메뉴 건너뛰기




Volumn 19, Issue 9, 2005, Pages 1825-1837

Application of an artificial neural network to typhoon rainfall forecasting

Author keywords

Forecast; Neural network; Semivariogram; Typhoon rainfall

Indexed keywords

MATHEMATICAL MODELS; RAIN; STORMS; WEATHER FORECASTING;

EID: 20844462859     PISSN: 08856087     EISSN: None     Source Type: Journal    
DOI: 10.1002/hyp.5638     Document Type: Article
Times cited : (73)

References (14)
  • 2
    • 0031947959 scopus 로고    scopus 로고
    • A soil moisture-rainfall feedback mechanics: Theory and observation
    • Eltahir AB. 1998a. A soil moisture-rainfall feedback mechanics: theory and observation. Water Resources Research 34(4): 756-776.
    • (1998) Water Resources Research , vol.34 , Issue.4 , pp. 756-776
    • Eltahir, A.B.1
  • 3
    • 0031923149 scopus 로고    scopus 로고
    • A soil moisture-rainfall feedback mechanics: Numerical experiment
    • Eltahir AB. 1998b. A soil moisture-rainfall feedback mechanics: numerical experiment. Water Resources Research 34(4): 777-785.
    • (1998) Water Resources Research , vol.34 , Issue.4 , pp. 777-785
    • Eltahir, A.B.1
  • 5
    • 0021638989 scopus 로고
    • A hydrologically useful station precipitation model: 1. Formulation
    • Georgakakos KP, Bras RL. 1984a. A hydrologically useful station precipitation model: 1. Formulation. Water Resources Research 20(11): 1585-1596.
    • (1984) Water Resources Research , vol.20 , Issue.11 , pp. 1585-1596
    • Georgakakos, K.P.1    Bras, R.L.2
  • 6
    • 0021638990 scopus 로고
    • A hydrologically useful station precipitation model: 2. Case studies
    • Georgakakos KP, Bras RL. 1984b. A hydrologically useful station precipitation model: 2. Case studies. Water Resources Research 20(11): 1597-1610.
    • (1984) Water Resources Research , vol.20 , Issue.11 , pp. 1597-1610
    • Georgakakos, K.P.1    Bras, R.L.2
  • 8
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu KL, Gupta V, Sorooshian S. 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31 (10): 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, V.2    Sorooshian, S.3
  • 9
    • 0018982871 scopus 로고
    • Multivariate short-term rainfall prediction
    • Johnson ER, Bras RL. 1980. Multivariate short-term rainfall prediction. Water Resources Research 16(1): 173-185.
    • (1980) Water Resources Research , vol.16 , Issue.1 , pp. 173-185
    • Johnson, E.R.1    Bras, R.L.2
  • 10
    • 0001101795 scopus 로고
    • Geostatistics
    • Maidment DR (ed.). McGraw-Hill: New York; Chapter 20
    • Kitanidis PK. 1993. Geostatistics. In Handbook of Hydrology, Maidment DR (ed.). McGraw-Hill: New York; Chapter 20.
    • (1993) Handbook of Hydrology
    • Kitanidis, P.K.1
  • 11
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk KC, Ball JE, Sharma A. 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227: 56-65.
    • (2000) Journal of Hydrology , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 12
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns AW, Hall MJ. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41(3): 399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 14
    • 0000251270 scopus 로고
    • Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge
    • Zhu ML, Fujita M. 1994. Comparisons between fuzzy reasoning and neural network methods to forecast runoff discharge. Journal of Hydroscience and Hydraulic Engineering 12(2): 131-141.
    • (1994) Journal of Hydroscience and Hydraulic Engineering , vol.12 , Issue.2 , pp. 131-141
    • Zhu, M.L.1    Fujita, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.