메뉴 건너뛰기




Volumn 372, Issue 1-4, 2009, Pages 17-29

Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods

Author keywords

Artificial neural networks; Reservoir inflow forecasting; Reservoir operation system; Support vector machines; Typhoon characteristics

Indexed keywords

ARTIFICIAL NEURAL NETWORKS; BACKPROPAGATION NETWORK; EFFECTIVE RESERVOIR; FORECASTING MODELS; FORECASTING PERFORMANCE; GENERALIZATION ABILITY; KEY INPUT; LONG LEADS; MODELING TECHNIQUE; RESERVOIR INFLOW; RESERVOIR INFLOW FORECASTING; RESERVOIR OPERATION SYSTEM; STATISTICAL LEARNING THEORY; TYPHOON CHARACTERISTICS;

EID: 65649123113     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2009.03.032     Document Type: Article
Times cited : (125)

References (21)
  • 3
    • 33846847847 scopus 로고    scopus 로고
    • Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique
    • Bae D.H., Jeong D.M., and Kim G. Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique. Hydrological Sciences Journal 52 1 (2007) 99-113
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.1 , pp. 99-113
    • Bae, D.H.1    Jeong, D.M.2    Kim, G.3
  • 4
    • 17844370548 scopus 로고    scopus 로고
    • Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves
    • Chang Y.T., Chang L.C., and Chang F.J. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves. Hydrological Processes 19 7 (2005) 1431-1444
    • (2005) Hydrological Processes , vol.19 , Issue.7 , pp. 1431-1444
    • Chang, Y.T.1    Chang, L.C.2    Chang, F.J.3
  • 5
    • 33847261136 scopus 로고    scopus 로고
    • Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks
    • Chaves P., and Kojiri T. Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks. Advances in Water Resources 30 5 (2007) 1329-1341
    • (2007) Advances in Water Resources , vol.30 , Issue.5 , pp. 1329-1341
    • Chaves, P.1    Kojiri, T.2
  • 9
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • Lin G.F., and Chen L.H. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289 1-4 (2004) 1-8
    • (2004) Journal of Hydrology , vol.289 , Issue.1-4 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 10
    • 20844462859 scopus 로고    scopus 로고
    • Application of artificial neural network to typhoon rainfall forecasting
    • Lin G.F., and Chen L.H. Application of artificial neural network to typhoon rainfall forecasting. Hydrological Processes 19 9 (2005) 1825-1837
    • (2005) Hydrological Processes , vol.19 , Issue.9 , pp. 1825-1837
    • Lin, G.F.1    Chen, L.H.2
  • 11
    • 48649086325 scopus 로고    scopus 로고
    • A systematic approach to the input determination for neural network rainfall-runoff models
    • Lin G.F., and Chen G.R. A systematic approach to the input determination for neural network rainfall-runoff models. Hydrological Processes 22 14 (2008) 2524-2530
    • (2008) Hydrological Processes , vol.22 , Issue.14 , pp. 2524-2530
    • Lin, G.F.1    Chen, G.R.2
  • 13
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier H.R., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling and Software 15 (2000) 101-124
    • (2000) Environmental Modeling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 14
    • 3242769911 scopus 로고    scopus 로고
    • State space neural networks for short term rainfall-runoff forecasting
    • Pan T.Y., and Wang R.Y. State space neural networks for short term rainfall-runoff forecasting. Journal of Hydrology 297 1-4 (2004) 34-50
    • (2004) Journal of Hydrology , vol.297 , Issue.1-4 , pp. 34-50
    • Pan, T.Y.1    Wang, R.Y.2
  • 15
    • 18144390148 scopus 로고    scopus 로고
    • Flow categorization model for improving forecasting
    • Sivapragasam C., and Liong S.Y. Flow categorization model for improving forecasting. Nordic Hydrology 36 1 (2005) 37-48
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 37-48
    • Sivapragasam, C.1    Liong, S.Y.2
  • 18
    • 0037200134 scopus 로고    scopus 로고
    • Short-term inflow forecasting using an artificial neural network model
    • Xu Z.X., and Li J.Y. Short-term inflow forecasting using an artificial neural network model. Hydrological Processes 16 12 (2002) 2423-2439
    • (2002) Hydrological Processes , vol.16 , Issue.12 , pp. 2423-2439
    • Xu, Z.X.1    Li, J.Y.2
  • 19
    • 17444408911 scopus 로고    scopus 로고
    • Updating real-time flood forecasting using a fuzzy rule-based model
    • Yu P.S., and Chen S.T. Updating real-time flood forecasting using a fuzzy rule-based model. Hydrological Sciences Journal 50 2 (2005) 265-278
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.2 , pp. 265-278
    • Yu, P.S.1    Chen, S.T.2
  • 20
    • 33845702662 scopus 로고    scopus 로고
    • Forecasting of hydrologic time series with ridge regression in feature space
    • Yu X.Y., and Liong S.Y. Forecasting of hydrologic time series with ridge regression in feature space. Journal of Hydrology 332 3-4 (2007) 290-302
    • (2007) Journal of Hydrology , vol.332 , Issue.3-4 , pp. 290-302
    • Yu, X.Y.1    Liong, S.Y.2
  • 21
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu X.Y., Liong S.Y., and Babovic V. EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics 6 3 (2004) 209-223
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.Y.1    Liong, S.Y.2    Babovic, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.