메뉴 건너뛰기




Volumn 27, Issue 4, 2013, Pages 535-548

Application of surrogate artificial intelligent models for real-time flood routing

Author keywords

Artificial neural networks; Flood routing; Real time; Stability

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ARTIFICIAL INTELLIGENT; COMPUTATIONAL INSTABILITIES; FLOOD ROUTING; HYDRODYNAMIC MODEL; HYDROLOGICAL MODELING; REAL-TIME; REAL-TIME APPLICATION;

EID: 84887206471     PISSN: 17476585     EISSN: 17476593     Source Type: Journal    
DOI: 10.1111/j.1747-6593.2012.00344.x     Document Type: Article
Times cited : (48)

References (34)
  • 1
    • 0242407051 scopus 로고    scopus 로고
    • ANN Output Updating of Lumped Conceptual Rainfall-Runoff Forecasting Models
    • Anctil, F., Perrin, C.H. and Andreassian, V. (2003) ANN Output Updating of Lumped Conceptual Rainfall-Runoff Forecasting Models. J. Am. Water Resour. Assoc., 39, 1269-1279.
    • (2003) J. Am. Water Resour. Assoc. , vol.39 , pp. 1269-1279
    • Anctil, F.1    Perrin, C.H.2    Andreassian, V.3
  • 2
    • 33947572974 scopus 로고    scopus 로고
    • A Comparative Study of Artificial Neural Networks and Neuro-Fuzzy in Continuous Modeling of the Daily and Hourly Behaviour of Runoff
    • Aqil, M., Kita, I., Yano, A. and Nishiyama, S. (2007) A Comparative Study of Artificial Neural Networks and Neuro-Fuzzy in Continuous Modeling of the Daily and Hourly Behaviour of Runoff. J. Hydrol., 337, 22-34.
    • (2007) J. Hydrol. , vol.337 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 3
    • 44949255368 scopus 로고    scopus 로고
    • An Expert System for Predicting Aeration Performance of Weirs by Using ANFIS
    • Baylar, A., Hanbay, D. and Ozpolat, E. (2008) An Expert System for Predicting Aeration Performance of Weirs by Using ANFIS. Expert Syst. Appl., 35, 1214-1222.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1214-1222
    • Baylar, A.1    Hanbay, D.2    Ozpolat, E.3
  • 4
    • 0036697650 scopus 로고    scopus 로고
    • Neural Networks and Non-Parametric Methods for Improving Real-Time Flood Forecasting through Conceptual Hydrological Models
    • Brath, A., Montanari, A. and Toth, E. (2002) Neural Networks and Non-Parametric Methods for Improving Real-Time Flood Forecasting through Conceptual Hydrological Models. Hydrol. Earth Syst. Sci., 6, 627-640.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , pp. 627-640
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 6
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu, S.L. (1994) Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst., 2 (3), 267-278.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.L.1
  • 7
    • 0036698154 scopus 로고    scopus 로고
    • Evaluation of Artificial Neural Network Techniques for Flow Forecasting in River Yangtze, China
    • Dawson, C.W., Harpham, C., Wilby, R.L. and Chen, Y. (2002) Evaluation of Artificial Neural Network Techniques for Flow Forecasting in River Yangtze, China. Hydrol. Earth Syst. Sci., 6, 619-626.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , pp. 619-626
    • Dawson, C.W.1    Harpham, C.2    Wilby, R.L.3    Chen, Y.4
  • 8
    • 79955067051 scopus 로고    scopus 로고
    • Application of Global SST and SLP Data for Drought Forecasting on Tehran Plain Using Data Mining and ANFIS Techniques
    • Farokhnia, A., Morid, S. and Byun, H.R. (2011) Application of Global SST and SLP Data for Drought Forecasting on Tehran Plain Using Data Mining and ANFIS Techniques. Theor. Appl. Climatol., 104 (1-2), 71-81.
    • (2011) Theor. Appl. Climatol. , vol.104 , Issue.1-2 , pp. 71-81
    • Farokhnia, A.1    Morid, S.2    Byun, H.R.3
  • 11
    • 0023566098 scopus 로고
    • Kolmogorov's Mapping Neural Network Existence Theorem
    • IEEE Press, New York.
    • Hecht-Nielson, R. (1987) Kolmogorov's Mapping Neural Network Existence Theorem. In IEEE International Conf. Neural Net., Vol. 3, IEEE Press, New York.
    • (1987) In IEEE International Conf. Neural Net. , vol.3
    • Hecht-Nielson, R.1
  • 12
    • 0029413797 scopus 로고
    • Artificial Neural Network Modeling of Rainfall-Runoff Process
    • Hsu, K., Gupta, H.V. and Sorooshian, S. (1995) Artificial Neural Network Modeling of Rainfall-Runoff Process. Water Resour. Res., 31, 2517-1530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-1530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 13
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-Network-Based Fuzzy Inference Systems
    • Jang, J.S.R. (1993) ANFIS: Adaptive-Network-Based Fuzzy Inference Systems. IEEE Trans. Syst. Man Cybern., 23, 665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 14
    • 0029273384 scopus 로고
    • Neuro-Fuzzy Modeling and Control
    • Jang, J.S.R. and Sun, C.T. (1995) Neuro-Fuzzy Modeling and Control. Proc. IEEE, 83, 378-406.
    • (1995) Proc. IEEE , vol.83 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 16
    • 0016451032 scopus 로고
    • An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller
    • Mamdani, E.H. and Assilian, S. (1974) An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J. Man Mach. Stud., 7, 1-13.
    • (1974) Int. J. Man Mach. Stud. , vol.7 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 17
    • 0030159380 scopus 로고    scopus 로고
    • Artificial Neural Networks as Rainfall-Runoff Models
    • Minns, A.W. and Hall, M.J. (1996) Artificial Neural Networks as Rainfall-Runoff Models. Hydrol. Sci., 41, 399-417.
    • (1996) Hydrol. Sci. , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 18
    • 63149104793 scopus 로고    scopus 로고
    • Multi-Criteria Validation of Artificial Neural Network Rainfall-Runoff Modeling
    • Modarres, R. (2009) Multi-Criteria Validation of Artificial Neural Network Rainfall-Runoff Modeling. Hydrol. Earth Syst. Sci., 13, 411-421.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 411-421
    • Modarres, R.1
  • 19
    • 64049092449 scopus 로고    scopus 로고
    • Results Uncertainty of Solid Waste Generation Forecasting by Hybrid of Wavelet Transform-ANFIS and Wavelet Transform Neural Network
    • Noori, R., Abdoli, M.A., Farokhnia, A. and Abbasi, M. (2009) Results Uncertainty of Solid Waste Generation Forecasting by Hybrid of Wavelet Transform-ANFIS and Wavelet Transform Neural Network. Expert Syst. Appl., 36, 9991-9999.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9991-9999
    • Noori, R.1    Abdoli, M.A.2    Farokhnia, A.3    Abbasi, M.4
  • 20
    • 1942464873 scopus 로고
    • Dissertation, Tampere University of Technology, Tampere, Finland.
    • Ojala, T. (1995) Neuro-Fuzzy Systems in Control. Dissertation, Tampere University of Technology, Tampere, Finland.
    • (1995) Neuro-Fuzzy Systems in Control
    • Ojala, T.1
  • 21
    • 33749234378 scopus 로고    scopus 로고
    • Flood Routing Modeling with Artificial Networks
    • Peters, R., Schmitz, G. and Cullmann, J. (2006) Flood Routing Modeling with Artificial Networks. Adv. Geosci., 9, 131-136.
    • (2006) Adv. Geosci. , vol.9 , pp. 131-136
    • Peters, R.1    Schmitz, G.2    Cullmann, J.3
  • 22
    • 0022471098 scopus 로고
    • Learning Representations by Back-Propagating Errors
    • Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986a) Learning Representations by Back-Propagating Errors. Nature, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 24
    • 0033535432 scopus 로고    scopus 로고
    • A Non-Linear Rainfall-Runoff Model Using an Artificial Neural Network
    • Sajikumar, N. and Thandaveswara, B.S. (1999) A Non-Linear Rainfall-Runoff Model Using an Artificial Neural Network. J. Hydrol., 216, 32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 25
    • 51249093419 scopus 로고    scopus 로고
    • PAI-OFF: A New Proposal for Online Flood Forecasting in Flash Flood Prone Catchments
    • Schmitz, G.H. and Cullmann, J. (2008) PAI-OFF: A New Proposal for Online Flood Forecasting in Flash Flood Prone Catchments. J. Hydrol., 360, 1-14.
    • (2008) J. Hydrol. , vol.360 , pp. 1-14
    • Schmitz, G.H.1    Cullmann, J.2
  • 26
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of Different Forms of the Multi-Layer Feed-Forward Neural Network Method Used for River Flow Forecast Combination
    • Shamseldin, A.Y., Ahmed, E.N. and O'Connor, K.M. (2002) Comparison of Different Forms of the Multi-Layer Feed-Forward Neural Network Method Used for River Flow Forecast Combination. Hydrol. Earth Syst. Sci., 6, 671-684.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , pp. 671-684
    • Shamseldin, A.Y.1    Ahmed, E.N.2    O'Connor, K.M.3
  • 27
    • 75149114414 scopus 로고    scopus 로고
    • A Comparative Study of Three Neural Network Forecast Combination Methods for River Flow Forecasting
    • Shamseldin, A.Y., O'Connor, K.M. and Nasr, A.E. (2007) A Comparative Study of Three Neural Network Forecast Combination Methods for River Flow Forecasting. Hydrol. Sci. J., 55, 898-916.
    • (2007) Hydrol. Sci. J. , vol.55 , pp. 898-916
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Nasr, A.E.3
  • 28
    • 45449126257 scopus 로고
    • Structure Identification of Fuzzy Model
    • Sugeno, M. and Kang, G.T. (1988) Structure Identification of Fuzzy Model. Fuzzy Sets Syst., 28, 15-33.
    • (1988) Fuzzy Sets Syst. , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 30
    • 0002906650 scopus 로고
    • An Approach to Fuzzy Reasoning Method
    • In Gupta, M.M., Ragade, R.K. and Yager, R.R. (eds), North-Holland, Amsterdam.
    • Tsukamoto, Y. (1979) An Approach to Fuzzy Reasoning Method. In Gupta, M.M., Ragade, R.K. and Yager, R.R. (eds), Advances in Fuzzy Set Theory and Applications, pp. 137-149. North-Holland, Amsterdam.
    • (1979) Advances in Fuzzy Set Theory and Applications , pp. 137-149
    • Tsukamoto, Y.1
  • 31
    • 33644891019 scopus 로고    scopus 로고
    • Modelling Electrical Conductivity of Groundwater Using an Adaptive Neuro-Fuzzy Inference System
    • Tutmez, B., Hatipoglu, Z. and Kaymak, U. (2008) Modelling Electrical Conductivity of Groundwater Using an Adaptive Neuro-Fuzzy Inference System. Comput. Geosci., 32, 421-433.
    • (2008) Comput. Geosci. , vol.32 , pp. 421-433
    • Tutmez, B.1    Hatipoglu, Z.2    Kaymak, U.3
  • 32
    • 0004371987 scopus 로고    scopus 로고
    • U.S. Army Corps of Engineering (USACE). Hydrologic Engineering Center, Davis, CA.
    • U.S. Army Corps of Engineering (USACE). (1998) HEC-1 Flood Hydrograph Package User's Manual. Hydrologic Engineering Center, Davis, CA.
    • (1998) HEC-1 Flood Hydrograph Package User's Manual
  • 33
    • 0142007613 scopus 로고    scopus 로고
    • U.S. Army Corps of Engineering (USACE). Hydrologic Engineering Center, Davis, CA.
    • U.S. Army Corps of Engineering (USACE). (2006) HEC-RAS Flood River Analysis System User's Manual. Hydrologic Engineering Center, Davis, CA.
    • (2006) HEC-RAS Flood River Analysis System User's Manual
  • 34
    • 84887191564 scopus 로고
    • Beyond Regression: New Tools for Prediction and Analysis in Behaviour Sciences. PhD Thesis, Harvard University, Cambridge, MA.
    • Werbos, P.J. (1974) Beyond Regression: New Tools for Prediction and Analysis in Behaviour Sciences. PhD Thesis, Harvard University, Cambridge, MA.
    • (1974)
    • Werbos, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.