-
1
-
-
0028085556
-
XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair
-
DOI: 10.1038/371432a0
-
O'Donovan A, Davies AA, Moggs JG, West SC, Wood RD. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 1994; 371:432-5; DOI: 10.1038/371432a0.
-
(1994)
Nature
, vol.371
, pp. 432-435
-
-
O'Donovan, A.1
Davies, A.A.2
Moggs, J.G.3
West, S.C.4
Wood, R.D.5
-
2
-
-
0037628995
-
Structural determinants for substrate binding and catalysis by the structure-specific endonuclease XPG
-
DOI: 10.1074/jbc.M213155200
-
Hohl M, Thorel F, Clarkson SG, Scharer OD. Structural determinants for substrate binding and catalysis by the structure-specific endonuclease XPG. J Biol Chem 2003; 278:19500-8; DOI: 10.1074/jbc.M213155200.
-
(2003)
J Biol Chem
, vol.278
, pp. 19500-19508
-
-
Hohl, M.1
Thorel, F.2
Clarkson, S.G.3
Scharer, O.D.4
-
3
-
-
26944448202
-
Recognition of RNA polymerase II and transcription bubbles by XPG CSB and TFIIH: Insights for transcription-coupled repair and Cockayne Syndrome
-
DOI: 10.1016/j.molcel.2005.09.022
-
Sarker AH, Tsutakawa SE, Kostek S, Ng C, Shin DS, Peris M, et al. Recognition of RNA polymerase II and transcription bubbles by XPG CSB and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell 2005; 20:187-98; DOI: 10.1016/j.molcel.2005.09.022.
-
(2005)
Mol Cell
, vol.20
, pp. 187-198
-
-
Sarker, A.H.1
Tsutakawa, S.E.2
Kostek, S.3
Ng, C.4
Shin, D.S.5
Peris, M.6
-
4
-
-
0027322756
-
Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5
-
[see comments]. DOI: 10.1038/363185a0
-
O'Donovan A, Wood RD. Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5 [see comments]. Nature 1993; 363:185-8; DOI: 10.1038/363185a0.
-
(1993)
Nature
, vol.363
, pp. 185-188
-
-
O'Donovan, A.1
Wood, R.D.2
-
5
-
-
0030990434
-
A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: Implications for a second XPG function
-
DOI: 10.1073/pnas.94.7.3116
-
Nouspikel T, Lalle P, Leadon SA, Cooper PK, Clarkson SG. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc Natl Acad Sci USA 1997; 94:3116-21; DOI: 10.1073/pnas.94.7.3116.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 3116-3121
-
-
Nouspikel, T.1
Lalle, P.2
Leadon, S.A.3
Cooper, P.K.4
Clarkson, S.G.5
-
6
-
-
38049000832
-
Sequential recruitment of the repair factors during NER: The role of XPG in initiating the resynthesis step
-
DOI: 10.1038/sj.emboj.7601948
-
Mocquet V, Laine JP, Riedl T, Yajin Z, Lee MY, Egly JM. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J 2008; 27:155-67; DOI: 10.1038/sj.emboj.7601948.
-
(2008)
EMBO J
, vol.27
, pp. 155-167
-
-
Mocquet, V.1
Laine, J.P.2
Riedl, T.3
Yajin, Z.4
Lee, M.Y.5
Egly, J.M.6
-
7
-
-
67349212889
-
Coordination of dual incision and repair synthesis in human nucleotide excision repair
-
DOI: 10.1038/emboj.2009.49
-
Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N, Dunand-Sauthier I, et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J 2009; 28:1111-20; DOI: 10.1038/emboj.2009.49.
-
(2009)
EMBO J
, vol.28
, pp. 1111-1120
-
-
Staresincic, L.1
Fagbemi, A.F.2
Enzlin, J.H.3
Gourdin, A.M.4
Wijgers, N.5
Dunand-Sauthier, I.6
-
8
-
-
79953894934
-
Human Flap Endonuclease Structures, DNA Double Base Flipping and a Unified Understanding of the FEN1 Superfamily
-
DOI: 10.1016/j.cell.2011.03.004
-
Tsutakawa SE, Classen S, Chapados BR, Arvai A, Finger LD, Guenther G, et al. Human Flap Endonuclease Structures, DNA Double Base Flipping and a Unified Understanding of the FEN1 Superfamily. Cell 2011; 145:198-211; DOI: 10.1016/j.cell.2011.03.004.
-
(2011)
Cell
, vol.145
, pp. 198-211
-
-
Tsutakawa, S.E.1
Classen, S.2
Chapados, B.R.3
Arvai, A.4
Finger, L.D.5
Guenther, G.6
-
9
-
-
34250657429
-
Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity
-
DOI: 10.1093/nar/gkm092
-
Hohl M, Dunand-Sauthier I, Staresincic L, Jaquier-Gubler P, Thorel F, Modesti M, et al. Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity. Nucleic Acids Res 2007; 35:3053-63; DOI: 10.1093/nar/gkm092.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 3053-3063
-
-
Hohl, M.1
Dunand-Sauthier, I.2
Staresincic, L.3
Jaquier-Gubler, P.4
Thorel, F.5
Modesti, M.6
-
10
-
-
0030767281
-
The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21
-
DOI: 10.1074/jbc.272.39.24522
-
Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem 1997; 272:24522-9; DOI: 10.1074/jbc.272.39. 24522.
-
(1997)
J Biol Chem
, vol.272
, pp. 24522-24529
-
-
Gary, R.1
Ludwig, D.L.2
Cornelius, H.L.3
MacInnes, M.A.4
Park, M.S.5
-
11
-
-
0036280841
-
Relationship of neurologic degeneration to genotype in three xeroderma pigmentosum group G patients
-
DOI: 10.1046/j.1523-747.2002.01782.x
-
Emmert S, Slor H, Busch DB, Batko S, Albert RB, Coleman D, et al. Relationship of neurologic degeneration to genotype in three xeroderma pigmentosum group G patients. J Invest Dermatol 2002; 118:972-82; DOI: 10.1046/j.1523-747.2002.01782.x.
-
(2002)
J Invest Dermatol
, vol.118
, pp. 972-982
-
-
Emmert, S.1
Slor, H.2
Busch, D.B.3
Batko, S.4
Albert, R.B.5
Coleman, D.6
-
12
-
-
0035164519
-
Xeroderma pigmentosum/cockayne syndrome complex: First neuropathological study and review of eight other cases
-
DOI: 10.1053/ejpn.2001.0523
-
Lindenbaum Y, Dickson D, Rosenbaum P, Kraemer K, Robbins I, Rapin I. Xeroderma pigmentosum/cockayne syndrome complex: first neuropathological study and review of eight other cases. Eur J Paediatr Neurol 2001; 5:225-42; DOI: 10.1053/ejpn.2001.0523.
-
(2001)
Eur J Paediatr Neurol
, vol.5
, pp. 225-242
-
-
Lindenbaum, Y.1
Dickson, D.2
Rosenbaum, P.3
Kraemer, K.4
Robbins, I.5
Rapin, I.6
-
13
-
-
60549092333
-
XPG: Its products and biological roles
-
DOI: 10.1007/978-0-387-09599-8-9
-
Schärer OD. XPG: its products and biological roles. Adv Exp Med Biol 2008; 637:83-92; DOI: 10.1007/978-0-387-09599-8-9.
-
(2008)
Adv Exp Med Biol
, vol.637
, pp. 83-92
-
-
Schärer, O.D.1
-
14
-
-
0032980573
-
Postnatal growth failure, short life span and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene
-
PubMed.
-
Harada YN, Shiomi N, Koike M, Ikawa M, Okabe M, Hirota S, et al. Postnatal growth failure, short life span and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol Cell Biol 1999; 19:2366-72; PubMed.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 2366-2372
-
-
Harada, Y.N.1
Shiomi, N.2
Koike, M.3
Ikawa, M.4
Okabe, M.5
Hirota, S.6
-
15
-
-
1542284083
-
Deficiency in the nuclease activity of xeroderma pigmentosum G in mice leads to hypersensitivity to UV irradiation
-
DOI: 10.1128/MCB.24.6.2237-42.2004
-
Tian M, Jones DA, Smith M, Shinkura R, Alt FW. Deficiency in the nuclease activity of xeroderma pigmentosum G in mice leads to hypersensitivity to UV irradiation. Mol Cell Biol 2004; 24:2237-42; DOI: 10.1128/MCB.24.6.2237-42.2004.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 2237-2242
-
-
Tian, M.1
Jones, D.A.2
Smith, M.3
Shinkura, R.4
Alt, F.W.5
-
16
-
-
1942518432
-
Identification of the XPG region that causes the onset of Cockayne syndrome by using Xpg mutant mice generated by the cDNA-mediated knock-in method
-
DOI: 10.1128/MCB.24.9.3712-9.2004
-
Shiomi N, Kito S, Oyama M, Matsunaga T, Harada YN, Ikawa M, et al. Identification of the XPG region that causes the onset of Cockayne syndrome by using Xpg mutant mice generated by the cDNA-mediated knock-in method. Mol Cell Biol 2004; 24:3712-9; DOI: 10.1128/MCB.24.9.3712-9.2004.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 3712-3719
-
-
Shiomi, N.1
Kito, S.2
Oyama, M.3
Matsunaga, T.4
Harada, Y.N.5
Ikawa, M.6
-
17
-
-
12344254734
-
Severe growth retardation and short life span of double-mutant mice lacking Xpa and exon 15 of Xpg
-
(Amst) DOI: 10.1016/j.dnarep.2004.10.009
-
Shiomi N, Mori M, Kito S, Harada YN, Tanaka K, Shiomi T. Severe growth retardation and short life span of double-mutant mice lacking Xpa and exon 15 of Xpg. DNA Repair (Amst) 2005; 4:351-7; DOI: 10.1016/j.dnarep.2004.10.009.
-
(2005)
DNA Repair
, vol.4
, pp. 351-357
-
-
Shiomi, N.1
Mori, M.2
Kito, S.3
Harada, Y.N.4
Tanaka, K.5
Shiomi, T.6
-
18
-
-
0033539610
-
Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage
-
DOI: 10.1073/pnas.96.23.13300
-
Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA 1999; 96:13300-5; DOI: 10.1073/pnas.96.23.13300.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 13300-13305
-
-
Klungland, A.1
Rosewell, I.2
Hollenbach, S.3
Larsen, E.4
Daly, G.5
Epe, B.6
-
19
-
-
0033557139
-
Nucleotide excision repair 3′ endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase
-
DOI: 10.1093/nar/27.4.979
-
Bessho T. Nucleotide excision repair 3′ endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase. Nucleic Acids Res 1999; 27:979-83; DOI: 10.1093/nar/27.4.979.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 979-983
-
-
Bessho, T.1
-
20
-
-
0035225983
-
Factors influencing the removal of thymine glycol from DNA in gamma-irradiated human cells
-
DOI: 10.1016/S0079-6603(01)68096-6
-
Weinfeld M, Xing JZ, Lee J, Leadon SA, Cooper PK, Le XC. Factors influencing the removal of thymine glycol from DNA in gamma-irradiated human cells. Prog Nucleic Acid Res Mol Biol 2001; 68:139-49; DOI: 10.1016/S0079- 6603(01)68096-6.
-
(2001)
Prog Nucleic Acid Res Mol Biol
, vol.68
, pp. 139-149
-
-
Weinfeld, M.1
Xing, J.Z.2
Lee, J.3
Leadon, S.A.4
Cooper, P.K.5
Le, X.C.6
-
21
-
-
38049178545
-
Transcription-coupled nucleotide excision repair in mammalian cells: Molecular mechanisms and biological effects
-
DOI: 10.1038/cr.2008.6
-
Fousteri M, Mullenders LH. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res 2008; 18:73-84; DOI: 10.1038/cr.2008.6.
-
(2008)
Cell Res
, vol.18
, pp. 73-84
-
-
Fousteri, M.1
Mullenders, L.H.2
-
22
-
-
34247256517
-
XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne syndrome in XP-G/CS patients
-
DOI: 10.1016/j.molcel.2007.03.013
-
Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A, Ishigami C, et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 2007; 26:231-43; DOI: 10.1016/j.molcel.2007.03.013.
-
(2007)
Mol Cell
, vol.26
, pp. 231-243
-
-
Ito, S.1
Kuraoka, I.2
Chymkowitch, P.3
Compe, E.4
Takedachi, A.5
Ishigami, C.6
-
23
-
-
0033771208
-
The Werner syndrome protein: An update
-
DOI: 10.1002/1521-1878(200010)22:10〈894::AIDBIES4〉3.0.CO;2-B
-
Oshima J. The Werner syndrome protein: an update. Bioessays 2000; 22:894-901; DOI: 10.1002/1521-1878(200010)22:10〈894::AIDBIES4〉3.0. CO;2-B.
-
(2000)
Bioessays
, vol.22
, pp. 894-901
-
-
Oshima, J.1
-
24
-
-
0035393720
-
The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases
-
DOI: 10.1093/nar/29.13.2843
-
Mohaghegh P, Karow JK, Brosh RM Jr, Bohr VA, Hickson ID. The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 2001; 29:2843-9; DOI: 10.1093/nar/29.13.2843.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. 2843-2849
-
-
Mohaghegh, P.1
Karow, J.K.2
Brosh Jr., R.M.3
Bohr, V.A.4
Hickson, I.D.5
-
25
-
-
20744437108
-
RecQ family members combine strand pairing and unwinding activities to catalyze strand exchange
-
DOI: 10.1074/jbc.M414130200
-
Machwe A, Xiao L, Groden J, Matson SW, Orren DK. RecQ family members combine strand pairing and unwinding activities to catalyze strand exchange. J Biol Chem 2005; 280:23397-407; DOI: 10.1074/jbc.M414130200.
-
(2005)
J Biol Chem
, vol.280
, pp. 23397-23407
-
-
Machwe, A.1
Xiao, L.2
Groden, J.3
Matson, S.W.4
Orren, D.K.5
-
26
-
-
33745084835
-
WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing
-
DOI: 10.1038/nsmb1088
-
Perry JJ, Yannone SM, Holden LG, Hitomi C, Asaithamby A, Han S, et al. WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat Struct Mol Biol 2006; 13:414-22; DOI: 10.1038/nsmb1088.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 414-422
-
-
Perry, J.J.1
Yannone, S.M.2
Holden, L.G.3
Hitomi, C.4
Asaithamby, A.5
Han, S.6
-
27
-
-
0034660246
-
Characterization of the human and mouse WRN 3′→5′ exonuclease
-
DOI: 10.1093/nar/28.12.2396
-
Huang S, Beresten S, Li B, Oshima J, Ellis NA, Campisi J. Characterization of the human and mouse WRN 3′→5′ exonuclease. Nucleic Acids Res 2000; 28:2396-405; DOI: 10.1093/nar/28.12.2396.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 2396-2405
-
-
Huang, S.1
Beresten, S.2
Li, B.3
Oshima, J.4
Ellis, N.A.5
Campisi, J.6
-
28
-
-
0037044311
-
Biochemical characterization of the WRN-FEN-1 functional interaction
-
DOI: 10.1021/bi026031j
-
Brosh RM Jr, Driscoll HC, Dianov GL, Sommers JA. Biochemical characterization of the WRN-FEN-1 functional interaction. Biochemistry 2002; 41:12204-16; DOI: 10.1021/bi026031j.
-
(2002)
Biochemistry
, vol.41
, pp. 12204-12216
-
-
Brosh Jr., R.M.1
Driscoll, H.C.2
Dianov, G.L.3
Sommers, J.A.4
-
29
-
-
34548824343
-
The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1
-
DOI: 10.1074/jbc.M703343200
-
Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J, et al. The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. J Biol Chem 2007; 282:26591-602; DOI: 10.1074/jbc.M703343200.
-
(2007)
J Biol Chem
, vol.282
, pp. 26591-26602
-
-
Das, A.1
Boldogh, I.2
Lee, J.W.3
Harrigan, J.A.4
Hegde, M.L.5
Piotrowski, J.6
-
30
-
-
0038681010
-
The Werner syndrome protein stimulates DNA polymerase beta strand displacement synthesis via its helicase activity
-
DOI: 10.1074/jbc.M213103200
-
Harrigan JA, Opresko PL, Von Kobbe C, Kedar PS, Prasad R, Wilson SH, et al. The Werner syndrome protein stimulates DNA polymerase beta strand displacement synthesis via its helicase activity. J Biol Chem 2003; 278:22686-95; DOI: 10.1074/jbc.M213103200.
-
(2003)
J Biol Chem
, vol.278
, pp. 22686-22695
-
-
Harrigan, J.A.1
Opresko, P.L.2
Von Kobbe, C.3
Kedar, P.S.4
Prasad, R.5
Wilson, S.H.6
-
31
-
-
0033621354
-
The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I
-
DOI: 10.1074/jbc.274.53.37795
-
Lebel M, Spillare EA, Harris CC, Leder P. The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem 1999; 274:37795-9; DOI: 10.1074/jbc.274.53.37795.
-
(1999)
J Biol Chem
, vol.274
, pp. 37795-37799
-
-
Lebel, M.1
Spillare, E.A.2
Harris, C.C.3
Leder, P.4
-
32
-
-
0035851181
-
Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase
-
PubMed.
-
Yannone SM, Roy S, Chan DW, Murphy MB, Huang S, Campisi J, et al. Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J Biol Chem 2001; 276:38242-8; PubMed.
-
(2001)
J Biol Chem
, vol.276
, pp. 38242-38248
-
-
Yannone, S.M.1
Roy, S.2
Chan, D.W.3
Murphy, M.B.4
Huang, S.5
Campisi, J.6
-
33
-
-
59849089955
-
Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining
-
DOI: 10.1042/BJ20080413
-
Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 2009; 417:639-50; DOI: 10.1042/BJ20080413.
-
(2009)
Biochem J
, vol.417
, pp. 639-650
-
-
Mahaney, B.L.1
Meek, K.2
Lees-Miller, S.P.3
-
34
-
-
77957310148
-
Depletion of Werner helicase results in mitotic hyperrecombination and pleiotropic homologous and nonhomologous recombination phenotypes
-
DOI: 10.1016/j.mad.2010.08.001
-
Rahn JJ, Lowery MP, Della-Coletta L, Adair GM, Nairn RS. Depletion of Werner helicase results in mitotic hyperrecombination and pleiotropic homologous and nonhomologous recombination phenotypes. Mech Ageing Dev 2010; 131:562-73; DOI: 10.1016/j.mad.2010.08.001.
-
(2010)
Mech Ageing Dev
, vol.131
, pp. 562-573
-
-
Rahn, J.J.1
Lowery, M.P.2
Della-Coletta, L.3
Adair, G.M.4
Nairn, R.S.5
-
35
-
-
0034231844
-
Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest
-
DOI: 10.1093/embo-reports/kvd004
-
Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, et al. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 2000; 1:80-4; DOI: 10.1093/embo-reports/kvd004.
-
(2000)
EMBO Rep
, vol.1
, pp. 80-84
-
-
Constantinou, A.1
Tarsounas, M.2
Karow, J.K.3
Brosh, R.M.4
Bohr, V.A.5
Hickson, I.D.6
-
36
-
-
0035009356
-
Werner helicase relocates into nuclear foci in response to DNA damaging agents and co-localizes with RPA and Rad51
-
DOI: 10.1046/j.1365-2443.2001.00433.x
-
Sakamoto S, Nishikawa K, Heo SJ, Goto M, Furuichi Y, Shimamoto A. Werner helicase relocates into nuclear foci in response to DNA damaging agents and co-localizes with RPA and Rad51. Genes Cells 2001; 6:421-30; DOI: 10.1046/j.1365-2443.2001.00433.x.
-
(2001)
Genes Cells
, vol.6
, pp. 421-430
-
-
Sakamoto, S.1
Nishikawa, K.2
Heo, S.J.3
Goto, M.4
Furuichi, Y.5
Shimamoto, A.6
-
37
-
-
10344256183
-
Defective telomere lagging strand synthesis in cells lacking WRN helicase activity
-
DOI: 10.1126/science.1103619
-
Crabbe L, Verdun RE, Haggblom CI, Karlseder J. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 2004; 306:1951-3; DOI: 10.1126/science.1103619.
-
(2004)
Science
, vol.306
, pp. 1951-1953
-
-
Crabbe, L.1
Verdun, R.E.2
Haggblom, C.I.3
Karlseder, J.4
-
38
-
-
0024465870
-
Mutator phenotype of Werner syndrome is characterized by extensive deletions
-
DOI: 10.1073/pnas.86.15.5893
-
Fukuchi K, Martin GM, Monnat RJ Jr. Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci USA 1989; 86:5893-7; DOI: 10.1073/pnas.86.15.5893.
-
(1989)
Proc Natl Acad Sci USA
, vol.86
, pp. 5893-5897
-
-
Fukuchi, K.1
Martin, G.M.2
Monnat Jr., R.J.3
-
39
-
-
0036787870
-
Homologous recombination resolution defect in werner syndrome
-
DOI: 10.1128/MCB.22.20.6971-8.2002
-
Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat RJ Jr. Homologous recombination resolution defect in werner syndrome. Mol Cell Biol 2002; 22:6971-8; DOI: 10.1128/MCB.22.20.6971-8.2002.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 6971-6978
-
-
Saintigny, Y.1
Makienko, K.2
Swanson, C.3
Emond, M.J.4
Monnat Jr., R.J.5
-
40
-
-
33750801681
-
The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres
-
DOI: 10.1016/j.cell.2006.09.034
-
Verdun RE, Karlseder J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 2006; 127:709-20; DOI: 10.1016/j.cell.2006.09.034.
-
(2006)
Cell
, vol.127
, pp. 709-720
-
-
Verdun, R.E.1
Karlseder, J.2
-
41
-
-
77957659980
-
Hyper telomere recombination accelerates replicative senescence and may promote premature aging
-
DOI: 10.1073/pnas.1006338107
-
Hagelstrom RT, Blagoev KB, Niedernhofer LJ, Goodwin EH, Bailey SM. Hyper telomere recombination accelerates replicative senescence and may promote premature aging. Proc Natl Acad Sci USA 2010; 107:15768-73; DOI: 10.1073/pnas.1006338107.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 15768-15773
-
-
Hagelstrom, R.T.1
Blagoev, K.B.2
Niedernhofer, L.J.3
Goodwin, E.H.4
Bailey, S.M.5
-
42
-
-
42049116919
-
The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest
-
DOI: 10.4161/cc.7.6.5566
-
Sidorova JM, Li N, Folch A, Monnat RJ Jr. The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 2008; 7:796-807; DOI: 10.4161/cc.7.6.5566.
-
(2008)
Cell Cycle
, vol.7
, pp. 796-807
-
-
Sidorova, J.M.1
Li, N.2
Folch, A.3
Monnat Jr., R.J.4
-
43
-
-
0037039443
-
Translocation of Cockayne syndrome group A protein to the nuclear matrix: Possible relevance to transcription-coupled DNA repair
-
DOI: 10.1073/pnas.012473199
-
Kamiuchi S, Saijo M, Citterio E, de Jager M, Hoeijmakers JH, Tanaka K. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc Natl Acad Sci USA 2002; 99:201-6; DOI: 10.1073/pnas.012473199.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 201-206
-
-
Kamiuchi, S.1
Saijo, M.2
Citterio, E.3
De Jager, M.4
Hoeijmakers, J.H.5
Tanaka, K.6
-
44
-
-
28044470766
-
Nuclear matrix support of DNA replication
-
DOI: 10.1002/jcb.20610
-
Anachkova B, Djeliova V, Russev G. Nuclear matrix support of DNA replication. J Cell Biochem 2005; 96:951-61; DOI: 10.1002/jcb.20610.
-
(2005)
J Cell Biochem
, vol.96
, pp. 951-961
-
-
Anachkova, B.1
Djeliova, V.2
Russev, G.3
-
45
-
-
0030971289
-
Translocation of a UV-damaged DNA binding protein into a tight association with chromatin after treatment of mammalian cells with UV light
-
PubMed.
-
Otrin VR, McLenigan M, Takao M, Levine AS, Protic M. Translocation of a UV-damaged DNA binding protein into a tight association with chromatin after treatment of mammalian cells with UV light. J Cell Sci 1997; 110:1159-68; PubMed.
-
(1997)
J Cell Sci
, vol.110
, pp. 1159-1168
-
-
Otrin, V.R.1
McLenigan, M.2
Takao, M.3
Levine, A.S.4
Protic, M.5
-
46
-
-
0034749425
-
DNA damage-dependent nuclear dynamics of the Mre11 complex
-
DOI: 10.1128/MCB.21.1.281-8.2001
-
Mirzoeva OK, Petrini JH. DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 2001; 21:281-8; DOI: 10.1128/MCB.21.1.281-8.2001.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 281-288
-
-
Mirzoeva, O.K.1
Petrini, J.H.2
-
47
-
-
0040436076
-
Functional and physical interaction between WRN helicase and human replication protein A
-
DOI: 10.1074/jbc.274.26.18341
-
Brosh RM Jr, Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A, et al. Functional and physical interaction between WRN helicase and human replication protein A. J Biol Chem 1999; 274:18341-50; DOI: 10.1074/jbc.274.26.18341.
-
(1999)
J Biol Chem
, vol.274
, pp. 18341-18350
-
-
Brosh Jr., R.M.1
Orren, D.K.2
Nehlin, J.O.3
Ravn, P.H.4
Kenny, M.K.5
Machwe, A.6
-
48
-
-
0033605159
-
Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair
-
DOI: 10.1074/jbc.274.9.5637
-
Constantinou A, Gunz D, Evans E, Lalle P, Bates PA, Wood RD, et al. Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem 1999; 274:5637-48; DOI: 10.1074/jbc.274.9.5637.
-
(1999)
J Biol Chem
, vol.274
, pp. 5637-5648
-
-
Constantinou, A.1
Gunz, D.2
Evans, E.3
Lalle, P.4
Bates, P.A.5
Wood, R.D.6
-
49
-
-
33751581731
-
The Werner and Bloom syndrome proteins catalyze regression of a model replication fork
-
DOI: 10.1021/bi0615487
-
Machwe A, Xiao L, Groden J, Orren DK. The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 2006; 45:13939-46; DOI: 10.1021/bi0615487.
-
(2006)
Biochemistry
, vol.45
, pp. 13939-13946
-
-
Machwe, A.1
Xiao, L.2
Groden, J.3
Orren, D.K.4
-
50
-
-
34848880201
-
Replication fork regression in vitro by the Werner syndrome protein (WRN): Holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity
-
DOI: 10.1093/nar/gkm561
-
Machwe A, Xiao L, Lloyd RG, Bolt E, Orren DK. Replication fork regression in vitro by the Werner syndrome protein (WRN): holliday junction formation, the effect of leading arm structure and a potential role for WRN exonuclease activity. Nucleic Acids Res 2007; 35:5729-47; DOI: 10.1093/nar/gkm561.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 5729-5747
-
-
Machwe, A.1
Xiao, L.2
Lloyd, R.G.3
Bolt, E.4
Orren, D.K.5
-
51
-
-
79952779558
-
Molecular cooperation between the Werner syndrome protein and replication protein A in relation to replication fork blockage
-
DOI: 10.1074/jbc.M110.105411
-
Machwe A, Lozada E, Wold MS, Li GM, Orren DK. Molecular cooperation between the Werner syndrome protein and replication protein A in relation to replication fork blockage. J Biol Chem 2011; 286:3497-508; DOI: 10.1074/jbc.M110.105411.
-
(2011)
J Biol Chem
, vol.286
, pp. 3497-3508
-
-
Machwe, A.1
Lozada, E.2
Wold, M.S.3
Li, G.M.4
Orren, D.K.5
-
52
-
-
0028929611
-
RPA involvement in the damage-recognition and incision steps of nucleotide excision repair
-
DOI: 10.1038/374566a0
-
He Z, Henricksen LA, Wold MS, Ingles CJ. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 1995; 374:566-9; DOI: 10.1038/374566a0.
-
(1995)
Nature
, vol.374
, pp. 566-569
-
-
He, Z.1
Henricksen, L.A.2
Wold, M.S.3
Ingles, C.J.4
-
53
-
-
0037175018
-
Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases
-
DOI: 10.1074/jbc.M205396200
-
Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 2002; 277:41110-9; DOI: 10.1074/jbc.M205396200.
-
(2002)
J Biol Chem
, vol.277
, pp. 41110-41119
-
-
Opresko, P.L.1
Von Kobbe, C.2
Laine, J.P.3
Harrigan, J.4
Hickson, I.D.5
Bohr, V.A.6
-
54
-
-
25444533047
-
POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates
-
DOI: 10.1074/jbc.M505211200
-
Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, et al. POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 2005; 280:32069-80; DOI: 10.1074/jbc.M505211200.
-
(2005)
J Biol Chem
, vol.280
, pp. 32069-32080
-
-
Opresko, P.L.1
Mason, P.A.2
Podell, E.R.3
Lei, M.4
Hickson, I.D.5
Cech, T.R.6
-
55
-
-
27144551710
-
Accumulation of Werner protein at DNA double-strand breaks in human cells
-
DOI: 10.1242/jcs.02544
-
Lan L, Nakajima S, Komatsu K, Nussenzweig A, Shimamoto A, Oshima J, et al. Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci 2005; 118:4153-62; DOI: 10.1242/jcs.02544.
-
(2005)
J Cell Sci
, vol.118
, pp. 4153-4162
-
-
Lan, L.1
Nakajima, S.2
Komatsu, K.3
Nussenzweig, A.4
Shimamoto, A.5
Oshima, J.6
-
56
-
-
52949127014
-
Intrinsic ssDNA annealing activity in the C-terminal region of WRN
-
DOI: 10.1021/bi800807n
-
Muftuoglu M, Kulikowicz T, Beck G, Lee JW, Piotrowski J, Bohr VA. Intrinsic ssDNA annealing activity in the C-terminal region of WRN. Biochemistry 2008; 47:10247-54; DOI: 10.1021/bi800807n.
-
(2008)
Biochemistry
, vol.47
, pp. 10247-10254
-
-
Muftuoglu, M.1
Kulikowicz, T.2
Beck, G.3
Lee, J.W.4
Piotrowski, J.5
Bohr, V.A.6
-
57
-
-
34047267832
-
Crystal structure of the HRDC domain of human Werner syndrome protein, WRN
-
DOI: 10.1074/jbc.M610142200
-
Kitano K, Yoshihara N, Hakoshima T. Crystal structure of the HRDC domain of human Werner syndrome protein, WRN. J Biol Chem 2007; 282:2717-28; DOI: 10.1074/jbc.M610142200.
-
(2007)
J Biol Chem
, vol.282
, pp. 2717-2728
-
-
Kitano, K.1
Yoshihara, N.2
Hakoshima, T.3
-
58
-
-
75849122854
-
Structural basis for DNA strand separation by the unconventional wingedhelix domain of RecQ helicase WRN
-
DOI: 10.1016/j.str.2009.12.011
-
Kitano K, Kim SY, Hakoshima T. Structural basis for DNA strand separation by the unconventional wingedhelix domain of RecQ helicase WRN. Structure 2010; 18:177-87; DOI: 10.1016/j.str.2009.12.011.
-
(2010)
Structure
, vol.18
, pp. 177-187
-
-
Kitano, K.1
Kim, S.Y.2
Hakoshima, T.3
-
59
-
-
77955480303
-
Identification of a coiled coil in werner syndrome protein that facilitates multimerization and promotes exonuclease processivity
-
DOI: 10.1074/jbc.M110.124941
-
Perry JJ, Asaithamby A, Barnebey A, Kiamanesch F, Chen DJ, Han S, et al. Identification of a coiled coil in werner syndrome protein that facilitates multimerization and promotes exonuclease processivity. J Biol Chem 2010; 285:25699-707; DOI: 10.1074/jbc.M110.124941.
-
(2010)
J Biol Chem
, vol.285
, pp. 25699-25707
-
-
Perry, J.J.1
Asaithamby, A.2
Barnebey, A.3
Kiamanesch, F.4
Chen, D.J.5
Han, S.6
-
60
-
-
0035188314
-
Sequence complexity of disordered protein
-
DOI: 10.1002/1097-0134(20010101)42:1〈38::AIDPROT50〉3.0.CO;2-3
-
Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered protein. Proteins 2001; 42:38-48; DOI: 10.1002/1097-0134(20010101)42:1〈38::AIDPROT50〉3.0.CO;2-3.
-
(2001)
Proteins
, vol.42
, pp. 38-48
-
-
Romero, P.1
Obradovic, Z.2
Li, X.3
Garner, E.C.4
Brown, C.J.5
Dunker, A.K.6
-
61
-
-
0037047298
-
Reversible manipulation of telomerase expression and telomere length. Implications for the ionizing radiation response and replicative senescence of human cells
-
DOI: 10.1074/jbc.M203747200
-
Rubio MA, Kim SH, Campisi J. Reversible manipulation of telomerase expression and telomere length. Implications for the ionizing radiation response and replicative senescence of human cells. J Biol Chem 2002; 277:28609-17; DOI: 10.1074/jbc.M203747200.
-
(2002)
J Biol Chem
, vol.277
, pp. 28609-28617
-
-
Rubio, M.A.1
Kim, S.H.2
Campisi, J.3
-
62
-
-
0141864666
-
Bloom syndrome cells undergo p53-dependent apoptosis and delayed assembly of BRCA1 and NBS1 repair complexes at stalled replication forks
-
DOI: 10.1083/jcb.200304016
-
Davalos AR, Campisi J. Bloom syndrome cells undergo p53-dependent apoptosis and delayed assembly of BRCA1 and NBS1 repair complexes at stalled replication forks. J Cell Biol 2003; 162:1197-209; DOI: 10.1083/jcb.200304016.
-
(2003)
J Cell Biol
, vol.162
, pp. 1197-1209
-
-
Davalos, A.R.1
Campisi, J.2
-
63
-
-
0025270026
-
Core filaments of the nuclear matrix
-
DOI: 10.1083/jcb.110.3.569
-
He DC, Nickerson JA, Penman S. Core filaments of the nuclear matrix. J Cell Biol 1990; 110:569-80; DOI: 10.1083/jcb.110.3.569.
-
(1990)
J Cell Biol
, vol.110
, pp. 569-580
-
-
He, D.C.1
Nickerson, J.A.2
Penman, S.3
|