메뉴 건너뛰기




Volumn 28, Issue 3, 2014, Pages 1055-1070

Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan

Author keywords

ANFIS; Data driven model; Radar rainfall; Rainfall runoff model; Reservoir inflow; Semi distributed model

Indexed keywords

ANFIS; DATA-DRIVEN MODEL; RADAR RAINFALL; RAINFALL-RUNOFF MODELING; RESERVOIR INFLOW; SEMI-DISTRIBUTED MODEL;

EID: 84891668322     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.9559     Document Type: Article
Times cited : (37)

References (134)
  • 5
    • 34249794005 scopus 로고    scopus 로고
    • Timing error correction procedure applied to neural network rainfall-runoff modelling
    • Abrahart RJ, Heppenstall AJ, See LM. 2007. Timing error correction procedure applied to neural network rainfall-runoff modelling. Hydrological Science Journal 52: 414-431.
    • (2007) Hydrological Science Journal , vol.52 , pp. 414-431
    • Abrahart, R.J.1    Heppenstall, A.J.2    See, L.M.3
  • 6
    • 80054703617 scopus 로고    scopus 로고
    • DAMP: A protocol for contextualising goodness-of-fit statistics in sediment-discharge data-driven modelling
    • Abrahart RJ, Mount NJ, Ab Ghani N, Clifford NJ, Dawson CW. 2011. DAMP: A protocol for contextualising goodness-of-fit statistics in sediment-discharge data-driven modelling. Journal of Hydrology 409: 596-611.
    • (2011) Journal of Hydrology , vol.409 , pp. 596-611
    • Abrahart, R.J.1    Mount, N.J.2    Ab Ghani, N.3    Clifford, N.J.4    Dawson, C.W.5
  • 7
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart RJ, See LM. 2000. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes 14: 2157-2172.
    • (2000) Hydrological Processes , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.M.2
  • 8
    • 34648849221 scopus 로고    scopus 로고
    • Neural network modelling of non-linear hydrological relationships
    • Abrahart RJ, See LM. 2007. Neural network modelling of non-linear hydrological relationships. Hydrology and Earth System Sciences 11: 1563-1579.
    • (2007) Hydrology and Earth System Sciences , vol.11 , pp. 1563-1579
    • Abrahart, R.J.1    See, L.M.2
  • 10
    • 77951015838 scopus 로고    scopus 로고
    • River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin
    • Akhtar MK, Corzo GA, Andel SJV, Jonoski A. 2009. River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrology and Earth System Sciences 13: 1607-1618.
    • (2009) Hydrology and Earth System Sciences , vol.13 , pp. 1607-1618
    • Akhtar, M.K.1    Corzo, G.A.2    Andel, S.J.V.3    Jonoski, A.4
  • 11
    • 0003989777 scopus 로고    scopus 로고
    • American Society of Civil Engineers. 2nd edn. American Society of Civil Engineers: New York.
    • American Society of Civil Engineers. 1996. Hydrology handbook 2nd edn. American Society of Civil Engineers: New York.
    • (1996) Hydrology handbook
  • 12
    • 11144277057 scopus 로고    scopus 로고
    • Use of weather radar for the hydrology of a mountainous area. Part I: Radar measurement interpretatio
    • Andrieu H, Creutin JD, Delrieu G, Faure D. 1997. Use of weather radar for the hydrology of a mountainous area. Part I: Radar measurement interpretatio. Journal of Hydrology 34: 225-239.
    • (1997) Journal of Hydrology , vol.34 , pp. 225-239
    • Andrieu, H.1    Creutin, J.D.2    Delrieu, G.3    Faure, D.4
  • 13
    • 0023519728 scopus 로고
    • Relation between measured radar reflectivity and surface rainfall
    • Austin PM. 1987. Relation between measured radar reflectivity and surface rainfall. Monthly Weather Review 115: 1053-1070.
    • (1987) Monthly Weather Review , vol.115 , pp. 1053-1070
    • Austin, P.M.1
  • 14
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall Runoff Modelling Based on Genetic Programming
    • Babovic V, Keijzer M. 2002. Rainfall Runoff Modelling Based on Genetic Programming. Nordic Hydrology 33: 331-346.
    • (2002) Nordic Hydrology , vol.33 , pp. 331-346
    • Babovic, V.1    Keijzer, M.2
  • 15
    • 33846847847 scopus 로고    scopus 로고
    • Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique
    • Bae D-H, Jeong DM, Kim G. 2007. Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique. Hydrological Sciences Journal 52: 99-113.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 99-113
    • Bae, D.-H.1    Jeong, D.M.2    Kim, G.3
  • 16
    • 0032419399 scopus 로고    scopus 로고
    • A grid-based distributed flood forecasting model for use with weather radar data. 2. Case studies
    • Bell VA, Moore RJ. 1998. A grid-based distributed flood forecasting model for use with weather radar data. 2. Case studies. Hydrology and Earth System Sciences 2: 278-283.
    • (1998) Hydrology and Earth System Sciences , vol.2 , pp. 278-283
    • Bell, V.A.1    Moore, R.J.2
  • 17
    • 84872934790 scopus 로고    scopus 로고
    • Radar for hydrology: Unfulfilled promise or unrecognized potential
    • published online 1 Jun 2012]. DOI:10.1016/j.advwatres.2012.05.005
    • Berne A, Krajewski WF. 2012. Radar for hydrology: Unfulfilled promise or unrecognized potential? Advances in Water Resources [published online 1 Jun 2012]. DOI:10.1016/j.advwatres.2012.05.005
    • (2012) Advances in Water Resources
    • Berne, A.1    Krajewski, W.F.2
  • 18
    • 84891678099 scopus 로고
    • On the role of physically-based distributed modelling in hydrology. Wallingford, Institute of Hydrology. Institute of Hydrology Report No.81.
    • Beven KJ, O'Connell PE. 1982. On the role of physically-based distributed modelling in hydrology. Wallingford, Institute of Hydrology. Institute of Hydrology Report No.81. 36pp.
    • (1982) , pp. 36
    • Beven, K.J.1    O'Connell, P.E.2
  • 19
    • 79951599550 scopus 로고    scopus 로고
    • A comparison of gauge and radar precipitation data for simulating an extreme hydrological event in the Severn Uplands, UK
    • Biggs EM, Atkinson PM. 2011. A comparison of gauge and radar precipitation data for simulating an extreme hydrological event in the Severn Uplands, UK. Hydrological Processes 25: 795-810.
    • (2011) Hydrological Processes , vol.25 , pp. 795-810
    • Biggs, E.M.1    Atkinson, P.M.2
  • 20
    • 0036784094 scopus 로고    scopus 로고
    • Accuracy of radar rainfall estimates for streamflow simulation
    • Borga M. 2002. Accuracy of radar rainfall estimates for streamflow simulation. Journal of Hydrology 267: 26-39.
    • (2002) Journal of Hydrology , vol.267 , pp. 26-39
    • Borga, M.1
  • 21
    • 0033753394 scopus 로고    scopus 로고
    • On the use of real-time radar rainfall estimates for flood prediction in mountainous basins
    • Borga M, Anagnostou EN, Frank E. 2000. On the use of real-time radar rainfall estimates for flood prediction in mountainous basins. Journal of Geophysical Research 105: 2269-2280.
    • (2000) Journal of Geophysical Research , vol.105 , pp. 2269-2280
    • Borga, M.1    Anagnostou, E.N.2    Frank, E.3
  • 25
    • 77955373000 scopus 로고    scopus 로고
    • Using radar data to extend the lead time of neural network forecasting on the River Ping
    • Chaipimonplin T, See LM, Kneale PE. 2010. Using radar data to extend the lead time of neural network forecasting on the River Ping. Disaster Advances 3: 35-43.
    • (2010) Disaster Advances , vol.3 , pp. 35-43
    • Chaipimonplin, T.1    See, L.M.2    Kneale, P.E.3
  • 27
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang F-J, Chang L-C, Huang H-L. 2002. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16: 2577-2588.
    • (2002) Hydrological Processes , vol.16 , pp. 2577-2588
    • Chang, F.-J.1    Chang, L.-C.2    Huang, H.-L.3
  • 28
    • 33947502845 scopus 로고    scopus 로고
    • Enforced self-organizing map neural networks for river flood forecasting
    • Chang F-J, Chang L-C, Wang Y-S. 2007b. Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes 21: 741-749.
    • (2007) Hydrological Processes , vol.21 , pp. 741-749
    • Chang, F.-J.1    Chang, L.-C.2    Wang, Y.-S.3
  • 29
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang F-J, Chang Y-T. 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources 29: 1-10.
    • (2006) Advances in Water Resources , vol.29 , pp. 1-10
    • Chang, F.-J.1    Chang, Y.-T.2
  • 30
    • 17844370548 scopus 로고    scopus 로고
    • Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves
    • Chang YT, Chang LC, Chang FJ. 2005. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves. Hydrological Processes 19: 1431-1444.
    • (2005) Hydrological Processes , vol.19 , pp. 1431-1444
    • Chang, Y.T.1    Chang, L.C.2    Chang, F.J.3
  • 31
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau KW, Wu CL, Li YS. 2005. Comparison of several flood forecasting models in Yangtze River. Journal of Hydrologic Engineering 10: 485-491.
    • (2005) Journal of Hydrologic Engineering , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 32
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modelling
    • Chen J, Adams BJ. 2006. Integration of artificial neural networks with conceptual models in rainfall-runoff modelling. Journal of Hydrology 318: 232-249.
    • (2006) Journal of Hydrology , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 33
    • 33646075449 scopus 로고    scopus 로고
    • The strategy of building a flood forecast model by neuro-fuzzy network
    • Chen SH, Lin YH, Chang LC, Chang FJ. 2006. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrological Processes 20: 1525-1540.
    • (2006) Hydrological Processes , vol.20 , pp. 1525-1540
    • Chen, S.H.1    Lin, Y.H.2    Chang, L.C.3    Chang, F.J.4
  • 34
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen Y-H, Chang F-J. 2009. Evolutionary artificial neural networks for hydrological systems forecasting. Journal of Hydrology 367:125-137.
    • (2009) Journal of Hydrology , vol.367 , pp. 125-137
    • Chen, Y.-H.1    Chang, F.-J.2
  • 35
    • 48649084701 scopus 로고    scopus 로고
    • Rain-gauge network evaluation and augmentation using geostatistics
    • Cheng K-S, Lin Y-C, Liou J-J. 2008. Rain-gauge network evaluation and augmentation using geostatistics. Hydrological Processes 22: 2554-2564.
    • (2008) Hydrological Processes , vol.22 , pp. 2554-2564
    • Cheng, K.-S.1    Lin, Y.-C.2    Liou, J.-J.3
  • 36
    • 65949109499 scopus 로고    scopus 로고
    • Integrating hydrometeorological information for rainfall-runoff modelling by artificial neural networks
    • Chiang Y-M, Chang F-J. 2009. Integrating hydrometeorological information for rainfall-runoff modelling by artificial neural networks. Hydrological Processes 23: 1650-1659.
    • (2009) Hydrological Processes , vol.23 , pp. 1650-1659
    • Chiang, Y.-M.1    Chang, F.-J.2
  • 37
    • 84862784995 scopus 로고    scopus 로고
    • Integration of fuzzy cluster analysis and kernel density estimation for tracking typhoon trajectories in the Taiwan region
    • Chu H-J, Liau C-J, Lin C-H, Su B-S. 2012. Integration of fuzzy cluster analysis and kernel density estimation for tracking typhoon trajectories in the Taiwan region. Expert Systems with Applications 39: 9451-9457.
    • (2012) Expert Systems with Applications , vol.39 , pp. 9451-9457
    • Chu, H.-J.1    Liau, C.-J.2    Lin, C.-H.3    Su, B.-S.4
  • 38
    • 34249775808 scopus 로고    scopus 로고
    • Baseflow separation techniques for modular artificial neural network modelling in flow forecasting
    • Corzo G, Solomatine, D. 2007. Baseflow separation techniques for modular artificial neural network modelling in flow forecasting. Hydrological Sciences Journal 52: 491-507.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 491-507
    • Corzo, G.1    Solomatine, D.2
  • 40
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P, Anctil F, Bobee B. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology 230: 244-257.
    • (2000) Journal of Hydrology , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 41
    • 37049005158 scopus 로고    scopus 로고
    • The modifiable areal unit problem (MAUP) in physical geography
    • Dark SJ, Bram D. 2007. The modifiable areal unit problem (MAUP) in physical geography. Progress in Physical Geography 31: 471-479.
    • (2007) Progress in Physical Geography , vol.31 , pp. 471-479
    • Dark, S.J.1    Bram, D.2
  • 42
    • 0014586784 scopus 로고
    • Effect of rainfall variability on streamflow simulation
    • Dawdy DR, Bergman J M. 1969. Effect of rainfall variability on streamflow simulation. Water Resources Research 5: 958-966.
    • (1969) Water Resources Research , vol.5 , pp. 958-966
    • Dawdy, D.R.1    Bergman, J.M.2
  • 43
    • 33645996016 scopus 로고    scopus 로고
    • Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England
    • Dawson CW, See LM, Abrahart RJ, Heppenstall AJ. 2006. Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England. Neural Networks 19: 236-247.
    • (2006) Neural Networks , vol.19 , pp. 236-247
    • Dawson, C.W.1    See, L.M.2    Abrahart, R.J.3    Heppenstall, A.J.4
  • 44
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • Dawson CW, Abrahart RJ, See LM. 2007. HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environmental Modelling & Software 22: 1034-1052.
    • (2007) Environmental Modelling & Software , vol.22 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 45
    • 0010705440 scopus 로고    scopus 로고
    • Real time forecasting using neural networks
    • In, Govindaraju, Ramachandra Rao A. (eds). Kluwer Academic Publishers: Dordrecht
    • Deo MC, Thirumalaiah, K. 2000. Real time forecasting using neural networks. In Artificial Neural Networks in Hydrology, Govindaraju, Ramachandra Rao A. (eds). Kluwer Academic Publishers: Dordrecht; 53-71.
    • (2000) Artificial Neural Networks in Hydrology , pp. 53-71
    • Deo, M.C.1    Thirumalaiah, K.2
  • 46
    • 84891723531 scopus 로고    scopus 로고
    • Reservoir computing as an alternative to traditional artificial neural networks in rainfall-runoff modelling
    • De Vos NJ. 2012. Reservoir computing as an alternative to traditional artificial neural networks in rainfall-runoff modelling. Hydrology and Earth System Sciences Discussions 9: 6101-6134.
    • (2012) Hydrology and Earth System Sciences Discussions , vol.9 , pp. 6101-6134
    • De Vos, N.J.1
  • 47
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation
    • De Vos NJ, Rientjes THM. 2005. Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrology and Earth System Sciences 9: 111-126.
    • (2005) Hydrology and Earth System Sciences , vol.9 , pp. 111-126
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 48
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
    • El-Shafie A, Taha MR, Noureldin A. 2007. A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resources Management 21: 533-556.
    • (2007) Water Resources Management , vol.21 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 49
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology
    • Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP. 2010a. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology. Hydrology and Earth System Sciences 14: 1931-1941.
    • (2010) Hydrology and Earth System Sciences , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 50
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
    • Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP. 2010b. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application. Hydrology and Earth System Sciences 14: 1943-1961.
    • (2010) Hydrology and Earth System Sciences , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 51
    • 46449123911 scopus 로고    scopus 로고
    • Hydrological time-series modelling using an adaptive neuro-fuzzy inference system
    • Firat M, Güngor M. 2008. Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrological Processes 22: 2122-2132.
    • (2008) Hydrological Processes , vol.22 , pp. 2122-2132
    • Firat, M.1    Güngor, M.2
  • 52
    • 11144315254 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using adaptive neuro-fuzzy systems
    • Gautam DK, Holz KP. 2001. Rainfall-runoff modelling using adaptive neuro-fuzzy systems. Journal of Hydroinformatics 3: 3-10.
    • (2001) Journal of Hydroinformatics , vol.3 , pp. 3-10
    • Gautam, D.K.1    Holz, K.P.2
  • 53
    • 84891675830 scopus 로고    scopus 로고
    • Operational GIS based models for NEXRAD radar data in the U.S. In Proceedings of the International Conference on Water Resources and Environmental Research, 29-31 October, 1996, Water Resources and Environmental Research Centre, Kyoto University, Kyoto, Japan
    • Georgakakos KP, Sperfslage JA, Guetter AK. 1996. Operational GIS based models for NEXRAD radar data in the U.S. In Proceedings of the International Conference on Water Resources and Environmental Research, 29-31 October, 1996, Water Resources and Environmental Research Centre, Kyoto University, Kyoto, Japan; 603-609.
    • (1996) , pp. 603-609
    • Georgakakos, K.P.1    Sperfslage, J.A.2    Guetter, A.K.3
  • 54
    • 84887206471 scopus 로고    scopus 로고
    • Application of surrogate artificial intelligent models for real-time flood routing
    • in press. [published online: 16 August 2012] doi: 10.1111/j.1747-6593.2012.00344.x
    • Ghalkhani H, Golian S, Saghafian B, Farokhnia A, Shamseldin A. in press. Application of surrogate artificial intelligent models for real-time flood routing. Water and Environment Journal [published online: 16 August 2012] doi: 10.1111/j.1747-6593.2012.00344.x
    • Water and Environment Journal
    • Ghalkhani, H.1    Golian, S.2    Saghafian, B.3    Farokhnia, A.4    Shamseldin, A.5
  • 55
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling
    • Giustolisi O, Laucelli D. 2005. Improving generalization of artificial neural networks in rainfall-runoff modelling. Hydrological Sciences Journal 50: 439-457.
    • (2005) Hydrological Sciences Journal , vol.50 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 56
    • 79960276322 scopus 로고    scopus 로고
    • Hydrologic Evaluation of Rainfall Estimates from Radar, Satellite, Gauge, and Combinations on Ft. Cobb Basin, Oklahoma
    • Gourley, JJ, Hong Y, Flamig ZL, Wang J, Vergara H, Anagnostou EN. 2011. Hydrologic Evaluation of Rainfall Estimates from Radar, Satellite, Gauge, and Combinations on Ft. Cobb Basin, Oklahoma. Journal of Hydrometeorology 12: 973-988.
    • (2011) Journal of Hydrometeorology , vol.12 , pp. 973-988
    • Gourley, J.J.1    Hong, Y.2    Flamig, Z.L.3    Wang, J.4    Vergara, H.5    Anagnostou, E.N.6
  • 57
    • 45449119156 scopus 로고    scopus 로고
    • Analysis of radar-rainfall error characteristics and implications for streamflow simulation uncertainty
    • Habib E, Aduvala AV, Meselhe EA. 2008. Analysis of radar-rainfall error characteristics and implications for streamflow simulation uncertainty. Hydrological Sciences Journal 53: 568-587.
    • (2008) Hydrological Sciences Journal , vol.53 , pp. 568-587
    • Habib, E.1    Aduvala, A.V.2    Meselhe, E.A.3
  • 58
    • 80053369410 scopus 로고    scopus 로고
    • Statistical analysis of the impact of radar rainfall uncertainties on water resources modelling
    • DOI:10.1029/2011WR010670.
    • He X, Refsgaard JC, Sonnenborg TO, Vejen F, Jensen KH. 2011. Statistical analysis of the impact of radar rainfall uncertainties on water resources modelling. Water Resources Research 47: W09526. DOI:10.1029/2011WR010670.
    • (2011) Water Resources Research , vol.47
    • He, X.1    Refsgaard, J.C.2    Sonnenborg, T.O.3    Vejen, F.4    Jensen, K.H.5
  • 59
    • 84891687718 scopus 로고    scopus 로고
    • Hydroinformatics Vision 2011. Synoptic Report of the IAHR/IWA/IAHS Hydroinformatics Joint Committee Working Group:
    • Holz KP, Cunge JA, Lehfeldt R, Savic D. 2011. Hydroinformatics Vision 2011. Synoptic Report of the IAHR/IWA/IAHS Hydroinformatics Joint Committee Working Group: http://www.iahr.net/site/about/organisation/technical/div_2/Committee_on_Hydroinformatics/Final_Synoptic_Report.pdf
    • (2011)
    • Holz, K.P.1    Cunge, J.A.2    Lehfeldt, R.3    Savic, D.4
  • 60
    • 2942540232 scopus 로고    scopus 로고
    • Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty
    • Hossain F, Anagnostou EN, Dinku T, Borga M. 2005. Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty. Hydrological Processes 18: 3277-3291.
    • (2005) Hydrological Processes , vol.18 , pp. 3277-3291
    • Hossain, F.1    Anagnostou, E.N.2    Dinku, T.3    Borga, M.4
  • 61
    • 33947170387 scopus 로고    scopus 로고
    • A multipurpose reservoir real-time operation model for flood control during typhoon invasion
    • Hsu N-S, Wei C-C. 2007. A multipurpose reservoir real-time operation model for flood control during typhoon invasion. Journal of Hydrology 336: 282-293.
    • (2007) Journal of Hydrology , vol.336 , pp. 282-293
    • Hsu, N.-S.1    Wei, C.-C.2
  • 62
    • 84856234248 scopus 로고    scopus 로고
    • Integrated neural networks for monthly river flow estimation in arid inland basin of Northwest China
    • Huo Z, Feng S, Kang S, Huang G, Wang F, Guo P. 2012. Integrated neural networks for monthly river flow estimation in arid inland basin of Northwest China. Journal of Hydrology 420-421: 159-170
    • (2012) Journal of Hydrology , vol.420-421 , pp. 159-170
    • Huo, Z.1    Feng, S.2    Kang, S.3    Huang, G.4    Wang, F.5    Guo, P.6
  • 66
    • 0024105735 scopus 로고
    • Extracting topographic structure from digital elevation data for geographic information system analysis
    • Jensen SK, Domingue JO. 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing 54: 1593-1600.
    • (1988) Photogrammetric Engineering and Remote Sensing , vol.54 , pp. 1593-1600
    • Jensen, S.K.1    Domingue, J.O.2
  • 67
    • 0029477872 scopus 로고
    • The application of radar-gage comparisons to operational precipitation profile corrections
    • Joss J, Lee R. 1995. The application of radar-gage comparisons to operational precipitation profile corrections. Journal of Applied Meteorology 34: 2612-2630.
    • (1995) Journal of Applied Meteorology , vol.34 , pp. 2612-2630
    • Joss, J.1    Lee, R.2
  • 68
    • 84862673732 scopus 로고    scopus 로고
    • Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data
    • Jothiprakash V, Magar, RB. 2012. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. Journal of Hydrology 450-451: 293-307.
    • (2012) Journal of Hydrology , vol.450-451 , pp. 293-307
    • Jothiprakash, V.1    Magar, R.B.2
  • 69
    • 84881024131 scopus 로고    scopus 로고
    • Spatial and temporal variations in rainfall characteristics in mountainous and lowland areas in Taiwan
    • published online 8 Jun 2012] DOI: 10.1002/hyp.9416
    • Kao S-C, Kume T, Komatsu H, Liang W-L. 2012. Spatial and temporal variations in rainfall characteristics in mountainous and lowland areas in Taiwan. Hydrological Processes [published online 8 Jun 2012] DOI: 10.1002/hyp.9416
    • (2012) Hydrological Processes
    • Kao, S.-C.1    Kume, T.2    Komatsu, H.3    Liang, W.-L.4
  • 70
    • 80054087295 scopus 로고    scopus 로고
    • Applicability of Adaptive Neuro-Fuzzy Inference Systems in Daily Reservoir Inflow Forecasting
    • Karimi-Googhari SH, Lee TS. 2011. Applicability of Adaptive Neuro-Fuzzy Inference Systems in Daily Reservoir Inflow Forecasting. International Journal of Soft Computing 6: 75-84.
    • (2011) International Journal of Soft Computing , vol.6 , pp. 75-84
    • Karimi-Googhari, S.H.1    Lee, T.S.2
  • 71
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series
    • Keskin ME, Taylan D, Terzi O. 2006. Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrological Sciences Journal 51: 588-598.
    • (2006) Hydrological Sciences Journal , vol.51 , pp. 588-598
    • Keskin, M.E.1    Taylan, D.2    Terzi, O.3
  • 73
    • 33745914620 scopus 로고    scopus 로고
    • Clustering of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts
    • Lauzon N, Anctil F, Baxter CW. 2006. Clustering of heterogeneous precipitation fields for the assessment and possible improvement of lumped neural network models for streamflow forecasts. Hydrology and Earth System Sciences 10: 485-494.
    • (2006) Hydrology and Earth System Sciences , vol.10 , pp. 485-494
    • Lauzon, N.1    Anctil, F.2    Baxter, C.W.3
  • 74
    • 33644787130 scopus 로고    scopus 로고
    • A Climatology Model for Forecasting Typhoon Rainfall in Taiwan
    • Lee C-S, Huang L-R, Shen H-S, Wang S-T. 2006. A Climatology Model for Forecasting Typhoon Rainfall in Taiwan. Natural Hazards 37: 87-105.
    • (2006) Natural Hazards , vol.37 , pp. 87-105
    • Lee, C.-S.1    Huang, L.-R.2    Shen, H.-S.3    Wang, S.-T.4
  • 75
    • 84862585772 scopus 로고    scopus 로고
    • Low-frequency variability of tropical cyclone-induced heavy rainfall over East Asia associated with tropical and North Pacific sea surface temperatures
    • in press. DOI:10.1029/2012JD017565.
    • Lee M-H, Ho C-H, Kim J-H, Song H-J. in press. Low-frequency variability of tropical cyclone-induced heavy rainfall over East Asia associated with tropical and North Pacific sea surface temperatures. Journal of Geophysical Research DOI:10.1029/2012JD017565.
    • Journal of Geophysical Research
    • Lee, M.-H.1    Ho, C.-H.2    Kim, J.-H.3    Song, H.-J.4
  • 76
    • 84891713065 scopus 로고    scopus 로고
    • The risk analysis of long term impact to reservoir under extreme hydrologic events -Shihmen Reservoir a Case Study. Paper presented at the World Environmental and Water Resources Congress 2011.
    • Lee PS, You GJ-Y. 2011. The risk analysis of long term impact to reservoir under extreme hydrologic events -Shihmen Reservoir a Case Study. Paper presented at the World Environmental and Water Resources Congress 2011.
    • (2011)
    • Lee, P.S.1    You, G.-Y.2
  • 77
    • 20844462859 scopus 로고    scopus 로고
    • Application of an artificial neural network to typhoon rainfall forecasting
    • Lin G-F, Chen L-H. 2005. Application of an artificial neural network to typhoon rainfall forecasting. Hydrological Processes 19: 1825-1837.
    • (2005) Hydrological Processes , vol.19 , pp. 1825-1837
    • Lin, G.-F.1    Chen, L.-H.2
  • 78
    • 65649123113 scopus 로고    scopus 로고
    • Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods
    • Lin G-F, Chen G-R, Huang P-Y, Chou Y-C. 2009a. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. Journal of Hydrology 372: 17-29.
    • (2009) Journal of Hydrology , vol.372 , pp. 17-29
    • Lin, G.-F.1    Chen, G.-R.2    Huang, P.-Y.3    Chou, Y.-C.4
  • 79
    • 71649101242 scopus 로고    scopus 로고
    • An RBF-based model with an information processor for forecasting hourly reservoir inflow during typhoons
    • Lin G-F, Wu M-C, Chen G-R, Tsai F-Y. 2009b. An RBF-based model with an information processor for forecasting hourly reservoir inflow during typhoons. Hydrological Processes 23: 3598-3609.
    • (2009) Hydrological Processes , vol.23 , pp. 3598-3609
    • Lin, G.-F.1    Wu, M.-C.2    Chen, G.-R.3    Tsai, F.-Y.4
  • 80
    • 84861208736 scopus 로고    scopus 로고
    • Hydrological time series modelling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques
    • Lohani AK, Kumar R, Singh RD. 2012. Hydrological time series modelling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. Journal of Hydrology 442-443: 23-35.
    • (2012) Journal of Hydrology , vol.442-443 , pp. 23-35
    • Lohani, A.K.1    Kumar, R.2    Singh, R.D.3
  • 81
    • 0029413502 scopus 로고
    • Neural nets for modelling rainfall-runoff transformations
    • Lorrai M, Sechi GM. 1995. Neural nets for modelling rainfall-runoff transformations. Water Resources Management 9: 299-313.
    • (1995) Water Resources Management , vol.9 , pp. 299-313
    • Lorrai, M.1    Sechi, G.M.2
  • 82
    • 79960502196 scopus 로고    scopus 로고
    • Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium
    • Ly S, Charles C, Degré A. 2011. Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrology and Earth System Sciences 15: 2259-2274.
    • (2011) Hydrology and Earth System Sciences , vol.15 , pp. 2259-2274
    • Ly, S.1    Charles, C.2    Degré, A.3
  • 84
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier HR, Dandy GC. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software 15: 101-124.
    • (2000) Environmental Modelling & Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 85
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
    • Maier HR, Jain A, Dandy GC, Sudheer KP. 2010. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling & Software 25: 891-909.
    • (2010) Environmental Modelling & Software , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 86
    • 0028668783 scopus 로고
    • Effects of rainfall-sampling errors on simulations of desert flash floods
    • Michaud JD, Sorooshian S. 1994. Effects of rainfall-sampling errors on simulations of desert flash floods. Water Resources Research 30: 2765-2775.
    • (1994) Water Resources Research , vol.30 , pp. 2765-2775
    • Michaud, J.D.1    Sorooshian, S.2
  • 87
    • 15744379977 scopus 로고    scopus 로고
    • The impact of tipping-bucket raingauge measurement errors on design rainfall for urban-scale applications
    • Molini A, Lanza LG, La Barbera P. 2005. The impact of tipping-bucket raingauge measurement errors on design rainfall for urban-scale applications. Hydrological Processes 19: 1073-1088.
    • (2005) Hydrological Processes , vol.19 , pp. 1073-1088
    • Molini, A.1    Lanza, L.G.2    La Barbera, P.3
  • 88
    • 80052924174 scopus 로고    scopus 로고
    • Load or concentration, logged or unlogged? Addressing ten years of uncertainty in neural network suspended sediment prediction
    • Mount NJ, Abrahart RJ. 2011a. Load or concentration, logged or unlogged? Addressing ten years of uncertainty in neural network suspended sediment prediction. Hydrological Processes 25: 3144-3157.
    • (2011) Hydrological Processes , vol.25 , pp. 3144-3157
    • Mount, N.J.1    Abrahart, R.J.2
  • 89
    • 78650170082 scopus 로고    scopus 로고
    • Discussion of "River flow estimation from upstream flow records by artificial intelligence methods", by M.E. Turan and M.A. Yurdusev [J. Hydrol. 369 (2009) 71-77]
    • Mount NJ, Abrahart RJ. 2011b. Discussion of "River flow estimation from upstream flow records by artificial intelligence methods", by M.E. Turan and M.A. Yurdusev [J. Hydrol. 369 (2009) 71-77]. Journal of Hydrology 396: 193-196.
    • (2011) Journal of Hydrology , vol.396 , pp. 193-196
    • Mount, N.J.1    Abrahart, R.J.2
  • 90
    • 84871104259 scopus 로고    scopus 로고
    • The need for operational reasoning in data-driven rating curve prediction of suspended sediment
    • doi: 10.1002/hyp.8439.
    • Mount NJ, Abrahart RJ. 2012. The need for operational reasoning in data-driven rating curve prediction of suspended sediment. Hydrological Processes doi: 10.1002/hyp.8439.
    • (2012) Hydrological Processes
    • Mount, N.J.1    Abrahart, R.J.2
  • 93
    • 84865315403 scopus 로고    scopus 로고
    • The data-driven approach as an operational real-time flood forecasting model
    • Nguyen PK-T, Chau LH-C. 2012. The data-driven approach as an operational real-time flood forecasting model. Hydrological Processes 26: 2878-2893.
    • (2012) Hydrological Processes , vol.26 , pp. 2878-2893
    • Nguyen, P.-T.1    Chau, L.-C.2
  • 94
    • 34648837342 scopus 로고    scopus 로고
    • A data-based regional scale autoregressive rainfall-runoff model: a study from the Odra River
    • Niedzielski T. 2007. A data-based regional scale autoregressive rainfall-runoff model: a study from the Odra River. Stochastic Environmental Research and Risk Assessment 21: 649-664.
    • (2007) Stochastic Environmental Research and Risk Assessment , vol.21 , pp. 649-664
    • Niedzielski, T.1
  • 96
    • 84892985483 scopus 로고    scopus 로고
    • Coupling typhoon rainfall forecasting with overland-flow modeling for early warning of inundation
    • published online 5 January 2012]. DOI: 10.1007/s11069-011-0061-9
    • Pan T-Y, Chang L-Y, Lai J-S, Chang H-K, Lee C-S, Tan Y-C. 2012. Coupling typhoon rainfall forecasting with overland-flow modeling for early warning of inundation. Natural Hazards [published online 5 January 2012]. DOI: 10.1007/s11069-011-0061-9
    • (2012) Natural Hazards
    • Pan, T.-Y.1    Chang, L.-Y.2    Lai, J.-S.3    Chang, H.-K.4    Lee, C.-S.5    Tan, Y.-C.6
  • 97
    • 84891673230 scopus 로고    scopus 로고
    • Hybrid models for hydrological forecasting: integration of data-driven and conceptual modelling techniques. PhD Thesis. UNESCO-IHE Institute for Water Education: Delft, The Netherlands.
    • Perez GAC. 2009. Hybrid models for hydrological forecasting: integration of data-driven and conceptual modelling techniques. PhD Thesis. UNESCO-IHE Institute for Water Education: Delft, The Netherlands.
    • (2009)
    • Perez, G.A.C.1
  • 98
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
    • Pramanik N, Panda RK. 2009. Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrological Sciences Journal 54: 247-260.
    • (2009) Hydrological Sciences Journal , vol.54 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 103
    • 77955220906 scopus 로고    scopus 로고
    • Reduced space optimal interpolation of daily rain gauge precipitation in Switzerland
    • Schiemann R, Liniger MA, Frei C. 2010. Reduced space optimal interpolation of daily rain gauge precipitation in Switzerland. Journal of Geophysical Research 115: D14109.
    • (2010) Journal of Geophysical Research , vol.115
    • Schiemann, R.1    Liniger, M.A.2    Frei, C.3
  • 105
    • 34249844193 scopus 로고    scopus 로고
    • Hydroinformatics: computational intelligence and technological developments in water science applications-Editorial
    • See LM, Solomatine DP, Abrahart RJ, Toth E. 2007. Hydroinformatics: computational intelligence and technological developments in water science applications-Editorial. Hydrological Sciences Journal 52: 391-396.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 391-396
    • See, L.M.1    Solomatine, D.P.2    Abrahart, R.J.3    Toth, E.4
  • 106
    • 35748954636 scopus 로고    scopus 로고
    • The significance of spatial rainfall representation for flood runoff estimation: A numerical evaluation based on the Lee catchment, UK
    • Segond M-L, Wheater HS, Onof C. 2007. The significance of spatial rainfall representation for flood runoff estimation: A numerical evaluation based on the Lee catchment, UK. Journal of Hydrology 347: 116-131.
    • (2007) Journal of Hydrology , vol.347 , pp. 116-131
    • Segond, M.-L.1    Wheater, H.S.2    Onof, C.3
  • 108
    • 33645982638 scopus 로고    scopus 로고
    • Data-driven modelling and computational intelligence methods in hydrology
    • In, Andersen MG (ed), part 2, chapter 19. John Wiley & Sons: Chichester.
    • Solomatine, DP. 2005. Data-driven modelling and computational intelligence methods in hydrology. In Encyclopedia of Hydrological Sciences, Andersen MG (ed), vol. 1, part 2, chapter 19. John Wiley & Sons: Chichester. pp. 293-306.
    • (2005) Encyclopedia of Hydrological Sciences , vol.1 , pp. 293-306
    • Solomatine, D.P.1
  • 109
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: some past experiences and new approaches
    • Solomatine DP, Ostfeld A. 2008. Data-driven modelling: some past experiences and new approaches. Journal of Hydroinformatics 10: 3-22.
    • (2008) Journal of Hydroinformatics , vol.10 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 110
    • 85001819623 scopus 로고    scopus 로고
    • A Hybrid Optimization Rainfall-Runoff Simulation Based on Xinanjiang Model and Artificial Neural Network
    • in press. DOI:10.1061/(ASCE)HE.1943-5584.0000548
    • Song X, Kong F, Zhan C, Han J. in press. A Hybrid Optimization Rainfall-Runoff Simulation Based on Xinanjiang Model and Artificial Neural Network. ASCE Journal of Hydrologic Engineering DOI:10.1061/(ASCE)HE.1943-5584.0000548
    • ASCE Journal of Hydrologic Engineering
    • Song, X.1    Kong, F.2    Zhan, C.3    Han, J.4
  • 111
    • 77956263390 scopus 로고    scopus 로고
    • Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling
    • Talei A, Chua LHC, Wong T. 2010. Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling. Journal of Hydrology 391: 248-262.
    • (2010) Journal of Hydrology , vol.391 , pp. 248-262
    • Talei, A.1    Chua, L.H.C.2    Wong, T.3
  • 113
    • 84891687515 scopus 로고    scopus 로고
    • Weather radar measurements in data-driven rainfall-runoff models
    • Teschl R, Randeu WL, Teschl F. 2009. Weather radar measurements in data-driven rainfall-runoff models. Geophysical Research Abstracts 11: 12712.
    • (2009) Geophysical Research Abstracts , vol.11 , pp. 12712
    • Teschl, R.1    Randeu, W.L.2    Teschl, F.3
  • 114
    • 23644460160 scopus 로고    scopus 로고
    • Significance of spatial variability in precipitation for process-oriented modelling: results from two nested catchments using radar and ground station data
    • Tetzlaff D, Uhlenbrook S. 2005. Significance of spatial variability in precipitation for process-oriented modelling: results from two nested catchments using radar and ground station data. Hydrology and Earth System Sciences 9: 29-41.
    • (2005) Hydrology and Earth System Sciences , vol.9 , pp. 29-41
    • Tetzlaff, D.1    Uhlenbrook, S.2
  • 115
    • 0000148490 scopus 로고
    • Precipitation averages for large areas
    • Thiessen AH. 1911. Precipitation averages for large areas. Monthly Weather Review 39: 1082-1084.
    • (1911) Monthly Weather Review , vol.39 , pp. 1082-1084
    • Thiessen, A.H.1
  • 116
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modelling
    • DOI:10.1029/2006WR005383.
    • Toth E, Brath A. 2007. Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modelling. Water Resources Research 43: W11405, DOI:10.1029/2006WR005383.
    • (2007) Water Resources Research , vol.43
    • Toth, E.1    Brath, A.2
  • 117
    • 79951788593 scopus 로고    scopus 로고
    • Spatial interpolation of hourly rainfall - effect of additional information, variogram inference and storm properties
    • Verworn A, Haberlandt U. 2011. Spatial interpolation of hourly rainfall - effect of additional information, variogram inference and storm properties. Hydrology and Earth System Sciences 15: 569-584.
    • (2011) Hydrology and Earth System Sciences , vol.15 , pp. 569-584
    • Verworn, A.1    Haberlandt, U.2
  • 118
    • 0032461719 scopus 로고    scopus 로고
    • Estimation of rainfall for flood prediction from WSR-88D reflectivity: a case study, 17-18 October 1994
    • Vieux BE, Bedient PB. 1998. Estimation of rainfall for flood prediction from WSR-88D reflectivity: a case study, 17-18 October 1994. Weather and Forecasting 13: 407-415.
    • (1998) Weather and Forecasting , vol.13 , pp. 407-415
    • Vieux, B.E.1    Bedient, P.B.2
  • 119
    • 84891713064 scopus 로고    scopus 로고
    • Operational deployment of a physics-based rainfall-runoff model for flood forecasting in Taiwan. HS03: International Symposium on Information from Weather Radar and Distributed Hydrological Modeling, Proc. IAHS General Assembly, Sapporo, Japan, July 7-8, 2003.
    • Vieux BE, Vieux JE, Chen C, Howard KW. 2003. Operational deployment of a physics-based rainfall-runoff model for flood forecasting in Taiwan. HS03: International Symposium on Information from Weather Radar and Distributed Hydrological Modeling, Proc. IAHS General Assembly, Sapporo, Japan, July 7-8, 2003.
    • (2003)
    • Vieux, B.E.1    Vieux, J.E.2    Chen, C.3    Howard, K.W.4
  • 121
    • 84866167718 scopus 로고    scopus 로고
    • Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions
    • in press. [published online 24 July 2012].
    • Wagner PD, Fiener P, Wilken F, Kumar S, Schneider K. in press. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology. [published online 24 July 2012]. http://dx.doi.org/10.1016/j.jhydrol.2012.07.026
    • Journal of Hydrology
    • Wagner, P.D.1    Fiener, P.2    Wilken, F.3    Kumar, S.4    Schneider, K.5
  • 122
    • 84863272108 scopus 로고    scopus 로고
    • Comparative Case Study of Rainfall-Runoff Modeling between SWMM and Fuzzy Logic Approach
    • Wang K, Altunkaynak A. 2012. Comparative Case Study of Rainfall-Runoff Modeling between SWMM and Fuzzy Logic Approach. ASCE Journal of Hydrologic Engineering 17: 283-291.
    • (2012) ASCE Journal of Hydrologic Engineering , vol.17 , pp. 283-291
    • Wang, K.1    Altunkaynak, A.2
  • 123
    • 84891707388 scopus 로고
    • Water Resources Agency. Shihmen reservoir operating rules and regulations. Taoyuan: Taiwan. (in Chinese)
    • Water Resources Agency. 1984. Shihmen reservoir operating rules and regulations. Taoyuan: Taiwan. (in Chinese)
    • (1984)
  • 125
    • 0031689648 scopus 로고    scopus 로고
    • On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: effects of algorithm uncertainty and pixel aggregation
    • Winchell M, Gupta HV, Sorooshian S. 1998. On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: effects of algorithm uncertainty and pixel aggregation. Water Resources Research 34: 2655-2670.
    • (1998) Water Resources Research , vol.34 , pp. 2655-2670
    • Winchell, M.1    Gupta, H.V.2    Sorooshian, S.3
  • 127
    • 79952006341 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis
    • Wu CL, Chau KW. 2011. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology 399: 394-409.
    • (2011) Journal of Hydrology , vol.399 , pp. 394-409
    • Wu, C.L.1    Chau, K.W.2
  • 129
    • 42149119065 scopus 로고    scopus 로고
    • Coupled surface and groundwater models for investigating hydrological processes
    • Wu R-S, Shih D-S, Li M-H, Niu C-C. 2008. Coupled surface and groundwater models for investigating hydrological processes. Hydrological Processes 22: 1216-1229.
    • (2008) Hydrological Processes , vol.22 , pp. 1216-1229
    • Wu, R.-S.1    Shih, D.-S.2    Li, M.-H.3    Niu, C.-C.4
  • 130
    • 0037200134 scopus 로고    scopus 로고
    • Short-term inflow forecasting using an artificial neural network model
    • Xu ZX, Li JY. 2002. Short-term inflow forecasting using an artificial neural network model. Hydrological Processes 16: 2423-2439.
    • (2002) Hydrological Processes , vol.16 , pp. 2423-2439
    • Xu, Z.X.1    Li, J.Y.2
  • 131
    • 77953342831 scopus 로고    scopus 로고
    • Comparing Sigmoid Transfer Functions for Neural Network Multistep Ahead Streamflow Forecasting
    • Yonaba H, Anctil F, Fortin V. 2010. Comparing Sigmoid Transfer Functions for Neural Network Multistep Ahead Streamflow Forecasting. ASCE Journal of Hydrologic Engineering 15: 275-283.
    • (2010) ASCE Journal of Hydrologic Engineering , vol.15 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3
  • 132
    • 67650314588 scopus 로고    scopus 로고
    • Detecting the effects of spatial variability of rainfall on hydrological modelling within an uncertainty analysis framework
    • Younger PM, Freer JE, Beven KJ. 2009. Detecting the effects of spatial variability of rainfall on hydrological modelling within an uncertainty analysis framework. Hydrological Processes 23: 1988-2003.
    • (2009) Hydrological Processes , vol.23 , pp. 1988-2003
    • Younger, P.M.1    Freer, J.E.2    Beven, K.J.3
  • 133
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu P-S, Chen ST, Chang IF. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology 328: 704-716.
    • (2006) Journal of Hydrology , vol.328 , pp. 704-716
    • Yu, P.-S.1    Chen, S.T.2    Chang, I.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.