메뉴 건너뛰기




Volumn 13, Issue 6, 2012, Pages 343-354

TFIIH: When transcription met DNA repair

Author keywords

[No Author keywords available]

Indexed keywords

CELL NUCLEUS RECEPTOR; CYCLIN DEPENDENT KINASE 7; DNA; OLIGONUCLEOTIDE; TRANSCRIPTION FACTOR IIH; XERODERMA PIGMENTOSUM GROUP C PROTEIN;

EID: 84861457511     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm3350     Document Type: Review
Times cited : (257)

References (203)
  • 1
    • 0021905437 scopus 로고
    • DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall
    • Bohr, V. A., Smith, C. A., Okumoto, D. S. & Hanawalt, P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359-369 (1985).
    • (1985) Cell , vol.40 , pp. 359-369
    • Bohr, V.A.1    Smith, C.A.2    Okumoto, D.S.3    Hanawalt, P.C.4
  • 2
    • 0023663101 scopus 로고
    • Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene
    • Mellon, I., Spivak, G. & Hanawalt, P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241-249 (1987).
    • (1987) Cell , vol.51 , pp. 241-249
    • Mellon, I.1    Spivak, G.2    Hanawalt, P.C.3
  • 3
    • 0027905008 scopus 로고
    • DNA repair helicase: A component of BTF2 (TFIIH) basic transcription factor
    • Demonstrated that the helicase XPB, which is involved in NER, is closely associated with the TFIIH transcription complex, suggesting that DNA repair and transcription are functionally related
    • Schaeffer, L. et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260, 58-63 (1993). Demonstrated that the helicase XPB, which is involved in NER, is closely associated with the TFIIH transcription complex, suggesting that DNA repair and transcription are functionally related.
    • (1993) Science , vol.260 , pp. 58-63
    • Schaeffer, L.1
  • 4
    • 0027760994 scopus 로고
    • Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair
    • Feaver, W. J. et al. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75, 1379-1387 (1993).
    • (1993) Cell , vol.75 , pp. 1379-1387
    • Feaver, W.J.1
  • 5
    • 59849090498 scopus 로고    scopus 로고
    • TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation
    • Revealed that the DNA repair machinery is recruited to the promoter of active genes, keeping these promoters in a hypomethylated state
    • Schmitz, K. M. et al. TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol. Cell 33, 344-353 (2009). Revealed that the DNA repair machinery is recruited to the promoter of active genes, keeping these promoters in a hypomethylated state.
    • (2009) Mol. Cell , vol.33 , pp. 344-353
    • Schmitz, K.M.1
  • 6
    • 77950443318 scopus 로고    scopus 로고
    • NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack
    • Showed the sequential recruitment of the NER factors XPC, XPA, RPA, XPG and XPF-ERCC1 to the promoters of inducible genes in the absence of exogenous genotoxic attack. These NER factors (except cockayne syndrome B protein (CSB; also known as ERCC6)) are required to allow histone modifications and active DNA demethylation that are necessary for efficient transcription
    • Le May, N. et al. NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol. Cell 38, 54-66 (2010). Showed the sequential recruitment of the NER factors XPC, XPA, RPA, XPG and XPF-ERCC1 to the promoters of inducible genes in the absence of exogenous genotoxic attack. These NER factors (except cockayne syndrome B protein (CSB; also known as ERCC6)) are required to allow histone modifications and active DNA demethylation that are necessary for efficient transcription.
    • (2010) Mol. Cell , vol.38 , pp. 54-66
    • Le May, N.1
  • 7
    • 0000402041 scopus 로고
    • An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by TATA region of promoters
    • Reported the purification of a transcription factor from rat liver that was designated transcription factor-δ, which has an associated DNA-dependent ATPase activity
    • Conaway, R. C. & Conaway, J. W. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by TATA region of promoters. Proc. Natl Acad. Sci. USA 86, 7356-7360 (1989). Reported the purification of a transcription factor from rat liver that was designated transcription factor-δ, which has an associated DNA-dependent ATPase activity.
    • (1989) Proc. Natl Acad. Sci. USA , vol.86 , pp. 7356-7360
    • Conaway, R.C.1    Conaway, J.W.2
  • 8
    • 0025787782 scopus 로고
    • Purification and interaction properties of the human RNA polymerase B(II) general transcription factor BTF2
    • Described the purification of the human cell transcription factor BTF2, which is required for the transcription of class II genes
    • Gerard, M. et al. Purification and interaction properties of the human RNA polymerase B(II) general transcription factor BTF2. J. Biol. Chem. 266, 20940-20945 (1991). Described the purification of the human cell transcription factor BTF2, which is required for the transcription of class II genes.
    • (1991) J. Biol. Chem. , vol.266 , pp. 20940-20945
    • Gerard, M.1
  • 9
    • 0026052701 scopus 로고
    • Purification and characterization of yeast RNA polymerase II transcription factor b
    • Reported the purification of a transcription factor from yeast that was designated Tfb, which is required for Pol II transcription
    • Feaver, W. J., Gileadi, O. & Kornberg, R. Purification and characterization of yeast RNA polymerase II transcription factor b. J. Biol. Chem. 266, 19000-19005 (1991). Reported the purification of a transcription factor from yeast that was designated Tfb, which is required for Pol II transcription.
    • (1991) J. Biol. Chem. , vol.266 , pp. 19000-19005
    • Feaver, W.J.1    Gileadi, O.2    Kornberg, R.3
  • 10
    • 0026802039 scopus 로고
    • Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH
    • Flores, O., Lu, H. & Reinberg, D. Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. J. Biol. Chem. 267, 2786-2793 (1992).
    • (1992) J. Biol. Chem. , vol.267 , pp. 2786-2793
    • Flores, O.1    Lu, H.2    Reinberg, D.3
  • 11
    • 0028362248 scopus 로고
    • The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor
    • Schaeffer, L. et al. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13, 2388-2392 (1994).
    • (1994) EMBO J. , vol.13 , pp. 2388-2392
    • Schaeffer, L.1
  • 12
    • 0025250069 scopus 로고
    • ERCC2: CDNA cloning and molecular characterization of human nucleotide excision repair gene with high homology to yeast RAD3
    • Weber, C. A., Salazar, E. P., Stewart, S. A. & Thompson, L. H. ERCC2: cDNA cloning and molecular characterization of human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9, 1437-1447 (1990).
    • (1990) EMBO J. , vol.9 , pp. 1437-1447
    • Weber, C.A.1    Salazar, E.P.2    Stewart, S.A.3    Thompson, L.H.4
  • 13
    • 0026008883 scopus 로고
    • Structure and expression of the human XPBC/ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome
    • Weeda, G., Ma, L., van der Ham, R., van der Eb, A. J. & Hoeijmakers, J. H. J. Structure and expression of the human XPBC/ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome. Nucleic Acids Res. 19, 6301-6308 (1991).
    • (1991) Nucleic Acids Res. , vol.19 , pp. 6301-6308
    • Weeda, G.1    Ma, L.2    Van Der Ham, R.3    Van Der Eb, A.J.4    Hoeijmakers, J.H.J.5
  • 14
    • 0026348276 scopus 로고
    • CTD kinase associated with yeast RNA polymerase II initiation factor b
    • Feaver, W. J., Gileadi, O., Li, Y. & Kornberg, R. D. CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67, 1223-1230 (1991).
    • (1991) Cell , vol.67 , pp. 1223-1230
    • Feaver, W.J.1    Gileadi, O.2    Li, Y.3    Kornberg, R.D.4
  • 15
    • 0028600051 scopus 로고
    • The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor
    • Revealed that MO15 (also known as CDK7) kinase is present in the TFIIH transcription complex
    • Roy, R. et al. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79, 1093-1101 (1994). Revealed that MO15 (also known as CDK7) kinase is present in the TFIIH transcription complex.
    • (1994) Cell , vol.79 , pp. 1093-1101
    • Roy, R.1
  • 16
    • 0027994603 scopus 로고
    • A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase
    • Fisher, R. P. & Morgan, D. O. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78, 713-724 (1994).
    • (1994) Cell , vol.78 , pp. 713-724
    • Fisher, R.P.1    Morgan, D.O.2
  • 17
    • 0028070243 scopus 로고
    • A cyclin associated with the CDK-associated kinase MO15
    • Mäkelä, T. P. et al. A cyclin associated with the CDK-associated kinase MO15. Nature 371, 254-257 (1994).
    • (1994) Nature , vol.371 , pp. 254-257
    • Mäkelä, T.P.1
  • 18
    • 0029987031 scopus 로고    scopus 로고
    • MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH
    • Adamczewski, J. P. et al. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH. EMBO J. 15, 1877-1884 (1996).
    • (1996) EMBO J. , vol.15 , pp. 1877-1884
    • Adamczewski, J.P.1
  • 19
    • 0030998712 scopus 로고    scopus 로고
    • Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH
    • Rossignol, M., Kolb-Cheynel, I. & Egly, J. M. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J. 16, 1628-1637 (1997).
    • (1997) EMBO J. , vol.16 , pp. 1628-1637
    • Rossignol, M.1    Kolb-Cheynel, I.2    Egly, J.M.3
  • 20
    • 0032005801 scopus 로고    scopus 로고
    • Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity
    • Larochelle, S., Pandur, J., Fisher, R. P., Salz, H. K. & Suter, B. Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev. 12, 370-381 (1998).
    • (1998) Genes Dev. , vol.12 , pp. 370-381
    • Larochelle, S.1    Pandur, J.2    Fisher, R.P.3    Salz, H.K.4    Suter, B.5
  • 21
    • 0030963966 scopus 로고    scopus 로고
    • Is Cdk7/cyclin H/MAT1 the genuine cdk activating kinase in cycling Xenopus egg extracts?
    • Fesquet, D., Morin, N., Doree, M. & Devault, A. Is Cdk7/cyclin H/MAT1 the genuine cdk activating kinase in cycling Xenopus egg extracts? Oncogene 15, 1303-1307 (1997).
    • (1997) Oncogene , vol.15 , pp. 1303-1307
    • Fesquet, D.1    Morin, N.2    Doree, M.3    Devault, A.4
  • 22
    • 0033605112 scopus 로고    scopus 로고
    • RNA antisense abrogation of MAT1 induces G1 phase arrest and triggers apoptosis in aortic smooth muscle cells
    • Wu, L. et al. RNA antisense abrogation of MAT1 induces G1 phase arrest and triggers apoptosis in aortic smooth muscle cells. J. Biol. Chem. 274, 5564-5572 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 5564-5572
    • Wu, L.1
  • 23
    • 0029147732 scopus 로고
    • Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by the CDK-activating kinase
    • Aprelikova, O., Xiong, Y. & Liu, E. T. Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by the CDK-activating kinase. J. Biol. Chem. 270, 18195-18197 (1995).
    • (1995) J. Biol. Chem. , vol.270 , pp. 18195-18197
    • Aprelikova, O.1    Xiong, Y.2    Liu, E.T.3
  • 24
    • 0027296041 scopus 로고
    • The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues
    • Fesquet, D. et al. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12, 3111-3121 (1993).
    • (1993) EMBO J. , vol.12 , pp. 3111-3121
    • Fesquet, D.1
  • 25
    • 0027943714 scopus 로고
    • Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase
    • Matsuoka, M., Kato, J. Y., Fisher, R. P., Morgan, D. O. & Sherr, C. J. Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol. Cell. Biol. 14, 7265-7275 (1994).
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 7265-7275
    • Matsuoka, M.1    Kato, J.Y.2    Fisher, R.P.3    Morgan, D.O.4    Sherr, C.J.5
  • 26
    • 0027251024 scopus 로고
    • The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2
    • Poon, R. Y. C., Yamashita, K., Adamczewski, J. P., Hunt, T. & Shuttleworth, J. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 12, 3123-3132 (1993).
    • (1993) EMBO J. , vol.12 , pp. 3123-3132
    • Poon, R.Y.C.1    Yamashita, K.2    Adamczewski, J.P.3    Hunt, T.4    Shuttleworth, J.5
  • 27
    • 0027185999 scopus 로고
    • CAK, the p34cdc2 activating kinase contains a protein kinase identical to or closely related to p40MO15
    • Solomon, M. J., Harper, W. J. & Shuttleworth, J. CAK, the p34cdc2 activating kinase contains a protein kinase identical to or closely related to p40MO15. EMBO J. 12, 3133-3142 (1993).
    • (1993) EMBO J. , vol.12 , pp. 3133-3142
    • Solomon, M.J.1    Harper, W.J.2    Shuttleworth, J.3
  • 28
    • 29244468847 scopus 로고    scopus 로고
    • Secrets of a double agent: CDK7 in cell-cycle control and transcription
    • Fisher, R. P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell Sci. 118, 5171-5180 (2005).
    • (2005) J. Cell Sci. , vol.118 , pp. 5171-5180
    • Fisher, R.P.1
  • 29
    • 77956002171 scopus 로고    scopus 로고
    • MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation
    • Ito, S. et al. MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol. Cell 39, 632-640 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 632-640
    • Ito, S.1
  • 30
    • 0028606403 scopus 로고
    • Mechanisms of DNA excision repair
    • Sancar, A. Mechanisms of DNA excision repair. Science 266, 1954-1956 (1994).
    • (1994) Science , vol.266 , pp. 1954-1956
    • Sancar, A.1
  • 31
    • 0028948394 scopus 로고
    • Mammalian DNA nucleotide excision repair reconstituted with purified protein components
    • Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859-868 (1995).
    • (1995) Cell , vol.80 , pp. 859-868
    • Aboussekhra, A.1
  • 32
    • 17944361949 scopus 로고    scopus 로고
    • Sequential assembly of the nucleotide excision repair factors in vivo
    • Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213-224 (2001).
    • (2001) Mol. Cell , vol.8 , pp. 213-224
    • Volker, M.1
  • 33
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: Two decades of progress and surprises
    • Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958-970 (2008).
    • (2008) Nature Rev. Mol. Cell Biol. , vol.9 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 34
    • 75749154031 scopus 로고    scopus 로고
    • Dynamic two-stage mechanism of versatile DNA damage recognition by xeroderma pigmentosum group C protein
    • Clement, F. C. et al. Dynamic two-stage mechanism of versatile DNA damage recognition by xeroderma pigmentosum group C protein. Mutat. Res. 685, 21-28 (2010).
    • (2010) Mutat. Res. , vol.685 , pp. 21-28
    • Clement, F.C.1
  • 35
    • 33845575990 scopus 로고    scopus 로고
    • Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein
    • Bunick, C. G., Miller, M. R., Fuller, B. E., Fanning, E. & Chazin, W. J. Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry 45, 14965-14979 (2006).
    • (2006) Biochemistry , vol.45 , pp. 14965-14979
    • Bunick, C.G.1    Miller, M.R.2    Fuller, B.E.3    Fanning, E.4    Chazin, W.J.5
  • 36
    • 34948892722 scopus 로고    scopus 로고
    • Recognition of DNA damage by the Rad4 nucleotide excision repair protein
    • Min., J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570-575 (2007).
    • (2007) Nature , vol.449 , pp. 570-575
    • Min, J.H.1    Pavletich, N.P.2
  • 37
    • 0035282109 scopus 로고    scopus 로고
    • A multistep damage recognition mechanism for global genomic nucleotide excision repair
    • Sugasawa, K. et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15, 507-521 (2001).
    • (2001) Genes Dev. , vol.15 , pp. 507-521
    • Sugasawa, K.1
  • 38
    • 34250795081 scopus 로고    scopus 로고
    • The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a] pyrenyl-DNA lesions
    • Mocquet, V. et al. The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a] pyrenyl-DNA lesions. EMBO J. 26, 2923-2932 (2007).
    • (2007) EMBO J. , vol.26 , pp. 2923-2932
    • Mocquet, V.1
  • 39
    • 0027442869 scopus 로고
    • Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum e
    • Keeney, S., Chang, G. J. & Linn, S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J. Biol. Chem. 268, 21293-21300 (1993).
    • (1993) J. Biol. Chem. , vol.268 , pp. 21293-21300
    • Keeney, S.1    Chang, G.J.2    Linn, S.3
  • 40
    • 0027203512 scopus 로고
    • A 127 kDa component of a UV-damaged DNA-binding complex which is defective in some xeroderma pigmentosum group e patients is homologous to a slime mold protein
    • Takao, M. et al. A 127 kDa component of a UV-damaged DNA-binding complex which is defective in some xeroderma pigmentosum group E patients is homologous to a slime mold protein. Nucleic Acids Res. 21, 4111-4118 (1993).
    • (1993) Nucleic Acids Res. , vol.21 , pp. 4111-4118
    • Takao, M.1
  • 41
    • 0038771963 scopus 로고    scopus 로고
    • The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts
    • Fitch, M. E. et al. The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts. DNA Repair (Amst.) 2, 819-826 (2003).
    • (2003) DNA Repair (Amst.) , vol.2 , pp. 819-826
    • Fitch, M.E.1
  • 42
    • 3042780229 scopus 로고    scopus 로고
    • UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2
    • Wang, Q. E., Zhu, Q., Wani, G., Chen, J. & Wani, A. A. UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis 25, 1033-1043 (2004).
    • (2004) Carcinogenesis , vol.25 , pp. 1033-1043
    • Wang, Q.E.1    Zhu, Q.2    Wani, G.3    Chen, J.4    Wani, A.A.5
  • 43
    • 80055046325 scopus 로고    scopus 로고
    • Regulation of nucleotide excision repair by UV-DDB: Prioritization of damage recognition to internucleosomal DNA
    • Fei, J. et al. Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biol. 9, e1001183 (2011).
    • (2011) PLoS Biol. , vol.9
    • Fei, J.1
  • 44
    • 33745763117 scopus 로고    scopus 로고
    • Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair
    • Gillette, T. G. et al. Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. EMBO J. 25, 2529-2538 (2006).
    • (2006) EMBO J. , vol.25 , pp. 2529-2538
    • Gillette, T.G.1
  • 45
    • 0035374836 scopus 로고    scopus 로고
    • Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair
    • Araki, M. et al. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem. 276, 18665-18672 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 18665-18672
    • Araki, M.1
  • 46
    • 11344250554 scopus 로고    scopus 로고
    • Roles of Rad23 protein in yeast nucleotide excision repair
    • Xie, Z., Liu, S., Zhang, Y. & Wang, Z. Roles of Rad23 protein in yeast nucleotide excision repair. Nucleic Acids Res. 32, 5981-5990 (2004).
    • (2004) Nucleic Acids Res. , vol.32 , pp. 5981-5990
    • Xie, Z.1    Liu, S.2    Zhang, Y.3    Wang, Z.4
  • 47
    • 2442586630 scopus 로고    scopus 로고
    • Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors
    • Tapias, A. et al. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J. Biol. Chem. 279, 19074-19083 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 19074-19083
    • Tapias, A.1
  • 48
    • 57349187237 scopus 로고    scopus 로고
    • Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC
    • Bernardes de Jesus, B. M., Bjoras, M., Coin, F. & Egly, J. M. Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC. Mol. Cell. Biol. 28, 7225-7235 (2008).
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 7225-7235
    • Bernardes De Jesus, B.M.1    Bjoras, M.2    Coin, F.3    Egly, J.M.4
  • 49
    • 0027174179 scopus 로고
    • DNA repair. Engagement with transcription
    • Bootsma, D. & Hoeijmakers, J. H. J. DNA repair. Engagement with transcription. Nature 363, 114-115 (1993).
    • (1993) Nature , vol.363 , pp. 114-115
    • Bootsma, D.1    Hoeijmakers, J.H.J.2
  • 50
    • 0032742715 scopus 로고    scopus 로고
    • DNA damage recognition during nucleotide excision repair in mammalian cells
    • Wood, R. D. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 81, 39-44 (1999).
    • (1999) Biochimie , vol.81 , pp. 39-44
    • Wood, R.D.1
  • 51
    • 0031666241 scopus 로고    scopus 로고
    • Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH
    • Demonstrated that mutations in the XPD C-terminal domain that are found in most patients with xeroderma pigmentosum and TTD prevent the interaction with p44, thus explaining the observed decrease in XPD helicase activity and the NER defect
    • Coin, F. et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nature Genet. 20, 184-188 (1998). Demonstrated that mutations in the XPD C-terminal domain that are found in most patients with xeroderma pigmentosum and TTD prevent the interaction with p44, thus explaining the observed decrease in XPD helicase activity and the NER defect.
    • (1998) Nature Genet. , vol.20 , pp. 184-188
    • Coin, F.1
  • 52
    • 0038094503 scopus 로고    scopus 로고
    • Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients
    • Dubaele, S. et al. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell 11, 1635-1646 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 1635-1646
    • Dubaele, S.1
  • 53
    • 0033010723 scopus 로고    scopus 로고
    • Reconstitution of the transcription factor TFIIH: Assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7
    • Tirode, F., Busso, D., Coin, F. & Egly, J. M. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol. Cell 3, 87-95 (1999).
    • (1999) Mol. Cell , vol.3 , pp. 87-95
    • Tirode, F.1    Busso, D.2    Coin, F.3    Egly, J.M.4
  • 54
    • 70350566800 scopus 로고    scopus 로고
    • Molecular insights into the recruitment of TFIIH to sites of DNA damage
    • Oksenych, V., de Jesus, B. B., Zhovmer, A., Egly, J. M. & Coin, F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 28, 2971-2980 (2009).
    • (2009) EMBO J. , vol.28 , pp. 2971-2980
    • Oksenych, V.1    De Jesus, B.B.2    Zhovmer, A.3    Egly, J.M.4    Coin, F.5
  • 55
    • 33645988522 scopus 로고    scopus 로고
    • Conserved XPB core structure and motifs for DNA unwinding: Implications for pathway selection of transcription or excision repair
    • Fan, L. et al. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol. Cell 22, 27-37 (2006).
    • (2006) Mol. Cell , vol.22 , pp. 27-37
    • Fan, L.1
  • 56
    • 34247513888 scopus 로고    scopus 로고
    • Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair
    • Revealed that the helicase activity of XPB is not used for damaged DNA opening, which is instead driven by the ATPase activity of XPB in combination with the helicase activity of XPD. Furthermore, TFIIH from patients with mutated XPB is unable to induce DNA opening around the lesion owing to impaired XPB-p52 interaction and ATPase stimulation
    • Coin, F., Oksenych, V. & Egly, J. M. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell 26, 245-256 (2007). Revealed that the helicase activity of XPB is not used for damaged DNA opening, which is instead driven by the ATPase activity of XPB in combination with the helicase activity of XPD. Furthermore, TFIIH from patients with mutated XPB is unable to induce DNA opening around the lesion owing to impaired XPB-p52 interaction and ATPase stimulation.
    • (2007) Mol. Cell , vol.26 , pp. 245-256
    • Coin, F.1    Oksenych, V.2    Egly, J.M.3
  • 57
    • 34247482968 scopus 로고    scopus 로고
    • DNA repair and transcriptional deficiencies caused by mutations in the Drosophila p52 subunit of TFIIH generate developmental defects and chromosome fragility
    • Fregoso, M. et al. DNA repair and transcriptional deficiencies caused by mutations in the Drosophila p52 subunit of TFIIH generate developmental defects and chromosome fragility. Mol. Cell. Biol. 27, 3640-3650 (2007).
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 3640-3650
    • Fregoso, M.1
  • 58
    • 44149094083 scopus 로고    scopus 로고
    • XPD helicase structures and activities: Insights into the cancer and aging phenotypes from XPD mutations
    • Fan, L. et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789-800 (2008).
    • (2008) Cell , vol.133 , pp. 789-800
    • Fan, L.1
  • 59
    • 43949110271 scopus 로고    scopus 로고
    • Structure of the DNA repair helicase XPD
    • Liu, H. et al. Structure of the DNA repair helicase XPD. Cell 133, 801-812 (2008).
    • (2008) Cell , vol.133 , pp. 801-812
    • Liu, H.1
  • 60
    • 45849119445 scopus 로고    scopus 로고
    • Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD
    • Wolski, S. C. et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol. 6, e149 (2008).
    • (2008) PLoS Biol. , vol.6
    • Wolski, S.C.1
  • 61
    • 78049274322 scopus 로고    scopus 로고
    • Strand- And site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase
    • Mathieu, N., Kaczmarek, N. & Naegeli, H. Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. Proc. Natl Acad. Sci. USA 107, 17545-17550 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 17545-17550
    • Mathieu, N.1    Kaczmarek, N.2    Naegeli, H.3
  • 62
    • 0033573066 scopus 로고    scopus 로고
    • Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair
    • Theis, K., Chen, P. J., Skorvaga, M., Van Houten, B. & Kisker, C. Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J. 18, 6899-6907 (1999).
    • (1999) EMBO J. , vol.18 , pp. 6899-6907
    • Theis, K.1    Chen, P.J.2    Skorvaga, M.3    Van Houten, B.4    Kisker, C.5
  • 63
    • 0037059785 scopus 로고    scopus 로고
    • The â-hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions
    • Skorvaga, M., Theis, K., Mandavilli, B. S., Kisker, C. & Van Houten, B. The â-hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions. J. Biol. Chem. 277, 1553-1559 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 1553-1559
    • Skorvaga, M.1    Theis, K.2    Mandavilli, B.S.3    Kisker, C.4    Van Houten, B.5
  • 64
    • 0142059994 scopus 로고    scopus 로고
    • Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease
    • Reardon, J. T. & Sancar, A. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev. 17, 2539-2551 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 2539-2551
    • Reardon, J.T.1    Sancar, A.2
  • 65
    • 72949115497 scopus 로고    scopus 로고
    • Trichothiodystrophy: From basic mechanisms to clinical implications
    • Stefanini, M., Botta, E., Lanzafame, M. & Orioli, D. Trichothiodystrophy: from basic mechanisms to clinical implications. DNA Repair (Amst.) 9, 2-10 (2010).
    • (2010) DNA Repair (Amst.) , vol.9 , pp. 2-10
    • Stefanini, M.1    Botta, E.2    Lanzafame, M.3    Orioli, D.4
  • 66
    • 3042703022 scopus 로고    scopus 로고
    • Identification of TFB5, a new component of general transcription and DNA repair factor IIH
    • Ranish, J. A. et al. Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nature Genet. 36, 707-713 (2004).
    • (2004) Nature Genet. , vol.36 , pp. 707-713
    • Ranish, J.A.1
  • 67
    • 3042781670 scopus 로고    scopus 로고
    • A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A
    • Demonstrated that p8 is an evolutionarily conserved subunit of TFIIH and identified GTF2H5 as the gene that causes the NER defect in TTD-A
    • Giglia-Mari, G. et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genet. 36, 714-719 (2004). Demonstrated that p8 is an evolutionarily conserved subunit of TFIIH and identified GTF2H5 as the gene that causes the NER defect in TTD-A.
    • (2004) Nature Genet. , vol.36 , pp. 714-719
    • Giglia-Mari, G.1
  • 68
    • 30744438055 scopus 로고    scopus 로고
    • P8/TTD-A as a repair-specific TFIIH subunit
    • Coin, F. et al. p8/TTD-A as a repair-specific TFIIH subunit. Mol. Cell 21, 215-226 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 215-226
    • Coin, F.1
  • 69
    • 0033768176 scopus 로고    scopus 로고
    • Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder
    • Vermeulen, W. et al. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nature Genet. 26, 307-313 (2000).
    • (2000) Nature Genet. , vol.26 , pp. 307-313
    • Vermeulen, W.1
  • 70
    • 33947578325 scopus 로고    scopus 로고
    • Solution structure and self-association properties of the p8 TFIIH subunit responsible for trichothiodystrophy
    • Vitorino, M. et al. Solution structure and self-association properties of the p8 TFIIH subunit responsible for trichothiodystrophy. J. Mol. Biol. 368, 473-480 (2007).
    • (2007) J. Mol. Biol. , vol.368 , pp. 473-480
    • Vitorino, M.1
  • 72
    • 0028304833 scopus 로고
    • Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins
    • Park, C. H. & Sancar, A. Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. Proc. Natl Acad. Sci. USA 91, 5017-5021 (1994).
    • (1994) Proc. Natl Acad. Sci. USA , vol.91 , pp. 5017-5021
    • Park, C.H.1    Sancar, A.2
  • 73
    • 78650435945 scopus 로고    scopus 로고
    • Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair
    • Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O. & Lavrik, O. I. Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res. 38, 8083-8094 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. 8083-8094
    • Krasikova, Y.S.1    Rechkunova, N.I.2    Maltseva, E.A.3    Petruseva, I.O.4    Lavrik, O.I.5
  • 74
    • 0031825065 scopus 로고    scopus 로고
    • Solution structure of the DNA- And RPA-binding domain of the human repair factor XPA
    • Ikegami, T. et al. Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA. Nature Struct. Biol. 5, 701-706 (1998).
    • (1998) Nature Struct. Biol. , vol.5 , pp. 701-706
    • Ikegami, T.1
  • 75
    • 0029828941 scopus 로고    scopus 로고
    • Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro
    • Saijo, M., Kuraoka, I., Masutani, C., Hanaoka, F. & Tanaka, K. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res. 24, 4719-4724 (1996).
    • (1996) Nucleic Acids Res. , vol.24 , pp. 4719-4724
    • Saijo, M.1    Kuraoka, I.2    Masutani, C.3    Hanaoka, F.4    Tanaka, K.5
  • 76
    • 0030732132 scopus 로고    scopus 로고
    • Mechanism of open complex and dual incision formation by human nucleotide excision repair factors
    • Evans, E., Moggs, J. G., Hwang, J. R., Egly, J. M. & Wood, R. D. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16, 6559-6573 (1997).
    • (1997) EMBO J. , vol.16 , pp. 6559-6573
    • Evans, E.1    Moggs, J.G.2    Hwang, J.R.3    Egly, J.M.4    Wood, R.D.5
  • 77
    • 46349091030 scopus 로고    scopus 로고
    • Nucleotide excision repair driven by the dissociation of CAK from TFIIH
    • Showed the release of CAK from the core TFIIH during the engagement of this complex in DNA repair. Following repair, CAK reappears with the core subunit of TFIIH on chromatin, coincident with the resumption of transcription
    • Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9-20 (2008). Showed the release of CAK from the core TFIIH during the engagement of this complex in DNA repair. Following repair, CAK reappears with the core subunit of TFIIH on chromatin, coincident with the resumption of transcription.
    • (2008) Mol. Cell , vol.31 , pp. 9-20
    • Coin, F.1
  • 78
    • 0028885363 scopus 로고
    • Different forms of TFIIH for transcription and DNA repair: Holo-TFIIH and a nucleotide excision repairosome
    • Svejstrup, J. Q. et al. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80, 21-28 (1995).
    • (1995) Cell , vol.80 , pp. 21-28
    • Svejstrup, J.Q.1
  • 79
    • 0242605710 scopus 로고    scopus 로고
    • Nucleotide excision repair of DNA with recombinant human proteins: Definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK
    • Araujo, S. J. et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14, 349-359 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 349-359
    • Araujo, S.J.1
  • 80
    • 0035929594 scopus 로고    scopus 로고
    • A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH
    • Sandrock, B. & Egly, J. M. A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J. Biol. Chem. 276, 35328-35333 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 35328-35333
    • Sandrock, B.1    Egly, J.M.2
  • 81
    • 77955501963 scopus 로고    scopus 로고
    • SIRT1 regulates UV-induced DNA repair through deacetylating XPA
    • Fan, W. & Luo, J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell 39, 247-258 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 247-258
    • Fan, W.1    Luo, J.2
  • 82
    • 70449717367 scopus 로고    scopus 로고
    • Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning
    • Sugasawa, K., Akagi, J., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol. Cell 36, 642-653 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 642-653
    • Sugasawa, K.1    Akagi, J.2    Nishi, R.3    Iwai, S.4    Hanaoka, F.5
  • 83
    • 79960350167 scopus 로고    scopus 로고
    • The xeroderma pigmentosum pathway: Decision tree analysis of DNA quality
    • Naegeli, H. & Sugasawa, K. The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair (Amst.) 10, 673-683 (2011).
    • (2011) DNA Repair (Amst.) , vol.10 , pp. 673-683
    • Naegeli, H.1    Sugasawa, K.2
  • 84
    • 35548985406 scopus 로고    scopus 로고
    • A mathematical model for human nucleotide excision repair: Damage recognition by random order assembly and kinetic proofreading
    • Kesseler, K. J., Kaufmann, W. K., Reardon, J. T., Elston, T. C. & Sancar, A. A mathematical model for human nucleotide excision repair: damage recognition by random order assembly and kinetic proofreading. J. Theor. Biol. 249, 361-275 (2007).
    • (2007) J. Theor. Biol. , vol.249 , pp. 361-1275
    • Kesseler, K.J.1    Kaufmann, W.K.2    Reardon, J.T.3    Elston, T.C.4    Sancar, A.5
  • 85
    • 38049000832 scopus 로고    scopus 로고
    • Sequential recruitment of the repair factors during NER: The role of XPG in initiating the resynthesis step
    • Mocquet, V. et al. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J. 27, 155-167 (2008).
    • (2008) EMBO J. , vol.27 , pp. 155-167
    • Mocquet, V.1
  • 86
    • 67349212889 scopus 로고    scopus 로고
    • Coordination of dual incision and repair synthesis in human nucleotide excision repair
    • Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111-1120 (2009).
    • (2009) EMBO J. , vol.28 , pp. 1111-1120
    • Staresincic, L.1
  • 87
    • 0029911744 scopus 로고    scopus 로고
    • Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct
    • Moggs, J. G., Yarema, K. J., Essigmann, J. M. & Wood, R. D. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J. Biol. Chem. 271, 7177-7186 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 7177-7186
    • Moggs, J.G.1    Yarema, K.J.2    Essigmann, J.M.3    Wood, R.D.4
  • 88
    • 32644450616 scopus 로고    scopus 로고
    • Molecular mechanisms of mammalian global genome nucleotide excision repair
    • Gillet, L. C. & Scharer, O. D. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 106, 253-276 (2006).
    • (2006) Chem. Rev. , vol.106 , pp. 253-276
    • Gillet, L.C.1    Scharer, O.D.2
  • 89
    • 79960347948 scopus 로고    scopus 로고
    • DNA polymerases and repair synthesis in NER in human cells
    • Lehmann, A. R. DNA polymerases and repair synthesis in NER in human cells. DNA Repair (Amst.) 10, 730-733 (2011).
    • (2011) DNA Repair (Amst.) , vol.10 , pp. 730-733
    • Lehmann, A.R.1
  • 90
    • 77649242633 scopus 로고    scopus 로고
    • Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells
    • Ogi, T. et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37, 714-727 (2010).
    • (2010) Mol. Cell , vol.37 , pp. 714-727
    • Ogi, T.1
  • 91
    • 34447302016 scopus 로고    scopus 로고
    • Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase IIIα in a cell-cycle-specific manner
    • Moser, J. et al. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase IIIα in a cell-cycle-specific manner. Mol. Cell 27, 311-323 (2007).
    • (2007) Mol. Cell , vol.27 , pp. 311-323
    • Moser, J.1
  • 92
    • 0030595338 scopus 로고    scopus 로고
    • Chromatin assembly coupled to DNA repair: A new role for chromatin assembly factor I
    • Gaillard, P. H. L. et al. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86, 887-896 (1996).
    • (1996) Cell , vol.86 , pp. 887-896
    • Gaillard, P.H.L.1
  • 93
    • 33750449326 scopus 로고    scopus 로고
    • New histone incorporation marks sites of UV repair in human cells
    • Polo, S. E., Roche, D. & Almouzni, G. New histone incorporation marks sites of UV repair in human cells. Cell 127, 481-493 (2006).
    • (2006) Cell , vol.127 , pp. 481-493
    • Polo, S.E.1    Roche, D.2    Almouzni, G.3
  • 94
    • 34247256517 scopus 로고    scopus 로고
    • XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne Syndrome in XP-G/CS Patients
    • Showed that XPG forms a stable complex with TFIIH and functions in maintaining the architecture of TFIIH, which underlines the contribution of XPG to transcription
    • Ito, S. et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne Syndrome in XP-G/CS Patients. Mol. Cell 26, 231-243 (2007). Showed that XPG forms a stable complex with TFIIH and functions in maintaining the architecture of TFIIH, which underlines the contribution of XPG to transcription.
    • (2007) Mol. Cell , vol.26 , pp. 231-243
    • Ito, S.1
  • 95
    • 11244296193 scopus 로고    scopus 로고
    • Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity
    • Coin, F. et al. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. EMBO J. 23, 4835-4846 (2004).
    • (2004) EMBO J. , vol.23 , pp. 4835-4846
    • Coin, F.1
  • 96
    • 18744374129 scopus 로고    scopus 로고
    • Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo
    • Hoogstraten, D. et al. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol. Cell 10, 1163-1174 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 1163-1174
    • Hoogstraten, D.1
  • 97
    • 0037013144 scopus 로고    scopus 로고
    • TFIIH plays an essential role in RNA polymerase I transcription
    • Found that TFIIH serves a function in ribosomal gene transcription. TFIIH is required for productive but not abortive ribosomal DNA transcription, which implies a post-initiation role for TFIIH in transcription
    • Iben, S. et al. TFIIH plays an essential role in RNA polymerase I transcription. Cell 109, 297-306 (2002). Found that TFIIH serves a function in ribosomal gene transcription. TFIIH is required for productive but not abortive ribosomal DNA transcription, which implies a post-initiation role for TFIIH in transcription.
    • (2002) Cell , vol.109 , pp. 297-306
    • Iben, S.1
  • 98
    • 84855897301 scopus 로고    scopus 로고
    • TFIIH is an elongation factor of RNA polymerase I
    • Assfalg, R. et al. TFIIH is an elongation factor of RNA polymerase I. Nucleic Acids Res. 40, 650-659 (2011).
    • (2011) Nucleic Acids Res. , vol.40 , pp. 650-659
    • Assfalg, R.1
  • 99
    • 77951956458 scopus 로고    scopus 로고
    • Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes
    • Barski, A. et al. Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nature Struct. Mol. Biol. 17, 629-634 (2010).
    • (2010) Nature Struct. Mol. Biol. , vol.17 , pp. 629-634
    • Barski, A.1
  • 100
    • 77951943463 scopus 로고    scopus 로고
    • Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors
    • Oler, A. J. et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nature Struct. Mol. Biol. 17, 620-628 (2010).
    • (2010) Nature Struct. Mol. Biol. , vol.17 , pp. 620-628
    • Oler, A.J.1
  • 101
    • 0033370108 scopus 로고    scopus 로고
    • Eukaryotic transcriptional control
    • Kornberg, R. D. Eukaryotic transcriptional control. Trends Cell Biol. 9, M46-M49 (1999).
    • (1999) Trends Cell Biol. , vol.9
    • Kornberg, R.D.1
  • 102
    • 2342465953 scopus 로고    scopus 로고
    • Recent highlights of RNA-polymerase-II-mediated transcription
    • Sims, R. J. 3rd, Mandal, S. S. & Reinberg, D. Recent highlights of RNA-polymerase-II-mediated transcription. Curr. Opin. Cell Biol. 16, 263-271 (2004).
    • (2004) Curr. Opin. Cell Biol. , vol.16 , pp. 263-271
    • Sims III, R.J.1    Mandal, S.S.2    Reinberg, D.3
  • 103
    • 0030447612 scopus 로고    scopus 로고
    • RSC, an essential, abundant chromatin-remodeling complex
    • Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249-1260 (1996).
    • (1996) Cell , vol.87 , pp. 1249-1260
    • Cairns, B.R.1
  • 104
    • 0029867265 scopus 로고    scopus 로고
    • A mammalian SRB protein associated with an RNA polymerase II holoenzyme
    • Chao, D. M. et al. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 380, 82-85 (1996).
    • (1996) Nature , vol.380 , pp. 82-85
    • Chao, D.M.1
  • 105
    • 0028282551 scopus 로고
    • A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II
    • Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599-608 (1994).
    • (1994) Cell , vol.77 , pp. 599-608
    • Kim, Y.J.1    Bjorklund, S.2    Li, Y.3    Sayre, M.H.4    Kornberg, R.D.5
  • 106
    • 0028832869 scopus 로고
    • A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation
    • Ossipow, V., Tassan, J. P., Nigg, E. A. & Schibler, U. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83, 137-146 (1995).
    • (1995) Cell , vol.83 , pp. 137-146
    • Ossipow, V.1    Tassan, J.P.2    Nigg, E.A.3    Schibler, U.4
  • 107
    • 0029042392 scopus 로고
    • Common themes in assembly and function of eukaryotic transcription complexes
    • Zawel, L. & Reinberg, D. Common themes in assembly and function of eukaryotic transcription complexes. Annu. Rev. Biochem. 64, 533-561 (1995).
    • (1995) Annu. Rev. Biochem. , vol.64 , pp. 533-561
    • Zawel, L.1    Reinberg, D.2
  • 108
    • 0033781448 scopus 로고    scopus 로고
    • Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking
    • Douziech, M. et al. Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking. Mol. Cell. Biol. 20, 8168-8177 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 8168-8177
    • Douziech, M.1
  • 109
    • 0030007387 scopus 로고    scopus 로고
    • Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH
    • Presented a model in which the crucial function of TFIIH-associated DNA helicases is to create an ssDNA region during transcription
    • Holstege, F. C., van der Vliet, P. C. & Timmers, H. T. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 15, 1666-1677 (1996). Presented a model in which the crucial function of TFIIH-associated DNA helicases is to create an ssDNA region during transcription.
    • (1996) EMBO J. , vol.15 , pp. 1666-1677
    • Holstege, F.C.1    Van Der Vliet, P.C.2    Timmers, H.T.3
  • 110
    • 0033104514 scopus 로고    scopus 로고
    • Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH
    • Coin, F., Bergmann, E., Tremeau-Bravard, A. & Egly, J. M. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 18, 1357-1366 (1999).
    • (1999) EMBO J. , vol.18 , pp. 1357-1366
    • Coin, F.1    Bergmann, E.2    Tremeau-Bravard, A.3    Egly, J.M.4
  • 111
    • 0033529635 scopus 로고    scopus 로고
    • A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II
    • Moreland, R. J. et al. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J. Biol. Chem. 274, 22127-22130 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 22127-22130
    • Moreland, R.J.1
  • 112
    • 0029870863 scopus 로고    scopus 로고
    • A role for ATP and TFIIH in activation of the RNA polymerase II preinitiation complex prior to transcription initiation
    • Dvir, A. et al. A role for ATP and TFIIH in activation of the RNA polymerase II preinitiation complex prior to transcription initiation. J. Biol. Chem. 271, 7245-7248 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 7245-7248
    • Dvir, A.1
  • 113
    • 0030740233 scopus 로고    scopus 로고
    • A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes
    • Dvir, A., Conaway, R. C. & Conaway, J. W. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc. Natl Acad. Sci. USA 94, 9006-9010 (1997).
    • (1997) Proc. Natl Acad. Sci. USA , vol.94 , pp. 9006-9010
    • Dvir, A.1    Conaway, R.C.2    Conaway, J.W.3
  • 114
    • 17744376368 scopus 로고    scopus 로고
    • Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum
    • Liu, J. et al. Defective interplay of activators and repressors with TFIH in xeroderma pigmentosum. Cell 104, 353-363 (2001).
    • (2001) Cell , vol.104 , pp. 353-363
    • Liu, J.1
  • 115
    • 0026731557 scopus 로고
    • Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II
    • Showed that the phosphorylation of the C-terminal domain of the largest subunit of Pol II by CDK7 contributes to the transition from transcription initiation to elongation
    • Lu, H., Zawel, L., Fisher, L., Egly, J. M. & Reinberg, D. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358, 641-645 (1992). Showed that the phosphorylation of the C-terminal domain of the largest subunit of Pol II by CDK7 contributes to the transition from transcription initiation to elongation.
    • (1992) Nature , vol.358 , pp. 641-645
    • Lu, H.1    Zawel, L.2    Fisher, L.3    Egly, J.M.4    Reinberg, D.5
  • 116
    • 0028590113 scopus 로고
    • Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK
    • Feaver, W. J., Svejstrup, J. Q., Henry, N. L. & Kornberg, R. D. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79, 1103-1109 (1994).
    • (1994) Cell , vol.79 , pp. 1103-1109
    • Feaver, W.J.1    Svejstrup, J.Q.2    Henry, N.L.3    Kornberg, R.D.4
  • 117
    • 0028954227 scopus 로고
    • Cdk-activating kinase complex is a component of human transcription factor TFIIH
    • Shiekhattar, R. et al. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374, 283-287 (1995).
    • (1995) Nature , vol.374 , pp. 283-287
    • Shiekhattar, R.1
  • 118
    • 0032754875 scopus 로고    scopus 로고
    • Regulated phosphorylation of the RNA polymerase II C-terminal domain (CTD)
    • Bensaude, O. et al. Regulated phosphorylation of the RNA polymerase II C-terminal domain (CTD). Biochem. Cell Biol. 77, 249-255 (1999).
    • (1999) Biochem. Cell Biol. , vol.77 , pp. 249-255
    • Bensaude, O.1
  • 119
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541-546 (2009).
    • (2009) Mol. Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 120
    • 0027208149 scopus 로고
    • Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription
    • Serizawa, H., Conaway, J. W. & Conaway, R. C. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 363, 371-374 (1993).
    • (1993) Nature , vol.363 , pp. 371-374
    • Serizawa, H.1    Conaway, J.W.2    Conaway, R.C.3
  • 121
    • 0031453408 scopus 로고    scopus 로고
    • mRNA capping enzyme is recruted to the transcritption complex by phosphorylation of the RNA polymerase II carboxy-terminal domain
    • Cho, E., Tagaki, T., Moore, C. R. & Buratowski, S. mRNA capping enzyme is recruted to the transcritption complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11, 3319-3326 (1997).
    • (1997) Genes Dev. , vol.11 , pp. 3319-3326
    • Cho, E.1    Tagaki, T.2    Moore, C.R.3    Buratowski, S.4
  • 122
    • 0034307008 scopus 로고    scopus 로고
    • Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription
    • Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452-2460 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 2452-2460
    • Komarnitsky, P.1    Cho, E.J.2    Buratowski, S.3
  • 123
    • 79960284319 scopus 로고    scopus 로고
    • Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and mRNA turnover
    • Helenius, K. et al. Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and mRNA turnover. Nucleic Acids Res. 39, 5025-5035 (2011).
    • (2011) Nucleic Acids Res. , vol.39 , pp. 5025-5035
    • Helenius, K.1
  • 124
    • 0034618762 scopus 로고    scopus 로고
    • TFIIH is negatively regulated by cdk8-containing mediator complexes
    • Akoulitchev, S., Chuikov, S. & Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407, 102-106 (2000).
    • (2000) Nature , vol.407 , pp. 102-106
    • Akoulitchev, S.1    Chuikov, S.2    Reinberg, D.3
  • 125
    • 65249158053 scopus 로고    scopus 로고
    • B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes
    • Yakovchuk, P., Goodrich, J. A. & Kugel, J. F. B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc. Natl Acad. Sci. USA 106, 5569-5574 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 5569-5574
    • Yakovchuk, P.1    Goodrich, J.A.2    Kugel, J.F.3
  • 127
    • 65549156025 scopus 로고    scopus 로고
    • TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II
    • Akhtar, M. S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387-393 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 387-393
    • Akhtar, M.S.1
  • 128
    • 70350442978 scopus 로고    scopus 로고
    • TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II
    • Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455-5464 (2009).
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5455-5464
    • Glover-Cutter, K.1
  • 129
    • 70350389837 scopus 로고    scopus 로고
    • Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7
    • Kim, M., Suh, H., Cho, E. J. & Buratowski, S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284, 26421-26426 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 26421-26426
    • Kim, M.1    Suh, H.2    Cho, E.J.3    Buratowski, S.4
  • 130
    • 37249063572 scopus 로고    scopus 로고
    • Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression
    • Egloff, S. et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318, 1777-1779 (2007).
    • (2007) Science , vol.318 , pp. 1777-1779
    • Egloff, S.1
  • 131
    • 0035893314 scopus 로고    scopus 로고
    • Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain
    • Cho, E. J., Kobor, M. S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319-3329 (2001).
    • (2001) Genes Dev. , vol.15 , pp. 3319-3329
    • Cho, E.J.1    Kobor, M.S.2    Kim, M.3    Greenblatt, J.4    Buratowski, S.5
  • 132
    • 0033920260 scopus 로고    scopus 로고
    • Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription
    • Zhou, M. et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 20, 5077-5086 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5077-5086
    • Zhou, M.1
  • 133
    • 1542334001 scopus 로고    scopus 로고
    • Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing
    • Ahn, S. H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67-76 (2004).
    • (2004) Mol. Cell , vol.13 , pp. 67-76
    • Ahn, S.H.1    Kim, M.2    Buratowski, S.3
  • 134
    • 0031035486 scopus 로고    scopus 로고
    • Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription
    • Gebara, M. M., Sayre, M. H. & Corden, J. L. Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription. J. Cell. Biochem. 64, 390-402 (1997).
    • (1997) J. Cell. Biochem. , vol.64 , pp. 390-402
    • Gebara, M.M.1    Sayre, M.H.2    Corden, J.L.3
  • 135
    • 0032110627 scopus 로고    scopus 로고
    • Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases
    • Hengartner, C. J. et al. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 2, 43-53 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 43-53
    • Hengartner, C.J.1
  • 136
    • 0033571245 scopus 로고    scopus 로고
    • Transcription-independent phosphorylation of the RNA polymerase II C-terminal domain (CTD) involves ERK kinases (MEK1/2)
    • Bonnet, F., Vigneron, M., Bensaude, O. & Dubois, M. F. Transcription-independent phosphorylation of the RNA polymerase II C-terminal domain (CTD) involves ERK kinases (MEK1/2). Nucleic Acids Res. 27, 4399-4404 (1999).
    • (1999) Nucleic Acids Res. , vol.27 , pp. 4399-4404
    • Bonnet, F.1    Vigneron, M.2    Bensaude, O.3    Dubois, M.F.4
  • 137
    • 0027048773 scopus 로고
    • Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II
    • Dvir, A., Peterson, S. R., Knuth, M. W., Lu, H. & Dynan, W. S. Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl Acad. Sci. USA 89, 11920-11924 (1992).
    • (1992) Proc. Natl Acad. Sci. USA , vol.89 , pp. 11920-11924
    • Dvir, A.1    Peterson, S.R.2    Knuth, M.W.3    Lu, H.4    Dynan, W.S.5
  • 138
    • 0032549653 scopus 로고    scopus 로고
    • Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases
    • Trigon, S. et al. Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases. J. Biol. Chem. 273, 6769-6775 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 6769-6775
    • Trigon, S.1
  • 139
    • 0029748541 scopus 로고    scopus 로고
    • Purification and characterization of an RNA polymerase II phosphatase from yeast
    • Chambers, R. S. & Kane, C. M. Purification and characterization of an RNA polymerase II phosphatase from yeast. J. Biol. Chem. 271, 24408-24504 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 24408-24504
    • Chambers, R.S.1    Kane, C.M.2
  • 140
    • 2242454131 scopus 로고    scopus 로고
    • TFIIF-associating carboxyl-terminal domain phosphatase dephosphorylates phosphoserines 2 and 5 of RNA polymerase II
    • Lin, P. S., Dubois, M. F. & Dahmus, M. E. TFIIF-associating carboxyl-terminal domain phosphatase dephosphorylates phosphoserines 2 and 5 of RNA polymerase II. J. Biol. Chem. 277, 45949-45956 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 45949-45956
    • Lin, P.S.1    Dubois, M.F.2    Dahmus, M.E.3
  • 141
    • 64749116042 scopus 로고    scopus 로고
    • Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation
    • Mosley, A. L. et al. Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol. Cell 34, 168-178 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 168-178
    • Mosley, A.L.1
  • 142
    • 33751090746 scopus 로고    scopus 로고
    • Phosphorylation and functions of the RNA polymerase II CTD
    • Phatnani, H. P. & Greenleaf, A. L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922-2936 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 2922-2936
    • Phatnani, H.P.1    Greenleaf, A.L.2
  • 144
    • 44149124228 scopus 로고    scopus 로고
    • Cracking the RNA polymerase II CTD code
    • Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280-288 (2008).
    • (2008) Trends Genet. , vol.24 , pp. 280-288
    • Egloff, S.1    Murphy, S.2
  • 145
    • 0030610565 scopus 로고    scopus 로고
    • The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro
    • Lu, H., Fisher, R. P., Bailey, P. & Levine, A. J. The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol. Cell. Biol. 17, 5923-5934 (1997).
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 5923-5934
    • Lu, H.1    Fisher, R.P.2    Bailey, P.3    Levine, A.J.4
  • 146
    • 0027983521 scopus 로고
    • Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53
    • Xiao, H. et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14, 7013-7024 (1994).
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 7013-7024
    • Xiao, H.1
  • 147
    • 0028897411 scopus 로고
    • The 62- And 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2
    • Tong, X., Drapkin, R., Reinberg, D. & Kieff, E. The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc. Natl Acad. Sci. USA 92, 3259-3263 (1995).
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 3259-3263
    • Tong, X.1    Drapkin, R.2    Reinberg, D.3    Kieff, E.4
  • 148
    • 0029743407 scopus 로고    scopus 로고
    • Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH and stimulates the DNA helicase activity of TFIIH
    • Qadri, I., Conaway, J. W., Conaway, R. C., Schaack, J. & Siddiqui, A. Hepatitis B virus transactivator protein, HBx, associates with the components of TFIIH and stimulates the DNA helicase activity of TFIIH. Proc. Natl Acad. Sci. USA 93, 10578-10583 (1996).
    • (1996) Proc. Natl Acad. Sci. USA , vol.93 , pp. 10578-10583
    • Qadri, I.1    Conaway, J.W.2    Conaway, R.C.3    Schaack, J.4    Siddiqui, A.5
  • 149
    • 0033860563 scopus 로고    scopus 로고
    • The FBP interacting repressor targets TFIIH to inhibit activated transcription
    • Liu, J. et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol. Cell 5, 331-341 (2000).
    • (2000) Mol. Cell , vol.5 , pp. 331-341
    • Liu, J.1
  • 150
    • 77956211767 scopus 로고    scopus 로고
    • Hfp inhibits Drosophila myc transcription and cell growth in a TFIIH/Hay-dependent manner
    • Mitchell, N. C. et al. Hfp inhibits Drosophila myc transcription and cell growth in a TFIIH/Hay-dependent manner. Development 137, 2875-2884 (2010).
    • (2010) Development , vol.137 , pp. 2875-2884
    • Mitchell, N.C.1
  • 151
    • 79551581840 scopus 로고    scopus 로고
    • The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process
    • Chymkowitch, P., Le May, N., Charneau, P., Compe, E. & Egly, J. M. The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO J. 30, 468-479 (2011).
    • (2011) EMBO J. , vol.30 , pp. 468-479
    • Chymkowitch, P.1    Le May, N.2    Charneau, P.3    Compe, E.4    Egly, J.M.5
  • 152
    • 0034698181 scopus 로고    scopus 로고
    • TFIIH interacts with the retinoic acid receptor-γ and phosphorylates its AF-1-activating domain through cdk7
    • Bastien, J. et al. TFIIH interacts with the retinoic acid receptor-γ and phosphorylates its AF-1-activating domain through cdk7. J. Biol. Chem. 275, 21896-21904 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 21896-21904
    • Bastien, J.1
  • 153
    • 0031440878 scopus 로고    scopus 로고
    • Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7
    • Revealed that RARaα is targeted by the CDK7 subunit of TFIIH, suggesting that the activity of a transactivator could be modulated through its interaction with a general transcription factor
    • Rochette-Egly, C., Adam, S., Rossignol, M., Egly, J. M. & Chambon, P. Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90, 97-107 (1997). Revealed that RARaα is targeted by the CDK7 subunit of TFIIH, suggesting that the activity of a transactivator could be modulated through its interaction with a general transcription factor.
    • (1997) Cell , vol.90 , pp. 97-107
    • Rochette-Egly, C.1    Adam, S.2    Rossignol, M.3    Egly, J.M.4    Chambon, P.5
  • 155
    • 21744438445 scopus 로고    scopus 로고
    • Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations
    • Compe, E. et al. Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol. Cell. Biol. 25, 6065-6076 (2005).
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 6065-6076
    • Compe, E.1
  • 156
    • 35549000640 scopus 로고    scopus 로고
    • Neurological defects in trichothiodystrophy reveal a coactivator function of TFIIH
    • Reported hypomyelination in the central nervous system of mice with TTD, which is related to the dysregulation of various thyroid hormone target genes. Proposed that such a dysregulation is likely to result from the inability of the mutated TFIIH to fully participate in the recruitment of thyroid hormone receptors to their response elements
    • Compe, E. et al. Neurological defects in trichothiodystrophy reveal a coactivator function of TFIIH. Nature Neurosci. 10, 1414-1422 (2007). Reported hypomyelination in the central nervous system of mice with TTD, which is related to the dysregulation of various thyroid hormone target genes. Proposed that such a dysregulation is likely to result from the inability of the mutated TFIIH to fully participate in the recruitment of thyroid hormone receptors to their response elements.
    • (2007) Nature Neurosci. , vol.10 , pp. 1414-1422
    • Compe, E.1
  • 157
    • 0033636597 scopus 로고    scopus 로고
    • Activation of estrogen receptor-α by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7
    • Chen, D. et al. Activation of estrogen receptor-α by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol. Cell 6, 127-137 (2000).
    • (2000) Mol. Cell , vol.6 , pp. 127-137
    • Chen, D.1
  • 158
    • 15444361897 scopus 로고    scopus 로고
    • p62, a TFIIH subunit, directly interacts with thyroid hormone receptor and enhances T3-mediated transcription
    • Liu, Y. et al. p62, a TFIIH subunit, directly interacts with thyroid hormone receptor and enhances T3-mediated transcription. Mol. Endocrinol. 19, 879-884 (2005).
    • (2005) Mol. Endocrinol. , vol.19 , pp. 879-884
    • Liu, Y.1
  • 159
    • 6344260667 scopus 로고    scopus 로고
    • Selective regulation of vitamin D receptor-responsive genes by TFIIH
    • Drane, P., Compe, E., Catez, P., Chymkowitch, P. & Egly, J. M. Selective regulation of vitamin D receptor-responsive genes by TFIIH. Mol. Cell 16, 187-197 (2004).
    • (2004) Mol. Cell , vol.16 , pp. 187-197
    • Drane, P.1    Compe, E.2    Catez, P.3    Chymkowitch, P.4    Egly, J.M.5
  • 160
    • 0029952160 scopus 로고    scopus 로고
    • Cyclin-dependent kinase 7: At the cross-roads of transcription, DNA repair and cell cycle control?
    • Nigg, E. A. Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr. Opin. Cell Biol. 8, 312-317 (1996).
    • (1996) Curr. Opin. Cell Biol. , vol.8 , pp. 312-317
    • Nigg, E.A.1
  • 161
    • 0031466305 scopus 로고    scopus 로고
    • Cyclin-dependent kinases: Engines, clocks, and microprocessors
    • Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261-291 (1997).
    • (1997) Annu. Rev. Cell Dev. Biol. , vol.13 , pp. 261-291
    • Morgan, D.O.1
  • 162
    • 0141557776 scopus 로고    scopus 로고
    • Cdk7 is required for full activation of Drosophila heat shock genes and RNA polymerase II phosphorylation in vivo
    • Schwartz, B. E., Larochelle, S., Suter, B. & Lis, J. T. Cdk7 is required for full activation of Drosophila heat shock genes and RNA polymerase II phosphorylation in vivo. Mol. Cell. Biol. 23, 6876-6886 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 6876-6886
    • Schwartz, B.E.1    Larochelle, S.2    Suter, B.3    Lis, J.T.4
  • 163
    • 33947424005 scopus 로고    scopus 로고
    • Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells
    • Larochelle, S. et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25, 839-850 (2007).
    • (2007) Mol. Cell , vol.25 , pp. 839-850
    • Larochelle, S.1
  • 164
    • 0037399647 scopus 로고    scopus 로고
    • Nuclear receptors: Integration of multiple signalling pathways through phosphorylation
    • Rochette-Egly, C. Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal. 15, 355-366 (2003).
    • (2003) Cell Signal. , vol.15 , pp. 355-366
    • Rochette-Egly, C.1
  • 165
    • 0037023499 scopus 로고    scopus 로고
    • XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARγ
    • Demonstrated that mutations in XPD result in the decreased ability of nuclear receptors to be phosphorylated by TFIIH and to stimulate expression of target genes
    • Keriel, A., Stary, A., Sarasin, A., Rochette-Egly, C. & Egly, J. M. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARγ. Cell 109, 125-135 (2002). Demonstrated that mutations in XPD result in the decreased ability of nuclear receptors to be phosphorylated by TFIIH and to stimulate expression of target genes.
    • (2002) Cell , vol.109 , pp. 125-135
    • Keriel, A.1    Stary, A.2    Sarasin, A.3    Rochette-Egly, C.4    Egly, J.M.5
  • 166
    • 0033545092 scopus 로고    scopus 로고
    • Vinexin: A novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization
    • Kioka, N. et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization. J. Cell Biol. 144, 59-69 (1999).
    • (1999) J. Cell Biol. , vol.144 , pp. 59-69
    • Kioka, N.1
  • 167
    • 20444453254 scopus 로고    scopus 로고
    • Vinexin-β interacts with the non-phosphorylated AF-1 domain of retinoid receptor-γ (RARγ) and represses RARγ-mediated transcription
    • Bour, G., Plassat, J. L., Bauer, A., Lalevee, S. & Rochette-Egly, C. Vinexin-β interacts with the non-phosphorylated AF-1 domain of retinoid receptor-γ (RARγ) and represses RARγ-mediated transcription. J. Biol. Chem. 280, 17027-17037 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 17027-17037
    • Bour, G.1    Plassat, J.L.2    Bauer, A.3    Lalevee, S.4    Rochette-Egly, C.5
  • 168
    • 33846629472 scopus 로고    scopus 로고
    • Menage-a-trois 1 is critical for the transcriptional function of PPARγ coactivator 1
    • Sano, M. et al. Menage-a-trois 1 is critical for the transcriptional function of PPARγ coactivator 1. Cell. Metab. 5, 129-142 (2007).
    • (2007) Cell. Metab. , vol.5 , pp. 129-142
    • Sano, M.1
  • 169
    • 0037326196 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator
    • Puigserver, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78-90 (2003).
    • (2003) Endocr. Rev. , vol.24 , pp. 78-90
    • Puigserver, P.1    Spiegelman, B.M.2
  • 170
    • 0013294458 scopus 로고    scopus 로고
    • MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions
    • Talukder, A. H. et al. MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. J. Biol. Chem. 278, 11676-11685 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 11676-11685
    • Talukder, A.H.1
  • 171
    • 79953162883 scopus 로고    scopus 로고
    • Function and regulation of the Mediator complex
    • Conaway, R. C. & Conaway, J. W. Function and regulation of the Mediator complex. Curr. Opin. Genet. Dev. 21, 225-230 (2011).
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 225-230
    • Conaway, R.C.1    Conaway, J.W.2
  • 172
    • 48349095490 scopus 로고    scopus 로고
    • Mediator-dependent recruitment of TFIIH modules in preinitiation complex
    • Reported a direct interaction between a Mediator 'head' subunit and a TFIIH core subunit and concluded that the Mediator 'head' module has a crucial role in TFIIH and TFIIE recruitment to the PIC
    • Esnault, C. et al. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31, 337-346 (2008). Reported a direct interaction between a Mediator 'head' subunit and a TFIIH core subunit and concluded that the Mediator 'head' module has a crucial role in TFIIH and TFIIE recruitment to the PIC.
    • (2008) Mol. Cell , vol.31 , pp. 337-346
    • Esnault, C.1
  • 173
    • 80053071420 scopus 로고    scopus 로고
    • Control of the function of the transcription and repair factor TFIIH by the action of the cochaperone Ydj1
    • Moriel-Carretero, M., Tous, C. & Aguilera, A. Control of the function of the transcription and repair factor TFIIH by the action of the cochaperone Ydj1. Proc. Natl Acad. Sci. USA 108, 15300-15305 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 15300-15305
    • Moriel-Carretero, M.1    Tous, C.2    Aguilera, A.3
  • 174
    • 33748041436 scopus 로고    scopus 로고
    • XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: A HuGE review
    • Manuguerra, M. et al. XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: a HuGE review. Am. J. Epidemiol. 164, 297-302 (2006).
    • (2006) Am. J. Epidemiol. , vol.164 , pp. 297-302
    • Manuguerra, M.1
  • 175
    • 77955926875 scopus 로고    scopus 로고
    • ERCC2 Lys751Gln polymorphism is associated with lung cancer among Caucasians
    • Zhang, J., Gu, S. Y., Zhang, P., Jia, Z. & Chang, J. H. ERCC2 Lys751Gln polymorphism is associated with lung cancer among Caucasians. Eur. J. Cancer 46, 2479-2484 (2010).
    • (2010) Eur. J. Cancer , vol.46 , pp. 2479-2484
    • Zhang, J.1    Gu, S.Y.2    Zhang, P.3    Jia, Z.4    Chang, J.H.5
  • 176
    • 1342264311 scopus 로고    scopus 로고
    • TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus
    • Le May, N. et al. TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116, 541-550 (2004).
    • (2004) Cell , vol.116 , pp. 541-550
    • Le May, N.1
  • 177
    • 0035957917 scopus 로고    scopus 로고
    • Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue
    • Jaitovich-Groisman, I. et al. Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. J. Biol. Chem. 276, 14124-14132 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 14124-14132
    • Jaitovich-Groisman, I.1
  • 178
    • 0028053988 scopus 로고
    • Xeroderma pigmentosum and related disorders: Examining the linkage between defective DNA repair and cancer
    • Kraemer, K. H. et al. Xeroderma pigmentosum and related disorders: examining the linkage between defective DNA repair and cancer. J. Invest. Dermatol. 103, 96S-101S (1994).
    • (1994) J. Invest. Dermatol. , vol.103
    • Kraemer, K.H.1
  • 179
    • 21744452376 scopus 로고    scopus 로고
    • Cancer in xeroderma pigmentosum and related disorders of DNA repair
    • Cleaver, J. E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Rev. Cancer 5, 564-573 (2005).
    • (2005) Nature Rev. Cancer , vol.5 , pp. 564-573
    • Cleaver, J.E.1
  • 180
    • 0034054019 scopus 로고    scopus 로고
    • Nucleotide excision repair and human syndromes
    • de Boer, J. & Hoeijmakers, J. H. Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460 (2000).
    • (2000) Carcinogenesis , vol.21 , pp. 453-460
    • De Boer, J.1    Hoeijmakers, J.H.2
  • 181
    • 0005715563 scopus 로고
    • Cockayne syndrome: Review of 140 cases
    • Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 84, 42-68 (1992).
    • (1992) Am. J. Med. Genet. , vol.84 , pp. 42-68
    • Nance, M.A.1    Berry, S.A.2
  • 182
    • 0035010089 scopus 로고    scopus 로고
    • Trichothiodystrophy: Update on the sulfur-deficient brittle hair syndromes
    • Itin, P. H., Sarasin, A. & Pittelkow, M. R. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J. Am. Acad. Dermatol. 44, 891-920 (2001).
    • (2001) J. Am. Acad. Dermatol. , vol.44 , pp. 891-920
    • Itin, P.H.1    Sarasin, A.2    Pittelkow, M.R.3
  • 183
    • 77956985370 scopus 로고    scopus 로고
    • Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH
    • Hashimoto, S. & Egly, J. M. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum. Mol. Genet. 18, R224-R230 (2009).
    • (2009) Hum. Mol. Genet. , vol.18
    • Hashimoto, S.1    Egly, J.M.2
  • 184
    • 0035234162 scopus 로고    scopus 로고
    • Xeroderma pigmentosum and related disorders: Defects in DNA repair and transcription
    • Berneburg, M. & Lehmann, A. R. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv. Genet. 43, 71-102 (2001).
    • (2001) Adv. Genet. , vol.43 , pp. 71-102
    • Berneburg, M.1    Lehmann, A.R.2
  • 185
    • 73949125692 scopus 로고    scopus 로고
    • Both XPD alleles contribute to the phenotype of compound heterozygote xeroderma pigmentosum patients
    • Ueda, T., Compe, E., Catez, P., Kraemer, K. H. & Egly, J. M. Both XPD alleles contribute to the phenotype of compound heterozygote xeroderma pigmentosum patients. J. Exp. Med. 206, 3031-3046 (2009).
    • (2009) J. Exp. Med. , vol.206 , pp. 3031-3046
    • Ueda, T.1    Compe, E.2    Catez, P.3    Kraemer, K.H.4    Egly, J.M.5
  • 186
    • 0036850542 scopus 로고    scopus 로고
    • Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy
    • Showed that alterations in any of the gene products that result in the clinical phenotype of TTD specifically reduce the cellular content of the TFIIH complex
    • Botta, E. et al. Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Hum. Mol. Genet. 11, 2919-2928 (2002). Showed that alterations in any of the gene products that result in the clinical phenotype of TTD specifically reduce the cellular content of the TFIIH complex.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 2919-2928
    • Botta, E.1
  • 187
    • 0032085182 scopus 로고    scopus 로고
    • A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy
    • de Boer, J. et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1, 981-990 (1998).
    • (1998) Mol. Cell , vol.1 , pp. 981-990
    • De Boer, J.1
  • 188
    • 0035340869 scopus 로고    scopus 로고
    • Trichothiodystrophy, a transcription syndrome
    • Bergmann, E. & Egly, J. M. Trichothiodystrophy, a transcription syndrome. Trends Genet. 17, 279-286 (2001).
    • (2001) Trends Genet. , vol.17 , pp. 279-286
    • Bergmann, E.1    Egly, J.M.2
  • 189
    • 17044383805 scopus 로고    scopus 로고
    • Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage
    • Takagi, Y. et al. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage. Mol. Cell 18, 237-243 (2005).
    • (2005) Mol. Cell , vol.18 , pp. 237-243
    • Takagi, Y.1
  • 190
    • 0036930746 scopus 로고    scopus 로고
    • Transcriptional activators stimulate DNA repair
    • Frit, P. et al. Transcriptional activators stimulate DNA repair. Mol. Cell 10, 1391-1401 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 1391-1401
    • Frit, P.1
  • 191
    • 80053538947 scopus 로고    scopus 로고
    • A DNA repair complex functions as an oct4/sox2 coactivator in embryonic stem cells
    • Revealed a selective co-activator role of an NER complex in transcription in the context of embryonic stem cells
    • Fong, Y. W. et al. A DNA repair complex functions as an oct4/sox2 coactivator in embryonic stem cells. Cell 147, 120-131 (2011). Revealed a selective co-activator role of an NER complex in transcription in the context of embryonic stem cells.
    • (2011) Cell , vol.147 , pp. 120-131
    • Fong, Y.W.1
  • 192
    • 84857129620 scopus 로고    scopus 로고
    • Subunit architecture of general transcription factor TFIIH
    • Gibbons, B. J. et al. Subunit architecture of general transcription factor TFIIH. Proc. Natl Acad. Sci. USA 109, 1949-1954 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 1949-1954
    • Gibbons, B.J.1
  • 193
    • 0034264910 scopus 로고    scopus 로고
    • Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH
    • Chang, W. H. & Kornberg, R. D. Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell 102, 609-613 (2000).
    • (2000) Cell , vol.102 , pp. 609-613
    • Chang, W.H.1    Kornberg, R.D.2
  • 194
    • 0034268691 scopus 로고    scopus 로고
    • Molecular structure of human TFIIH
    • References 193 and 194 showed the electron crystal structure of the yeast core TFIIH and the human TFIIH complex, respectively
    • Schultz, P. et al. Molecular structure of human TFIIH. Cell 102, 599-607 (2000). References 193 and 194 showed the electron crystal structure of the yeast core TFIIH and the human TFIIH complex, respectively.
    • (2000) Cell , vol.102 , pp. 599-607
    • Schultz, P.1
  • 195
    • 79960897923 scopus 로고    scopus 로고
    • The TFIIH subunit Tfb3 regulates cullin neddylation
    • Rabut, G. et al. The TFIIH subunit Tfb3 regulates cullin neddylation. Mol. Cell 43, 488-495 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 488-495
    • Rabut, G.1
  • 196
    • 0029974576 scopus 로고    scopus 로고
    • Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome
    • Guzder, S. N., Sung, P., Prakash, L. & Prakash, S. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J. Biol. Chem. 271, 8903-8910 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 8903-8910
    • Guzder, S.N.1    Sung, P.2    Prakash, L.3    Prakash, S.4
  • 197
    • 0019333274 scopus 로고
    • Multiple factors required for accurate initiation of transcription by purified RNA polymerase II
    • Matsui, T., Segall, J., Weil, P. & Roeder, R. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255, 11992-11996 (1980).
    • (1980) J. Biol. Chem. , vol.255 , pp. 11992-11996
    • Matsui, T.1    Segall, J.2    Weil, P.3    Roeder, R.4
  • 198
    • 0020480001 scopus 로고
    • Separation and characterization of factors mediating accurate transcription by RNA polymerase II
    • Samuels, M., Fire, A. & Sharp, P. A. Separation and characterization of factors mediating accurate transcription by RNA polymerase II. J. Biol. Chem. 257, 14419-14427 (1982).
    • (1982) J. Biol. Chem. , vol.257 , pp. 14419-14427
    • Samuels, M.1    Fire, A.2    Sharp, P.A.3
  • 199
    • 0022374891 scopus 로고
    • Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region
    • Sawadogo, M. & Roeder, R. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43, 165-175 (1985).
    • (1985) Cell , vol.43 , pp. 165-175
    • Sawadogo, M.1    Roeder, R.2
  • 200
    • 0023234351 scopus 로고
    • Factors involved in specific transcription by mammalian RNA polymerase II. Purification and functional analysis of initiation factors IIB and IIE
    • Reinberg, D. & Roeder, R. G. Factors involved in specific transcription by mammalian RNA polymerase II. Purification and functional analysis of initiation factors IIB and IIE. J. Biol. Chem. 262, 3310-3321 (1987).
    • (1987) J. Biol. Chem. , vol.262 , pp. 3310-3321
    • Reinberg, D.1    Roeder, R.G.2
  • 201
    • 0024977414 scopus 로고
    • Five intermediate complexes in transcription initiation by RNA polymerase II
    • Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549-561 (1989).
    • (1989) Cell , vol.56 , pp. 549-561
    • Buratowski, S.1    Hahn, S.2    Guarente, L.3    Sharp, P.A.4
  • 202
    • 0025914557 scopus 로고
    • Transcription initiated by RNA polymerase II and transcription factors from liver. Structure and action of transcription factors epsilon and tau
    • Conaway, J. W., Hanley, J. P., Garrett, K. P. & Conaway, R. C. Transcription initiated by RNA polymerase II and transcription factors from liver. Structure and action of transcription factors epsilon and tau. J. Biol. Chem. 266, 7804-7811 (1991).
    • (1991) J. Biol. Chem. , vol.266 , pp. 7804-7811
    • Conaway, J.W.1    Hanley, J.P.2    Garrett, K.P.3    Conaway, R.C.4
  • 203
    • 21744435965 scopus 로고    scopus 로고
    • Controlling nuclear receptors: The circular logic of cofactor cycles
    • Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors: the circular logic of cofactor cycles. Nature Rev. Mol. Cell Biol. 6, 542-554 (2005).
    • (2005) Nature Rev. Mol. Cell Biol. , vol.6 , pp. 542-554
    • Perissi, V.1    Rosenfeld, M.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.