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA
-
Lim, K. H. et al. Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. Mol. Cell. Biol. 30, 508-523 (2010).
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 508-523
-
-
Lim, K.H.1
-
119
-
-
78449292864
-
Phosphorylation of RALB is important for bladder cancer cell growth and metastasis
-
Wang, H. et al. Phosphorylation of RALB is important for bladder cancer cell growth and metastasis. Cancer Res. 70, 8760-8769 (2010).
-
(2010)
Cancer Res.
, vol.70
, pp. 8760-8769
-
-
Wang, H.1
-
120
-
-
84862084695
-
Phosphorylation by protein kinase Cα regulates RALB small GTPase protein activation, subcellular localization, and effector utilization
-
Martin, T. D., Mitin, N., Cox, A. D., Yeh, J. J. & Der, C. J. Phosphorylation by protein kinase Cα regulates RALB small GTPase protein activation, subcellular localization, and effector utilization. J. Biol. Chem. 287, 14827-14836 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 14827-14836
-
-
Martin, T.D.1
Mitin, N.2
Cox, A.D.3
Yeh, J.J.4
Der, C.J.5
-
121
-
-
33749165933
-
RALB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival
-
Chien, Y. et al. RALB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127, 157-170 (2006).
-
(2006)
Cell
, vol.127
, pp. 157-170
-
-
Chien, Y.1
-
122
-
-
84892853050
-
RAL and RHEB GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion
-
Martin, T. D. et al. RAL and RHEB GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol. Cell 53, 209-220 (2014).
-
(2014)
Mol. Cell
, vol.53
, pp. 209-220
-
-
Martin, T.D.1
-
123
-
-
0037142034
-
Mice deficient in the RAC activator TIAM1 are resistant to RAS-induced skin tumours
-
Malliri, A. et al. Mice deficient in the RAC activator TIAM1 are resistant to RAS-induced skin tumours. Nature 417, 867-871 (2002).
-
(2002)
Nature
, vol.417
, pp. 867-871
-
-
Malliri, A.1
-
124
-
-
0036051325
-
TIAM1 mediates RAS activation of RAC by a PI(3)K-independent mechanism
-
Lambert, J. M. et al. TIAM1 mediates RAS activation of RAC by a PI(3)K-independent mechanism. Nature Cell Biol. 4, 621-625 (2002).
-
(2002)
Nature Cell Biol.
, vol.4
, pp. 621-625
-
-
Lambert, J.M.1
-
125
-
-
0037155727
-
P-REX1 a PtdIns 3 4,5)P3-and Gβγ-regulated guanine-nucleotide exchange factor for RAC
-
Welch, H. C. et al. P-REX1, a PtdIns(3,4,5)P3-and Gβγ-regulated guanine-nucleotide exchange factor for RAC. Cell 108, 809-821 (2002).
-
(2002)
Cell
, vol.108
, pp. 809-821
-
-
Welch, H.C.1
-
126
-
-
84864258996
-
A landscape of driver mutations in melanoma
-
Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251-263 (2012).
-
(2012)
Cell
, vol.150
, pp. 251-263
-
-
Hodis, E.1
-
127
-
-
84865684161
-
Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma
-
Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature Genet. 44, 1006-1014 (2012).
-
(2012)
Nature Genet.
, vol.44
, pp. 1006-1014
-
-
Krauthammer, M.1
-
128
-
-
34548583283
-
Requirement for RAC1 in a KRAS induced lung cancer in the mouse
-
Kissil, J. L. et al. Requirement for RAC1 in a KRAS induced lung cancer in the mouse. Cancer Res. 67, 8089-8094 (2007).
-
(2007)
Cancer Res.
, vol.67
, pp. 8089-8094
-
-
Kissil, J.L.1
-
129
-
-
80051540959
-
Early requirement of RAC1 in a mouse model of pancreatic cancer
-
Heid, I. et al. Early requirement of RAC1 in a mouse model of pancreatic cancer. Gastroenterol 141, 719-730.e7 (2011).
-
(2011)
Gastroenterol
, vol.141
, pp. 719-719e7
-
-
Heid, I.1
-
130
-
-
84904128480
-
Preclinical development of novel RAC1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines
-
Cardama, G. A. et al. Preclinical development of novel RAC1-GEF signaling inhibitors using a rational design approach in highly aggressive breast cancer cell lines. Anticancer Agents Med. Chem. 14, 840-851 (2013).
-
(2013)
Anticancer Agents Med. Chem.
, vol.14
, pp. 840-851
-
-
Cardama, G.A.1
-
131
-
-
2442664118
-
Rational design and characterization of a RAC GTPase-specific small molecule inhibitor
-
Gao, Y., Dickerson, J. B., Guo, F., Zheng, J. & Zheng, Y. Rational design and characterization of a RAC GTPase-specific small molecule inhibitor. Proc. Natl Acad. Sci. USA 101, 7618-7623 (2004).
-
(2004)
Proc. Natl Acad. Sci. USA
, vol.101
, pp. 7618-7623
-
-
Gao, Y.1
Dickerson, J.B.2
Guo, F.3
Zheng, J.4
Zheng, Y.5
-
132
-
-
84869225094
-
P21-activated kinase 1 is required for efficient tumor formation and progression in a RAS-mediated skin cancer model
-
Chow, H. Y. et al. p21-activated kinase 1 is required for efficient tumor formation and progression in a RAS-mediated skin cancer model. Cancer Res. 72, 5966-5975 (2012).
-
(2012)
Cancer Res.
, vol.72
, pp. 5966-5975
-
-
Chow, H.Y.1
-
133
-
-
84878288766
-
RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms
-
Fritsch, R. et al. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell 153, 1050-1063 (2013).
-
(2013)
Cell
, vol.153
, pp. 1050-1063
-
-
Fritsch, R.1
-
134
-
-
84885831339
-
PLCε and the RASSF family in tumour suppression and other functions
-
Chan, J. J. & Katan, M. PLCε and the RASSF family in tumour suppression and other functions. Adv. Biol. Regul. 53, 258-279 (2013).
-
(2013)
Adv. Biol. Regul.
, vol.53
, pp. 258-279
-
-
Chan, J.J.1
Katan, M.2
-
135
-
-
0035830860
-
Principles for the buffering of genetic variation
-
Hartman, J. L. 4th, Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001-1004 (2001).
-
(2001)
Science
, vol.291
, pp. 1001-1004
-
-
Hartman, J.L.1
Garvik, B.2
Hartwell, L.3
-
136
-
-
25444497278
-
The concept of synthetic lethality in the context of anticancer therapy
-
Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689-698 (2005).
-
(2005)
Nature Rev. Cancer
, vol.5
, pp. 689-698
-
-
Kaelin, W.G.1
-
137
-
-
0034614637
-
The hallmarks of cancer
-
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57-70 (2000).
-
(2000)
Cell
, vol.100
, pp. 57-70
-
-
Hanahan, D.1
Weinberg, R.A.2
-
138
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011).
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
139
-
-
61449182121
-
Principles of cancer therapy: Oncogene and non-oncogene addiction
-
Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823-837 (2009).
-
(2009)
Cell
, vol.136
, pp. 823-837
-
-
Luo, J.1
Solimini, N.L.2
Elledge, S.J.3
-
140
-
-
84908485840
-
-
(eds. Tamanoi, F. & Der, C. J.) Academic Press
-
Yu, B. & Luo, J. in Inhibitors of the RAS Superfamily G-proteins, Part B. (eds. Tamanoi, F. & Der, C. J.) 201-215 (Academic Press, 2013).
-
(2013)
Inhibitors of the RAS Superfamily G-proteins, Part B.
, pp. 201-215
-
-
Yu, B.1
Luo, J.2
-
141
-
-
1642553461
-
The dark side of RAS: Regulation of apoptosis
-
Cox, A. D. & Der, C. J. The dark side of RAS: regulation of apoptosis. Oncogene 22, 8999-9006 (2003).
-
(2003)
Oncogene
, vol.22
, pp. 8999-9006
-
-
Cox, A.D.1
Der, C.J.2
-
142
-
-
84860319361
-
The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer
-
Kumar, M. S. et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149 642-655 (2012).
-
(2012)
Cell
, vol.149
, pp. 642-655
-
-
Kumar, M.S.1
-
143
-
-
66149091940
-
A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the RAS oncogene
-
Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the RAS oncogene. Cell 137, 835-848 (2009).
-
(2009)
Cell
, vol.137
, pp. 835-848
-
-
Luo, J.1
-
144
-
-
70449091786
-
Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
-
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108-112 (2009).
-
(2009)
Nature
, vol.462
, pp. 108-112
-
-
Barbie, D.A.1
-
145
-
-
84865015653
-
Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies
-
Steckel, M. et al. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Res. 22, 1227-1245 (2012).
-
(2012)
Cell Res.
, vol.22
, pp. 1227-1245
-
-
Steckel, M.1
-
146
-
-
77953238558
-
Integrative genomic and proteomic analyses identify targets for LKB1-deficient metastatic lung tumors
-
Carretero, J. et al. Integrative genomic and proteomic analyses identify targets for LKB1-deficient metastatic lung tumors. Cancer Cell 17, 547-559 (2010).
-
(2010)
Cancer Cell
, vol.17
, pp. 547-559
-
-
Carretero, J.1
-
147
-
-
84886787846
-
Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer
-
Kim, H. S. et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 155, 552-566 (2013).
-
(2013)
Cell
, vol.155
, pp. 552-566
-
-
Kim, H.S.1
-
148
-
-
33746565431
-
Lineage dependency and lineage-survival oncogenes in human cancer
-
Garraway, L. A. & Sellers, W. R. Lineage dependency and lineage-survival oncogenes in human cancer. Nature Rev. Cancer 6, 593-602 (2006).
-
(2006)
Nature Rev. Cancer
, vol.6
, pp. 593-602
-
-
Garraway, L.A.1
Sellers, W.R.2
-
149
-
-
84903984143
-
YAP1 activation enables bypass of oncogenic KRAS addiction in pancreatic cancer
-
Kapoor, A. et al. YAP1 activation enables bypass of oncogenic KRAS addiction in pancreatic cancer. Cell 158, 185-197 (2014).
-
(2014)
Cell
, vol.158
, pp. 185-197
-
-
Kapoor, A.1
-
150
-
-
84904024982
-
KRAS and YAP1 converge to regulate EMT and tumor survival
-
Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171-184 (2014).
-
(2014)
Cell
, vol.158
, pp. 171-184
-
-
Shao, D.D.1
-
151
-
-
79961062492
-
Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer
-
Cheung, H. W. et al. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl Acad. Sci. USA 108, 12372-12377 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 12372-12377
-
-
Cheung, H.W.1
-
152
-
-
84865202966
-
Essential gene profiles in breast, pancreatic, and ovarian cancer cells
-
Marcotte, R. et al. Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov. 2, 172-189 (2012).
-
(2012)
Cancer Discov.
, vol.2
, pp. 172-189
-
-
Marcotte, R.1
-
153
-
-
84859169877
-
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
-
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607 (2012).
-
(2012)
Nature
, vol.483
, pp. 603-607
-
-
Barretina, J.1
-
154
-
-
35148869637
-
A high-throughput soft agar assay for identification of anticancer compound
-
Anderson, S. N., Towne, D. L., Burns, D. J. & Warrior, U. A high-throughput soft agar assay for identification of anticancer compound. J. Biomol. Screen 12, 938-945 (2007).
-
(2007)
J. Biomol. Screen
, vol.12
, pp. 938-945
-
-
Anderson, S.N.1
Towne, D.L.2
Burns, D.J.3
Warrior, U.4
-
155
-
-
70349536006
-
In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression
-
Meacham, C. E., Ho, E. E., Dubrovsky, E., Gertler, F. B. & Hemann, M. T. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nature Genet. 41, 1133-1137 (2009).
-
(2009)
Nature Genet.
, vol.41
, pp. 1133-1137
-
-
Meacham, C.E.1
Ho, E.E.2
Dubrovsky, E.3
Gertler, F.B.4
Hemann, M.T.5
-
156
-
-
80051513341
-
An integrated approach to dissecting oncogene addiction implicates a MYB-coordinated self-renewal program as essential for leukemia maintenance
-
Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a MYB-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628-1640 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 1628-1640
-
-
Zuber, J.1
-
157
-
-
80051923932
-
Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
-
Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346-350 (2011).
-
(2011)
Nature
, vol.476
, pp. 346-350
-
-
Possemato, R.1
-
158
-
-
84895821357
-
An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor
-
Murugaesu, N. et al. An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov. 4, 304-317 (2014).
-
(2014)
Cancer Discov.
, vol.4
, pp. 304-317
-
-
Murugaesu, N.1
-
159
-
-
84892594373
-
Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas
-
Schramek, D. et al. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science 343, 309-313 (2014).
-
(2014)
Science
, vol.343
, pp. 309-313
-
-
Schramek, D.1
-
160
-
-
56349121125
-
An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer
-
Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852-864 (2008).
-
(2008)
Cell
, vol.135
, pp. 852-864
-
-
Zender, L.1
-
161
-
-
84860319361
-
The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer
-
Kumar, M. S. et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149, 642-655 (2012).
-
(2012)
Cell
, vol.149
, pp. 642-655
-
-
Kumar, M.S.1
-
162
-
-
84857422433
-
STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability
-
Luo, T. et al. STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability. Proc. Natl Acad. Sci. USA 109, 2860-2865 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 2860-2865
-
-
Luo, T.1
-
163
-
-
84904258149
-
Evaluating TBK1 as a therapeutic target in cancers with activated IRF3
-
Muvaffak, A. et al. Evaluating TBK1 as a therapeutic target in cancers with activated IRF3. Mol. Cancer Res. 12, 1055-1066 (2014).
-
(2014)
Mol. Cancer Res.
, vol.12
, pp. 1055-1066
-
-
Muvaffak, A.1
-
164
-
-
84897950139
-
Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit
-
Zhu, Z. et al. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov. 4, 452-465 (2014).
-
(2014)
Cancer Discov.
, vol.4
, pp. 452-465
-
-
Zhu, Z.1
-
165
-
-
84872387485
-
Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models
-
Corcoran, R. B. et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 23, 121-128 (2013).
-
(2013)
Cancer Cell
, vol.23
, pp. 121-128
-
-
Corcoran, R.B.1
-
166
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nature Protoc. 8, 2281-2308 (2013).
-
(2013)
Nature Protoc.
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
-
167
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84-87 (2014).
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
-
168
-
-
84892749369
-
Genetic screens in human cells using the CRISPR-Cas9 system
-
Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84 (2014).
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
169
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 (2009).
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
170
-
-
84858414020
-
Cellular metabolism and disease: What do metabolic outliers teach us?
-
DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132-1144 (2012).
-
(2012)
Cell
, vol.148
, pp. 1132-1144
-
-
Deberardinis, R.J.1
Thompson, C.B.2
-
171
-
-
80054046029
-
Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
-
Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441-464 (2011).
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
172
-
-
84888611992
-
Stress eating and tuning out: Cancer cells re-wire metabolism to counter stress
-
Stine, Z. E. & Dang, C. V. Stress eating and tuning out: cancer cells re-wire metabolism to counter stress. Crit. Rev. Biochem. Mol. Biol. 48, 609-619 (2013).
-
(2013)
Crit. Rev. Biochem. Mol. Biol.
, vol.48
, pp. 609-619
-
-
Stine, Z.E.1
Dang, C.V.2
-
173
-
-
78649711427
-
The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
-
Levine, A. J. & Puzio-Kuter, A. M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340-1344 (2010).
-
(2010)
Science
, vol.330
, pp. 1340-1344
-
-
Levine, A.J.1
Puzio-Kuter, A.M.2
-
174
-
-
0022364146
-
Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes
-
Racker, E., Resnick, R. J. & Feldman, R. Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc. Natl Acad. Sci. USA 82, 3535-3538 (1985).
-
(1985)
Proc. Natl Acad. Sci. USA
, vol.82
, pp. 3535-3538
-
-
Racker, E.1
Resnick, R.J.2
Feldman, R.3
-
175
-
-
57749088701
-
MYC regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise, D. R. et al. MYC regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782-18787 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
-
176
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105 (2013).
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
-
177
-
-
84885357137
-
Exploiting the bad eating habits of RAS-driven cancers
-
White, E. Exploiting the bad eating habits of RAS-driven cancers. Genes Dev. 27, 2065-2071 (2013).
-
(2013)
Genes Dev.
, vol.27
, pp. 2065-2071
-
-
White, E.1
-
178
-
-
77956404377
-
Eaten alive: A history of macroautophagy
-
Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nature Cell Biol. 12, 814-822 (2010).
-
(2010)
Nature Cell Biol.
, vol.12
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
179
-
-
80053634368
-
The dynamic nature of autophagy in cancer
-
Kimmelman, A. C. The dynamic nature of autophagy in cancer. Genes Dev. 25, 1999-2010 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 1999-2010
-
-
Kimmelman, A.C.1
-
181
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nature Rev. Cancer 12, 401-410 (2012).
-
(2012)
Nature Rev. Cancer
, vol.12
, pp. 401-410
-
-
White, E.1
-
182
-
-
79952228407
-
Activated RAS requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo, J. Y. et al. Activated RAS requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460-470 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
-
183
-
-
84879777723
-
Autophagy suppresses progression of KRAS-induced lung tumors to oncocytomas and maintains lipid homeostasis
-
Guo, J. Y. et al. Autophagy suppresses progression of KRAS-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447-1461 (2013).
-
(2013)
Genes Dev.
, vol.27
, pp. 1447-1461
-
-
Guo, J.Y.1
-
184
-
-
78751511180
-
Autophagy facilitates glycolysis during RAS-mediated oncogenic transformation
-
Lock, R. et al. Autophagy facilitates glycolysis during RAS-mediated oncogenic transformation. Mol. Biol. Cell 22, 165-178 (2011).
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 165-178
-
-
Lock, R.1
-
185
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717-729 (2011).
-
(2011)
Genes Dev.
, vol.25
, pp. 717-729
-
-
Yang, S.1
-
186
-
-
84892882660
-
A dual role for autophagy in a murine model of lung cancer
-
Rao, S. et al. A dual role for autophagy in a murine model of lung cancer. Nature Commun. 5, 3056 (2014).
-
(2014)
Nature Commun.
, vol.5
, pp. 3056
-
-
Rao, S.1
-
187
-
-
84890432985
-
P53 status determines the role of autophagy in pancreatic tumour development
-
Rosenfeldt, M. T. et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296-300 (2013).
-
(2013)
Nature
, vol.504
, pp. 296-300
-
-
Rosenfeldt, M.T.1
-
188
-
-
84905499163
-
Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations
-
Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905-913 (2014).
-
(2014)
Cancer Discov.
, vol.4
, pp. 905-913
-
-
Yang, A.1
-
189
-
-
79951847989
-
Principles and current strategies for targeting autophagy for cancer treatment
-
Amaravadi, R. K. et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 17, 654-666 (2011).
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 654-666
-
-
Amaravadi, R.K.1
-
190
-
-
84859562694
-
Targeting autophagy addiction in cancer
-
Mancias, J. D. & Kimmelman, A. C. Targeting autophagy addiction in cancer. Oncotarget 2, 1302-1306 (2011).
-
(2011)
Oncotarget
, vol.2
, pp. 1302-1306
-
-
Mancias, J.D.1
Kimmelman, A.C.2
-
191
-
-
84861147473
-
A comprehensive survey of RAS mutations in cancer
-
Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of RAS mutations in cancer. Cancer Res. 72, 2457-2467 (2012).
-
(2012)
Cancer Res.
, vol.72
, pp. 2457-2467
-
-
Prior, I.A.1
Lewis, P.D.2
Mattos, C.3
-
192
-
-
77951214016
-
Mammalian autophagy: Core molecular machinery and signaling regulation
-
Yang, Z. & Klionsky, D. J. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124-131 (2010).
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 124-131
-
-
Yang, Z.1
Klionsky, D.J.2
-
193
-
-
0022470480
-
Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins
-
Bar-Sagi, D. & Feramisco, J. R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233, 1061-1068 (1986).
-
(1986)
Science
, vol.233
, pp. 1061-1068
-
-
Bar-Sagi, D.1
Feramisco, J.R.2
-
194
-
-
80855144226
-
Macropinocytosis: An endocytic pathway for internalising large gulps
-
Lim, J. P. & Gleeson, P. A. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89, 836-843 (2011).
-
(2011)
Immunol. Cell Biol.
, vol.89
, pp. 836-843
-
-
Lim, J.P.1
Gleeson, P.A.2
-
195
-
-
84878396462
-
Macropinocytosis of protein is an amino acid supply route in RAS-transformed cells
-
Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in RAS-transformed cells. Nature 497, 633-637 (2013).
-
(2013)
Nature
, vol.497
, pp. 633-637
-
-
Commisso, C.1
-
196
-
-
84878464291
-
Hypoxic and RAS-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
-
Kamphorst, J. J. et al. Hypoxic and RAS-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882-8887 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 8882-8887
-
-
Kamphorst, J.J.1
-
197
-
-
70349331678
-
Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells
-
Yun, J. et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555-1559 (2009).
-
(2009)
Science
, vol.325
, pp. 1555-1559
-
-
Yun, J.1
-
198
-
-
84874025568
-
Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas
-
McCleland, M. L. et al. Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas. Clin. Cancer Res. 19, 773-784 (2013).
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 773-784
-
-
McCleland, M.L.1
-
199
-
-
84881557242
-
Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
-
Patra, K. C. et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24, 213-228 (2013).
-
(2013)
Cancer Cell
, vol.24
, pp. 213-228
-
-
Patra, K.C.1
-
200
-
-
80051866908
-
Oncogenic KRAS decouples glucose and glutamine metabolism to support cancer cell growth
-
Gaglio, D. et al. Oncogenic KRAS decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523 (2011).
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 523
-
-
Gaglio, D.1
-
201
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for KRAS-mediated tumorigenicity
-
Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for KRAS-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788-8793 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
-
202
-
-
84870982915
-
Design, synthesis and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors
-
Shukla, K. et al. Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J. Med. Chem. 55, 10551-10563 (2012).
-
(2012)
J. Med. Chem.
, vol.55
, pp. 10551-10563
-
-
Shukla, K.1
-
203
-
-
59449083179
-
Targeting aspartate aminotransferase in breast cancer
-
Thornburg, J. M. et al. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res. 10, R84 (2008).
-
(2008)
Breast Cancer Res.
, vol.10
, pp. R84
-
-
Thornburg, J.M.1
-
204
-
-
67649402187
-
The NRF2-antioxidant response element signaling pathway and its activation by oxidative stress
-
Nguyen, T., Nioi, P. & Pickett, C. B. The NRF2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284, 13291-13295 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 13291-13295
-
-
Nguyen, T.1
Nioi, P.2
Pickett, C.B.3
-
205
-
-
79960060305
-
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
-
DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109 (2011).
-
(2011)
Nature
, vol.475
, pp. 106-109
-
-
Denicola, G.M.1
-
206
-
-
52949118488
-
Kras regulatory elements and exon 4A determine mutation specificity in lung cancer
-
To, M. D. et al. Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nature Genet. 40, 1240-1244 (2008).
-
(2008)
Nature Genet.
, vol.40
, pp. 1240-1244
-
-
To, M.D.1
-
207
-
-
84872107552
-
Rare codons regulate KRAS oncogenesis
-
Lampson, B. L. et al. Rare codons regulate KRAS oncogenesis. Curr. Biol. 23, 70-75 (2013).
-
(2013)
Curr. Biol.
, vol.23
, pp. 70-75
-
-
Lampson, B.L.1
-
208
-
-
72249091662
-
Prognostic significance of alterations in KRAS isoforms KRAS4A/4B and KRAS mutations in colorectal carcinoma
-
Abubaker, J. et al. Prognostic significance of alterations in KRAS isoforms KRAS4A/4B and KRAS mutations in colorectal carcinoma. J. Pathol. 219, 435-445 (2009).
-
(2009)
J. Pathol.
, vol.219
, pp. 435-445
-
-
Abubaker, J.1
-
209
-
-
78049341541
-
Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab
-
De Roock, W. et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304, 1812-1820 (2010).
-
(2010)
JAMA
, vol.304
, pp. 1812-1820
-
-
De Roock, W.1
-
210
-
-
84867117207
-
Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab
-
Tejpar, S. et al. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J. Clin. Oncol. 30, 3570-3577 (2012).
-
(2012)
J. Clin. Oncol.
, vol.30
, pp. 3570-3577
-
-
Tejpar, S.1
-
211
-
-
84863116014
-
Effect of KRAS oncogene substitutions on protein behavior: Implications for signaling and clinical outcome
-
Ihle, N. T. et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J. Natl Cancer Inst. 104, 228-239 (2012).
-
(2012)
J. Natl Cancer Inst.
, vol.104
, pp. 228-239
-
-
Ihle, N.T.1
-
212
-
-
17944369909
-
Wildtype Kras2 can inhibit lung carcinogenesis in mice
-
Zhang, Z. et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nature Genet. 29, 25-33 (2001).
-
(2001)
Nature Genet.
, vol.29
, pp. 25-33
-
-
Zhang, Z.1
-
213
-
-
0025365140
-
Genetic changes in skin tumor progression: Correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7
-
Bremner, R. & Balmain, A. Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61, 407-417 (1990).
-
(1990)
Cell
, vol.61
, pp. 407-417
-
-
Bremner, R.1
Balmain, A.2
-
214
-
-
33947526086
-
Growth inhibitory effect of wild-type KRAS2 gene on a colonic adenocarcinoma cell line
-
Li, H. et al. Growth inhibitory effect of wild-type KRAS2 gene on a colonic adenocarcinoma cell line. World J. Gastroenterol. 13, 934-938 (2007).
-
(2007)
World J. Gastroenterol.
, vol.13
, pp. 934-938
-
-
Li, H.1
-
215
-
-
84862833377
-
Disruption of p16 and activation of KRAS in pancreas increase ductal adenocarcinoma formation and metastasis in vivo
-
Qiu, W. et al. Disruption of p16 and activation of KRAS in pancreas increase ductal adenocarcinoma formation and metastasis in vivo. Oncotarget 2, 862-873 (2011).
-
(2011)
Oncotarget
, vol.2
, pp. 862-873
-
-
Qiu, W.1
-
216
-
-
84896840047
-
HRAS forms dimers on membrane surfaces via a protein-protein interface
-
Lin, W. C. et al. HRAS forms dimers on membrane surfaces via a protein-protein interface. Proc. Natl Acad. Sci. USA 111, 2996-3001 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 2996-3001
-
-
Lin, W.C.1
-
217
-
-
84885224619
-
Dominant role of oncogene dosage and absence of tumor suppressor activity in NRAS-driven hematopoietic transformation
-
Xu, J. et al. Dominant role of oncogene dosage and absence of tumor suppressor activity in NRAS-driven hematopoietic transformation. Cancer Discov. 3, 993-1001 (2013).
-
(2013)
Cancer Discov.
, vol.3
, pp. 993-1001
-
-
Xu, J.1
-
218
-
-
84893622205
-
Wild-type H-and N-RAS promote mutant KRAS-driven tumorigenesis by modulating the DNA damage response
-
Grabocka, E. et al. Wild-type H-and N-RAS promote mutant KRAS-driven tumorigenesis by modulating the DNA damage response. Cancer Cell 25, 243-256 (2014).
-
(2014)
Cancer Cell
, vol.25
, pp. 243-256
-
-
Grabocka, E.1
-
219
-
-
84872853570
-
Oncogenic and wild-type RAS play divergent roles in the regulation of mitogen-activated protein kinase signaling
-
Young, A., Lou, D. & McCormick, F. Oncogenic and wild-type RAS play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov. 3, 112-123 (2013).
-
(2013)
Cancer Discov.
, vol.3
, pp. 112-123
-
-
Young, A.1
Lou, D.2
McCormick, F.3
-
220
-
-
84883818170
-
Immunotherapy at large: The road to personalized cancer vaccines
-
Vonderheide, R. H. & Nathanson, K. L. Immunotherapy at large: the road to personalized cancer vaccines. Nature Med. 19, 1098-1100 (2013).
-
(2013)
Nature Med.
, vol.19
, pp. 1098-1100
-
-
Vonderheide, R.H.1
Nathanson, K.L.2
-
221
-
-
84862150896
-
Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer
-
Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822-835 (2012).
-
(2012)
Cancer Cell
, vol.21
, pp. 822-835
-
-
Bayne, L.J.1
-
222
-
-
84862147254
-
Oncogenic KRAS-induced GM-CSF production promotes the development of pancreatic neoplasia
-
Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic KRAS-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836-847 (2012).
-
(2012)
Cancer Cell
, vol.21
, pp. 836-847
-
-
Pylayeva-Gupta, Y.1
Lee, K.E.2
Hajdu, C.H.3
Miller, G.4
Bar-Sagi, D.5
-
223
-
-
78650624101
-
RNA interference in the clinic: Challenges and future directions
-
Pecot, C. V., Calin, G. A., Coleman, R. L., Lopez-Berestein, G. & Sood, A. K. RNA interference in the clinic: challenges and future directions. Nature Rev. Cancer 11, 59-67 (2011).
-
(2011)
Nature Rev. Cancer
, vol.11
, pp. 59-67
-
-
Pecot, C.V.1
Calin, G.A.2
Coleman, R.L.3
Lopez-Berestein, G.4
Sood, A.K.5
-
224
-
-
0031035593
-
Sulfone metabolite of sulindac inhibits mammary carcinogenesis
-
Thompson, H. J. et al. Sulfone metabolite of sulindac inhibits mammary carcinogenesis. Cancer Res. 57, 267-271 (1997).
-
(1997)
Cancer Res.
, vol.57
, pp. 267-271
-
-
Thompson, H.J.1
-
225
-
-
33846846261
-
Survivin depletion preferentially reduces the survival of activated KRAS-transformed cells
-
Sarthy, A. V. et al. Survivin depletion preferentially reduces the survival of activated KRAS-transformed cells. Mol. Cancer Ther. 6, 269-276 (2007).
-
(2007)
Mol. Cancer Ther.
, vol.6
, pp. 269-276
-
-
Sarthy, A.V.1
-
226
-
-
34249285532
-
Identification of RAS-related nuclear protein, targeting protein for Xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen
-
Morgan-Lappe, S. E. et al. Identification of RAS-related nuclear protein, targeting protein for Xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res. 67, 4390-4398 (2007).
-
(2007)
Cancer Res.
, vol.67
, pp. 4390-4398
-
-
Morgan-Lappe, S.E.1
-
227
-
-
65849111219
-
Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells
-
Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137, 821-834 (2009).
-
(2009)
Cell
, vol.137
, pp. 821-834
-
-
Scholl, C.1
-
228
-
-
78049418533
-
Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models
-
Vicent, S. et al. Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J. Clin. Invest. 120, 3940-3952 (2010).
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 3940-3952
-
-
Vicent, S.1
-
229
-
-
77955918876
-
Critical role for transcriptional repressor SNAIL2 in transformation by oncogenic RAS in colorectal carcinoma cells
-
Wang, Y. et al. Critical role for transcriptional repressor SNAIL2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 29, 4658-4670 (2010).
-
(2010)
Oncogene
, vol.29
, pp. 4658-4670
-
-
Wang, Y.1
-
230
-
-
84863419728
-
TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers
-
Singh, A. et al. TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell 148, 639-650 (2012).
-
(2012)
Cell
, vol.148
, pp. 639-650
-
-
Singh, A.1
-
231
-
-
84893610509
-
The RHOGEF GEF-H1 is required for oncogenic RAS signaling via KSR1
-
Cullis, J. et al. The RHOGEF GEF-H1 is required for oncogenic RAS signaling via KSR1. Cancer Cell 25, 181-195 (2014).
-
(2014)
Cancer Cell
, vol.25
, pp. 181-195
-
-
Cullis, J.1
|